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ABSTRACT

An alternative landfill capping technique ‘Phytocapping’ (establishing plants on the waste directly,
or on a layer of soil placed over the waste) was trailed at Rockhampton, Australia, as it is eco-
friendly, less expensive and socially acceptable. In this capping trees are used as ‘Bio-pumps and
Screen’ and soil cover as a ‘Storage’. They together minimise water percolation into buried waste
leading to reduced leachate production. Twenty one tree species were grown on two soil depths
and monitored for their growth and their ability to restrict water infiltration through the buried waste.
A very common question raised by most scientist and engineers is the heavy metal uptake by the
tree species and its impact on flora and fauna. Hence to determine the heavy metal concentration
in trees species and its cycle within the phytocapping system, foliar and foliar litter heavy metal
concentrations were measured in all the tree species grown on the phytocapped landfill site.
Results from this analysis suggest that heavy metal composition of the leaves show no real
elevated concentrations except in Glochidion lobocarpum which showed high levels of cobalt and
Acacia harpophylla and Hibiscus tiliaceus which showed higher levels of arsenic cadmium
respectively.
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1. INTRODUCTION

Plants grown in landfills are affected by surface
environmental conditions as well as the nutrient
supply from the buried waste [1]. Waste in a
typical Municipal Solid Waste (MSW) constitutes
more than 50% organics [2] which are the major
sources of nutrients for plants established on
landfills. Other than organic waste, landfills also
contain heavy metals such as arsenic, boron,
cadmium, chromium, cobalt, copper, iron,
manganese, mercury, lead, nickel and zinc [3,4].
Consequently, trees grown on these landfills will
be exposed to the above chemicals [5,6] and
may be released into the environment through
the food chain [7-10].

In general, heavy metal uptake by plants is
influenced by bio-availability of heavy metals
[11], organic matter content of the soil and soil
temperature [12]. Trees take up heavy metals
and store them in the leaves and branches [13-
15] to protect themselves from insects and fungi
[16]. Heavy metals that are taken up by trees are
eventually distributed to the environment via litter
fall [12,17,18].

However heavy metal availability may vary from
one landfill to another and also within landfills
[19]. Heavy metal concentrations of the plants
grown on phytocaps were assessed with the
view to confirming if the established plants were
healthy, and also to test if the same plants
accumulate unusual levels of heavy metals that
could adversely impact on the environment.

Foliar chemical analysis is a good method to
assess plant nutritional stress [20,21] and heavy
metal concentration [9]; both of which are
indicators of processes occurring at the
ecosystem level [22]. Plants require heavy
metals such as zinc, copper, manganese and
iron in trace amounts to grow [23]. However,
excessive uptake by plants may cause serious
health problems to plants and micro and macro
fauna [6]. Most landfill soils contain elevated
levels of heavy metals [3], which may be
released into the environment via trees [24].
Leaves are a good indicator of heavy metal
concentrations in the root-zone and soil [25] and
hence the foliage of species grown in the
phytocapping system was assessed for their
heavy metal concentrations.

Several researchers have shown great concern
about the flow of heavy metals into the
environment through litter fall and/or the food
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chain. There have been concerns about lead
concentrations in landfill soil because lead is
toxic even at low concentration [26]. Scrap tyres
and mechanical parts of vehicles found in many
MSWs are a good source of zinc, cadmium,
nickel and chromium [3]. Adefemi and Awokumi
(2009) also reported the presence of arsenic,
chromium and copper associated with waste
from sludge incineration and fly ash. Heavy
metals released into the environment have an
adverse impact on macro-fauna such as
caterpillars, earthworms, beetles, birds [7,8,10]
and plants as they affect photosynthesis [11]
which subsequently affect growth rate of plants
[27]. This effect will vary between species [28] as
photosynthesis reduction is dependent on
canopy class, stand management, canopy
dimensions, infections and seasonality [14].
However, studies in the past have reported low
toxicity symptoms by trees [29] suggesting their
use of enhanced tolerance mechanisms by
evolving ecotypes that help gain more tolerance
to heavy metals in order to survive under harsh
conditions [30]. The aim of this study was to
assess the health of plants grown in a
phytocapping system by examining heavy metal
uptake and their release into the ecosystem via
litter fall.

2. MATERIALS AND METHODS
2.1 Site Establishment

An experimental site of 5000 m” area at the Lakes
Creek Road Landfill, Rockhampton, Australia was
selected for this study. The experimental site was
established in October 2003. The site had two soll
depths treatments (Thick soil cover, 1400 mm and
Thin soil cover, 700 mm; Fig. 1). These
treatments were replicated twice (total 4 plots). In
the Thin soil cover, only 300 mm of sandy loam
soil and 100 mm of green waste mulch was
placed over the pre-existing 400 mm un-
compacted clay soil (total soil cover of 700 mm).
In the Thick soil cover, four layers of soil were
placed over the pre-existing 400 mm clay soil.
This consisted of 200 mm of sandy loam, 300 mm
of Yaamba clay and 300 mm of Andersite clay,
200 mm of sandy loam soil and 100 mm of green
waste mulch (soil cover of 1400 mm). Both Thick
and Thin soil cover treatments were mulched with
a layer of shredded green waste (100 mm).
Eighteen seedlings of 21 species were planted at
2 m x 1m spacing (Fig. 2) in each plot (1 plot x 4).
Two tree species out of the 21 grown did not
survive.
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Fig. 1. Thick and Thin soil covers

Fig. 2. Tree species planted at 2 m x 1 m spacing

Detailed foliar chemical analysis was undertaken
to determine nutrient composition of 19 species
grown on Thick and Thin phytocapping systems.
Foliar analysis was conducted twice during this
study; once in 2005 and then in 2006. In the first
instance, the youngest fully expanded leaves
were analysed for nutrients and heavy metals.
Then, in the second instance mature, young and
the youngest fully expanded leaves were
analysed for nutrients and heavy metals. Results
from the heavy metal analysis were compared
with the heavy metal concentrations of
soils/plants [10,30,31] (Table 1).

2.2 Youngest Fully Expanded Leaf (2005)

The youngest fully expanded leaves were
collected from 9 plants per species per plot in
the trial. Fifty to sixty such leaves were collected
randomly from the 2 year-old trees and placed in
labelled plastic bags which were placed in on ice
in an insulated storage container. To ensure
removal of dust from the leaves, the samples
were washed subsequently in a series of four
buckets of distiled water. Once washed, the
samples were blot dried and then oven dried at

70°C for up to 96 hours until they attained a
constant dry weight. Once completely dried, the
leaf samples were ground to <600 um using the
Mikro-Feinmuhle-Culatti (MFC) grinder. The
finely ground samples were then placed in
polycarbonate tubes, labelled and sent for

chemical analysis. The foliage nutrient
concentrations of these samples were compared
with the standard nutrient concentrations

reported by [31,36,37,38] with the view to
detecting whether the observed concentrations
were low, adequate or excessive for plant
growth.

2.3 Mature, Young and Youngest Fully
Expanded Leaves (2006)

A mixture of mature, young and the youngest fully
expanded leaves were sampled from 9 plants per
species per plot. In addition, 50 to 60 leaves were
randomly collected from the top, bottom and
middle layers of the canopy of the 3 year-old
trees. A similar procedure was followed as
described in section above.
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2.4 Leaf Litter

A 50 cm x 50 cm quadrat was used for leaf litter
sample collection. Senescing leaves that were
about to fall from the plants were also collected
during this process. Leaves were collected in the
2 & 3 year-old plantation. The quadrat was
thrown randomly between stands of 9 plants in
thick and thin phytocaps and in both replications
and leaf litter samples were collected within
those randomly selected quadrats. Un-
decomposed leaf litter was collected from three
quadrats per species in each replication. The
leaf litter was washed free of dust as per live
leaves, dried, ground and sent for chemical
analysis.

2.5 Statistical Analysis

Mineral composition data was statistically tested
for outliers, normality and homogeneity of error
variances before being subjected to analysis of

variance (ANOVA) using Genstat ver. 13 [39,40].
The effects of soil thickness, species and the
interactions between soil thickness and species
were tested. The effects of time were also tested
for the leaf parameters that were measured
repeatedly. Least significance differences (l.s.d)
are presented where the treatment, capping,
species, time or their interactions were significant
(P<0.05). Standard errors are provided where
there were insufficient data available for ANOVA
or when the F test was found not significant
(P<0.05).

3. RESULTS AND DISCUSSION

Foliar and leaf litter compositions were used to
determine variability in the performance of each
species over two soil thicknesses and over time.
Results from ANOVA are presented in Table 2.

Table 1. Baseline heavy metal concentrations in soils and plants

Elements Plant/soil mg kg™ Reference
As Soil 7.2 [30]

Pb Soil 19 [30]

Ni Soil 19 [30]

Cr Plant 18 [32]

Co Plant 2.75 [31]

Cd Soil/Plant 0.35-0.40 [10, 30]

Se Soil 1 [33]

Mo Plant 1 [34]

Hg Plant 0.16 [39]

Table 2. ANOVA for leaf and litter nutrient and heavy metal compositions (2005 & 2006)

Parameter ANOVA d.f. Significance (P)
Foliar
(heavy metals)
Cap 1 <0.001
Species 18 <0.001
Year 1 0.43
Cap. Species 18 <0.001
Cap. Year 1 0.54
Species. Year 18 1
Cap. Species. Year 18 0.999
Litter * (heavy metals)
Cap 1 0.38
Species 12 <0.001
Year 1 1
Cap.Species 12 0.777
Cap. Year 1 0.21
Species. Year 12 1
Cap. Species. Year 12 0.136

*Nutrient (N, P, K, S, Na, Ca, Mg, Cu, Zn, Mn, Fe, B) and heavy metal (Cr, Co, Ni, As, Se, Mo, Cd, Hg, Pb)
analysis was conducted in species that had significant quantity of litter in all plots/replications
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3.1 Foliar and Leaf Litter Heavy Metal
Composition

3.1.1 Foliar composition of heavy metals in 2
and 3 year-old trees

Overall, the 2 and 3 year-old stands showed no
elevated concentrations of heavy metals (Table
3) except in G. lobocarpum, which showed high
levels of cobalt. In this study, species differed
significantly (P<0.001) (Table 2) in heavy metal
concentrations. This may be attributed to the
ability of different tree species to translocate
heavy metals from root to shoot. Zinc, cadmium
and nickel are translocated to the leaves, while
chromium, lead and copper are usually retained
in the roots [41].

At the sampled growth stages (2 and 3 year-old),
most species did not accumulate excessive
amounts of heavy metals (Fig. 3), most likely due
to very shallow penetration into the soil (approx.
600 mm) and the restricted location of metals
into the roots and low uptake into foliage, which
is a very common resistance trait of trees [42].
Overall, levels of mercury, cadmium, chromium,
lead, and selenium were well within the threshold
limits (Figs 3). However, the 3 year-old E.
grandis showed slightly higher concentrations of
mercury in the thin phytocap (Fig. 4) and G.

lobocarpum accumulated very high levels of
cobalt in both Thick and Thin phytocaps (Fig. 4).
The reason for high accumulation of cobalt by G.
lobocarpum is unknown and requires further
investigation on this species. Deeper root
penetration and the possible access to heavy
metals may vary from landfill to landfill and within
landfills in space and time [19]. But, G.
lobocarpum showed elevated concentrations of
cobalt in both Thick and Thin phytocap, which
may be associated with its genetic ability to
hyperacumulate cobalt. Numerous researchers
have reported that the species that possess the
ability to develop tolerance to heavy metals will
take up heavy metals (hyperaccumulators; [43].
However, even at elevated levels of heavy
metals in the soil, trees evolve a few metal-
tolerant ecotypes [30] which restrict the uptake of
heavy metals. The lack of toxicity symptoms in
trees also indicates their tolerance to withstand
higher heavy metal concentrations than for
agricultural crops [29]. Several studies in the past
have reported good growth rates of trees despite
their root penetration into the spoil, waste and
mine tailings [27]. In this study, however, the 3
year-old H. tiliaceus showed slightly higher levels
of mercury (517mg/kg) in the Thin phytocap but
the levels are not likely to affect the plant (Fig. 4).
Mercury is readily available to plants [44] as it
has a great affinity to organic matter [45].

Table 3. Lowest, highest and mean heavy metal concentrations (mg/kg) in 2 year and 3 year-

old trees
As Cd Co Cr Hg Mo Ni Pb Se

Lowest 86.1 24.5 74.2 4171 506 436 628.8 681.3 63.5
Leaves Highest 1383.9 130.5 10208 1521.0 298.5 978.1 14202 5257.8 248.2
(2005)

Mean 380.0 114 755.0 7704 127.3 2535 3690.8 22504 123.7

Lowest 101.1 10.5 86.2 4151 516 476 625.8 684.3 655
Leaves Highest 1398.9 1345 10220 1519.0 299.5 982.1 14199 5260.8 250.2
(2006)

Mean 395.0 1338 767.0 768.7 128.3 2575 3687.8 22534 122.0

Lowest 2205 245 166.7 6816 659 140.3 963.5 1475.0 66.7
Leaf Highest 3101.5 136.1 9609 1800.8 175.3 1067.8 6811.8 6238.5 166.0
Litter
(2005)

Mean 654.4 8.5 978.9 956.1 105.1 321.2 2967.9 2590.8 109.6

Lowest 2115 5.2 129.1 7448 68.3 1428 868.3 17659 84.4
Leaf Highest 4425.3 149.3 10824 1829.9 185.6 1276.5 5866.5 5726.5 179.4
Litter
(2006)

Mean 703.8 247 1005.4 1041.8 115.3 398.0 2355.8 2894.5 118.3
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3.1.2 Effect of maturity on heavy metal
composition

Seasonal variations in the foliar heavy metal
concentrations in trees have been confirmed by
various studies in the past, but results from this
study revealed no significant (Table 2) changes
in the foliar heavy metal concentrations over one
year (at ages 2 and 3 years, respectively) (Table
3). It is too early to make any discrete statements
on the observations made as the trees
established in this system are in their initial
growth phase and have shallow roots. However,
based on previous reports and findings, roots of
trees grown on landfills and landfill covers do not
tend to develop deep roots due to high internal
soil temperatures and landfill gases. However,
trends in heavy metal uptake will vary as the
trees mature and develop deep roots. Riddell-
Black (1993) reported consistent increases in
foliar heavy metal concentrations shortly before
senescence in willow grown on a metal-
contaminated substrate.

There was no significant increase (Table 2) in
heavy metal concentrations over time as the
roots were well within the soil profile and most
roots did not penetrate the waste by year 3.
However, this may not be the case as the trees
mature. The roots of the trees may penetrate
deep into the soil over time and they may access
the waste below taking up heavy metals and
releasing them into the environment. It is
possible that the soil and trees in the landfill site
may constitute a threat to the environment.
However, these risks may not be as serious as
the threats of trees grown on metal contaminated
sites [46], mine sites [23,47], ultramafic mineral
sites [48], agricultural sites [49], industrial sites
[50], coastal areas and waterways [51] and in
soils that contain naturally elevated levels of
metals [51].

3.1.3 Leaf litter heavy metal concentration

Leaf litter of 3 year-old trees showed no elevated
(Fig. 5) concentrations of heavy metals. Species
varied significantly (P<0.001) in their leaf heavy
metal concentrations (Table 2). Overall, heavy
metal concentration in leaf litter was higher than

that found in live tissues of leaves (Table 3).
Eucalyptus tereticornis had high concentrations
of arsenic compared to other species (Fig. 5), but
levels were well below the threshold limit (2700
ppb). Similarly, leaf litter cadmium composition of
H. tiliaceus and L. confertus were higher (Fig. 5)
than those in other species, but was well within
the acceptable limit. Acacia harpophylla and H.
tiliaceus showed higher levels of arsenic and
cadmium (Fig. 5), respectively, than other
species. Overall, the leaf litter from the majority
of the plants did not accumulate heavy metals in
excessive quantity and the current
concentrations are not expected to have an
adverse impact on soil, flora and fauna in the
phytocapping system. However, cobalt
accumulation of G. lobocarpum is of some
concern as the high levels were also found in the
leaf litter (Figs 5 and 6). Overall, levels of heavy
metals being recycled into the system via leaf
litter fall are well within the limits the Iimits
reported to affect the environment.

3.1.4 Effect of soil depth on heavy metal
composition

Heavy metal concentrations varied significantly
(P<0.01) between Thick and Thin phytocaps.
Trees grown in the Thin soil cover contained
slightly elevated levels of heavy metals
compared to those grown in the Thick soil cover
(Figs 3 and 4) and this may be associated with
closer proximity of their roots to the buried waste.
At this stage, the trees have developed shallow
roots to avoid high soil temperature and
anaerobic conditions and also due to irrigation
supply to support their growth in the initial
stages. Hence the availability of water in the
upper layers of the soil may not have
encouraged the roots to penetrate into the buried
waste.

3.4 Overall Trend

An overall trend in heavy metal concentrations in
foliage and leaf litter of 2 and 3 year-old trees
established in the phytocapping system is
summarised in Table 4.
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Fig. 3. Foliar and leaf litter heavy metal concentrations in 2 year-old species averaged over
two phytocapping systems
Bars represent standard errors. The horizontal line shows the optimum levels recommended for heavy metals in
plants/soil (Table 1)
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Fig. 5. Leaf litter heavy metal concentrations in 3 year-old species averaged over the Thick and
Thin phytocapping systems
Bars represent standard errors (n=4). The horizontal line shows the threshold levels recommended for heavy
metals in plants/soil (Table 1)
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Fig. 6. Comparison between foliar and leaf litter heavy metal concentrations in 3 year-old
species grown in the phytocapping systems
Bars represent standard errors (n=2). The horizontal line shows the Threshold levels recommended for heavy
metals in plants/soil (Table 1)

Table 4. Overall trends in foliar and leaf litter nutrient and heavy metal concentrations in the
phytocapping system (at 2 and 3 years)

Foliar (2005) Foliar 2006 Leaf litter (2006) Remark

Element Normal Low High Normal Low High Normal Low High

Mo * * * Slightly high in
six species

Co * * * Very high in G.
lobocarpum

As * * *

Cd * * *

Hg * * *

Ni * * *

Pb * * *

Cr * * *

Se * * *
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5. CONCLUSIONS

At 3.5 years of age, the roots of the trees grown
in the phytocapping system are shallow and are
yet to penetrate the buried waste. However, trees
may develop tolerance to heavy metals
contained in the waste. With time, trees grown on
the Thin soil cover are expected to accumulate
larger quantities of heavy metals than those
grown in Thick soil cover.

Leaf litter from the majority of the species
accumulates low levels of heavy metals, and
therefore is unlikely to affect the soil, flora or
fauna in the phytocaps. It will be interesting to
see if the heavy metal concentrations of the leaf
litter will increase as the trees mature. Further
tests on mature trees will establish the role of
trees in mobilising heavy metals from the soil and
releasing these metals into the environment.
However at this stage the established trees do
not pose any threat to the environment.

Cobalt accumulation by G. lobocarpum is of
some concern and this needs to be investigated
further, particularly for ecological implications, as
the leaves of this species may be completely
decimated by caterpillars (10) and predation of
these caterpillars by birds may lead to adverse
ecological consequences. For the time being, it is
recommended that this species be not used in
phytocaps.
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