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Abstract 
In this paper, we use Riccati equation to construct new solitary wave solutions 
of the nonlinear evolution equations (NLEEs). Through the new function trans-
formation, the Riccati equation is solved, and many new solitary wave solu-
tions are obtained. Then it is substituted into the (2 + 1)-dimensional BLMP 
equation and (2 + 1)-dimensional KDV equation as an auxiliary equation. 
Many types of solitary wave solutions are obtained by choosing different coef-
ficient p1 and q1 in the Riccati equation, and some of them have not been 
found in other documents. These solutions that we obtained in this paper will 
be helpful to understand the physics of the NLEEs. 
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1. Introduction 

The study of solitary waves and solitons is a frontier topic at present. From hy-
drodynamics, optics, plasma, condensed matter physics to basic particle physics, 
and even astrophysics and biology, it is everywhere [1]-[6]. We all found that 
there are experimental facts or physical mechanisms for the existence of solitons. 
Most of the laws of physics can establish mathematical models under certain 
conditions, and many studies of nonlinear identification can be attributed to the 
NLEEs finally. Therefore, finding their exact solutions, such as breathing solu-
tions and solitary wave solutions, is of great significance for exploring related 

How to cite this paper: Liu, X.X., Cui, 
K.W. and Wu, G.J. (2022) Using Riccati Equ-
ation to Construct New Solitary Solutions of 
Nonlinear Difference Differential Equations. 
American Journal of Computational Mathe-
matics, 12, 256-266. 
https://doi.org/10.4236/ajcm.2022.122016 
 
Received: May 19, 2022 
Accepted: June 21, 2022 
Published: June 24, 2022 
 
Copyright © 2022 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/ajcm
https://doi.org/10.4236/ajcm.2022.122016
https://www.scirp.org/
https://doi.org/10.4236/ajcm.2022.122016
http://creativecommons.org/licenses/by/4.0/


X. X. Liu et al. 
 

 

DOI: 10.4236/ajcm.2022.122016 257 American Journal of Computational Mathematics 
 

nonlinear problems, and it is also an important focus of mathematical and phys-
ical research. Great progress has been made in recent centuries. Many powerful 
and effective methods have been proposed in the literature to obtain the exact 
solution of the NLEEs. For example, tanh-sech method and the extended tanh- 
coth method [7] [8], F-expansion method [9] [10], Jacobi elliptic function ex-
pansion method [11] [12], auxiliary equation method [13] [14] [15], and so on.  

In Ref. [16], by using the Riccati equation 

( ) ( )2f fξ ξ µ′ = +                          (1) 

the following solitary wave solutions are obtained 

( ) ( )tanhf ξ µ µξ= − − − , ( 0µ < )                 (2) 

( ) ( )cothf ξ µ µξ= − − − , ( 0µ < )                 (3) 

This method is powerful and effective, and can be applied to solve constant 
coefficient, variable coefficient and high-dimensional NLEEs. In this paper, we 
consider to the Riccati equation in the following form  

( ) ( )2
1 1f p f qξ ξ′ = +                       (4) 

Equation (4) has the following hyperbolic function solution 

( ) ( )tanhf ξ ξ= , ( 1 11, 1p q= − = )                 (5) 

( ) ( )cothf ξ ξ= , ( 1 11, 1p q= − = )                 (6) 

A new auxiliary function ( )g ξ  is introduced, which satisfies the following 
relationship 

( ) ( )2 2
2 2g p g qξ ξ′ = +                     (7) 

Equation (7) has the following hyperbolic function solution 

( ) ( )sinhg ξ ξ= , ( 2 21, 1p q= = )                 (8) 

( ) ( )coshg ξ ξ= , ( 2 21, 1p q= = − )               (9) 

Suppose ( )f ξ  and ( )g ξ  have the following formal solution 

( ) ( )
( )
g

f
g r

ξ
ξ

ξ
′

=
+

                     (10) 

Substituting Equation (10) into Equation (4) and using Equation (7), we have 

( ) ( )
( )

sinh
cosh 1

f
ξ

ξ
ξ

=
±

, ( 1 11 2, 1 2p q= − = )           (11) 

( ) ( )
( )

cosh
sinh

f
i

ξ
ξ

ξ
=

±
, ( 1 11 2, 1 2p q= − = )           (12) 

It is obvious ( ) ( )1h fξ ξ=  is also the solution of Equation (4) in the condi-
tion of 1 1p q= − . Equation (5) and Equation (6) are a pair of solutions satisfying 
this condition. So we also have 
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( ) ( )
( )

cosh 1
sinh

f
ξ

ξ
ξ
±

= , ( 1 11 2, 1 2p q= − = )             (13)  

( ) ( )
( )

sinh
cosh

i
f

ξ
ξ

ξ
±

= , ( 1 11 2, 1 2p q= − = )             (14) 

again suppose ( )f ξ  and ( )g ξ  have the following formal solution  

( ) ( )
( )2

g
f

g r
ξ

ξ
ξ

=
+

                      (15) 

where r is constant to be determined. We have 

( ) ( ) ( )
( )

( ) ( )
( )2 2

sinh cosh sinh cosh
sinh cosh

f
r r

ξ ξ ξ ξ
ξ

ξ ξ
= =

′+ +
, ( 1 1

12, 2, , 1 2
2

p q r r′= − = = = − )(16) 

( ) ( )
( ) ( )

( )
( ) ( )

2 2sinh cosh
sinh cosh sinh cosh

r r
f

ξ ξ
ξ

ξ ξ ξ ξ
′+ +

= = , ( 1 1
12, 2, , 1 2
2

p q r r′= − = = = − )(17) 

Equations (16) and (17) are the new types of solitary wave solutions, which are 
rarely found in the other documents. Then using the auxiliary Equation (4) and its 
solutions (5), (6) and (11)-(17), the solving process of NLEEs is greatly simplified. 

The frame work of the paper is as follows: Section 2 introduces the method of 
solving the (2 + 1)-dimensional NLEEs. Section 3 establishes how to operate this 
method for producing new solitary wave solutions of (2 + 1)-dimensional BLMP 
equation and (2 + 1)-dimensional KDV equation. Section 4 is the conclusion. 

2. Method  

The following the (2 + 1)-dimensional NLEE is considered 

( ), , , , , , ,, 0t x y tt xt yt xxN u u u u u u u u =                 (18)  

It is assumed that Equation (18) has the following traveling wave solution 

( ) ( ), ,u x y t u ξ= , x y tξ ω= + +                   (19)  

where ω is a wave parameter to be determined. Substitute Equation (19) into 
Equation (18), and Equation (18) becomes the following ordinary differential 
equation  

( ), , , 0N u u u′ ′′ =                        (20)  

where u' means du/dξ. Suppose Equation (18) has the following formal solution 

( ) ( )0
i

i
n

iu a fξ ξ
=

= ∑                       (21) 

where ai are constants determined later. The positive integer n can be controlled 
by controlling the homogeneous balance between the governing nonlinear term 
and the highest order derivative of u(ξ) in Equation (20). f(ξ) is determined by 
Equation (4). Substituting Equation (4) and Equation (21) into (20), and setting 
the coefficients of fi(ξ) to zero, then solving the resulting equations the solitary 
wave solutions of Equation (20) can be obtained. 
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3. Application of the Method 
3.1. (2 + 1)-Dimensional BLMP Equation 

The following (2 + 1)-dimensional BLMP equation [17] [18] is considered 

( )3 0yt xxxy y x x
u u u u+ − =                       (22)  

As a (2 + 1) dimensional model, Equation (22) has been applied to the inte-
raction between Riemann waves along the Y axis and long waves along the X 
axis. Substituting Equation (19) into Equation (22), integrating once and setting 
the integration constant to zero yields 

( )23 0u u uω ′ ′′′ ′+ + =                        (23)  

By the homogeneous balance between u′′′  and ( )2u′  in Equation (23), 1n =  
can be obtained. So the solution of Equation (23) can be expressed as 

( ) ( )0 1u a a fξ ξ= +                        (24) 

substituting (24) into (23) yields a set of algebraic equations for a0, a1 and ω. 
Collecting all terms with the same power of f(ξ) together, equating each coeffi-
cient to zero. Then Solving the algebraic equations, a0, a1, and ω can be obtained 
as follows 

0a C= , 1 12a p= − , 1 14 p qω =                 (25) 

By selecting different values of p1 and q1 the solitary wave solutions of (2 + 
1)-dimensional BLMP equation can be obtained 

Case 1 ( ) ( )1 2 tanhu Cξ ξ= +                   (26) 

where x y tξ ω= + + , 4ω = − . 

Case 2 ( ) ( )2 2cothu Cξ ξ= +                   (27) 

where x y tξ ω= + + , 4ω = − . 

Case 3 ( ) ( )
( )3

sinh
cosh 1

u C
ξ

ξ
ξ

= +
±

                 (28) 

where x y tξ ω= + + , 1ω = − . 

Case 4 ( ) ( )
( )4

cosh 1
sinh

u C
ξ

ξ
ξ
±

= +                  (29) 

where x y tξ ω= + + , 1ω = − . 

Case 5 ( ) ( )
( )5

cosh
sinh

u C
i

ξ
ξ

ξ
= +

±
                 (30) 

where x y tξ ω= + + , 1ω = − . 

Case 6 ( ) ( )
( )6

sinh
cosh

i
u C

ξ
ξ

ξ
±

= +                  (31) 

where x y tξ ω= + + , 1ω = − . 
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Case 7 ( ) ( ) ( )
( )

( ) ( )
( )7 2 2

sinh cosh sinh cosh
4 4

sinh 1 2 cosh 1 2
u C C

ξ ξ ξ ξ
ξ

ξ ξ
= + = +

+ −
   (32) 

where x y tξ ω= + + , 16ω = − . 

Case 8 ( ) ( )
( ) ( )

( )
( ) ( )

2 2

8

sinh 1 2 cosh 1 2
4 4

sinh cosh sinh cosh
u C C

ξ ξ
ξ

ξ ξ ξ ξ
+ −

= + = +    (33) 

where x y tξ ω= + + , 16ω = − . 
These five types of solitary wave solutions of (2 + 1)-dimensional BLMP equa-

tion are shown as Figure 1, where C = t = 0. It can be seen in Figure 1 that all 
the figures show the kink type solitary waves with the spatial position. However, 
there are singularities in the solitary waves in Figure 1(b), Figure 1(c2), Figure 
1(d1) and Figure 1(d2) owing to ( )sinh 0ξ =  or ( )cosh 1 0ξ − =  at some spa-
tial positions. Figure 1(f) shows a relatively flat solitary wave, which has rarely 
been found in previous studies. 
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Figure 1. Solitary waves of (2 + 1)-dimensional BLMP equation at C = t = 0. (a) Equation (26), (b) Equation (27), (c1) Equation 
(28) with + and (c2) Equation (28) with −, (d1) Equation (29) with + and (d2) Equation (29) with −, (e) Equation (32), (f) Equa-
tion (33). 

3.2. (2 + 1)-Dimensional KDV Equation 

Then we consider to reveal the new periodic wave and solitary solutions for the 
(2 + 1)-dimensional KDV equation [19] [20] 

3 3 0t xxx x xu u v u vu+ − − =                     (34)  

x yu v=                             (35) 

Substituting Equation (19) into Equation (34) and Equation (35) and integrat-
ing the above two equation once and setting the integration constant in Equation 
(35) to zero yields 

( ) 23 3 0C u u uω ′′+ + + =                     (36)  

u v C= +                           (37) 
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According to homogeneous balance between u′′  and 2u  in Equation (36), 
2n =  can be obtained. So the solution of Equation (31) can be expressed as 

( ) ( ) ( )2
0 1 2u a a f a fξ ξ ξ= + +                  (38) 

Following the method in Section 3.1, we can get 

case 1 0 1 1
2
3

a p q= − , 1 0a = , 2
2 12a p= − , 1 14 3p q Cω = − −       (39) 

case 2 0 1 12a p q= − , 1 0a = , 2
2 12a p= − , 1 14 3p q Cω = − −        (40) 

These two sets of solutions are the same type of solitary wave solutions, so we 
will only demonstrate case 2 below. 

By selecting different values of p1 and q1 the solitary wave solutions of (2 + 
1)-dimensional KDV equation can be obtained 

Case 1 ( ) ( )2
1 2 2 tanhu ξ ξ= −                  (41) 

where x y tξ ω= + + , 4 3Cω = − . 

Case 2 ( ) ( )2
2 2 2cothu ξ ξ= −                  (42) 

where x y tξ ω= + + , 4 3Cω = − . 

Case 3 ( ) ( )
( )

2

3

sinh1 1
2 2 cosh 1

u
ξ

ξ
ξ

 
= −  

±  
                (43) 

where x y tξ ω= + + , 1 3Cω = − . 

Case 4 ( ) ( )
( )

2

4

cosh 11 1
2 2 sinh

u
ξ

ξ
ξ

 ±
= −  

  
                (44) 

where x y tξ ω= + + , 1 3Cω = − . 

Case 5 ( ) ( )
( )

2

5

cosh1 1
2 2 sinh

u
i

ξ
ξ

ξ
 

= −  
±  

                (45) 

where x y tξ ω= + + , 1 3Cω = − . 

Case 6 ( ) ( )
( )

2

6

sinh1 1
2 2 cosh

i
u

ξ
ξ

ξ
 ±

= −  
  

                (46) 

where x y tξ ω= + + , 1 3Cω = − . 

Case 7 ( ) ( ) ( )

( )

( ) ( )

( )

2 2

7
2 2

sinh cosh sinh cosh
8 8 8 8

1 1sinh cosh
2 2

u
ξ ξ ξ ξ

ξ
ξ ξ

   
   

= − = −   
   + −
   

   (47) 

where x y tξ ω= + + , 16 3Cω = − . 

Case 8 ( )
( )

( ) ( )
( )

( ) ( )

2 2
2 2

8

1 1sinh cosh
2 28 8 8 8

sinh cosh sinh cosh
u

ξ ξ
ξ

ξ ξ ξ ξ

   + −   
= − = −   

   
   

   (48) 

where x y tξ ω= + + , 16 3Cω = − . 
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These five types of solitary wave solutions of (2 + 1)-dimensional KDV equa-
tion are shown as Figure 2, where C = t = 0. As shown in Figure 2 all the figures 
show the bell type solitary waves with the spatial position. There are still singu-
larities in the solitary waves in Figure 2(b), Figure 2(c2), Figure 2(d1) and 
Figure 2(d2) owing to wing to ( )sinh 0ξ =  or ( )cosh 1 0ξ − =  at some spatial 
positions. A more pronounced flat solitary wave is shown in Figure 2(f). 
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Figure 2. Solitary waves of (2 + 1)-dimensional KDV equation at C = t = 0. (a) Equation (41), (b) Equation 
(42), (c1) Equation (43) with + and (c2) Equation (43) with −, (d1) Equation (44) with + and (d2) Equation 
(44) with −, (e) Equation (47), (f) Equation (48). 

4. Conclusion  

In this paper, we use Riccati equation to explore the solitary solution of the (2 + 
1)-dimensional BLMP equation and (2 + 1)-dimensional KDV equation. Through 
two types of new function transformation Equation (7) and Equation (10), the 
Riccati equation is solved, and many new solitary wave solutions are obtained. 
With the cooperation of Equations (24) and (38), we have constructed abundant 
and new solitary wave solutions for the (2 + 1)-dimensional BLMP equation and 
(2 + 1)-dimensional KDV equation. The solitary wave solutions expressed by 
Equations (32), (33), (47) and (48) are rarely found in other documents, espe-
cially the solitary waves represented by Equations (33) and (48) shown in Figure 
1(f) and Figure 2(f). This method can greatly simplify the calculation process, 
especially suitable for solving complex NLEEs. In the next work, we will use it to 
solve more complex nonlinear systems. It is simple and powerful mathematical 
tools and is promising for constructing abundant solitary solutions and can serve 
as a useful guide for a broad class of nonlinear problems in the study of mathe-
matics and physics. 
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