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ABSTRACT

Nonlinear waves have been an important subject in the field of astroplasmas under the
action of Coriolis force because of rotation could be the progenitor of many heuristic feature
on waves. Our main interest is to study the nonlinear ion-acoustic wave in a rotating plasma.
Pseudopotential analysis has been used to derive the Sagdeev-like wave equation which, in
turn, becomes the tool to study the different nature of nonlinear plasma waves. Special
methods have been developed successfully to derive different kinds of solitary wave
solutions. Main emphasis has been given to the interaction of Coriolis force to the changes
of coherent structures of solitary waves e.g. Compressive and rarefactive solitary waves
along with their explosions or collapses. It has shown that the variation of rotation affects the
nonlinear wave modes and causeway exhibits shock waves, double layers, sinh-wave, and
formation of sheath structure in dynamical system. It has shown that the rotation, however
small in magnitude, generates a narrow wave packet with the generation of high energy
therein which, in turn, yields the phenomena of radiating soliton. It finds that the Coriolis
force might be the cause in blowing up the ion-acoustic pulses and could be related the
phenomena of solar burst. Thus the work has the potential interest to study the nonlinear
waves in astroplasmas where in Coriolis force is present with a view to rekindle the soliton
dynamics in space plasmas.
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1. INTRODUCTION

Studies on nonlinear solitary waves have been receiving tremendous momentum in various
plasma environments   in laboratory, space as well as in astrophysical plasmas because of
its having potential importance in processes of plasma energization. Since its observations
in water wave Scott [1], study on nonlinear wave have been carrying out through the
augmentation of Korteweg-de Vries equation [2] (called as K-dV equation). Washimi and
Taniuti [3] were probably the pioneers who derived theoretically the well known nonlinear K-
dV equation in plasma and finds successfully the solitary waves (or solitons) what exactly
observed in water wave. During the same decade, another pioneer method by Sagdeev [4]
has derived the nonlinear wave phenomena in terms of an energy integral equation and
analyzed rigorously soliton dynamics along with other nature of nonlinear waves in plasmas.
Both have made unique platforms in scientific community and bridges successfully many
theoretical observations in plasma experiments [5,6] as well as with the satellite
observations in astroplasmas [7,8]. Many authors have studied then soliton dynamics in
various plasma models among which Das [9] observed first a new nature of solitary wave in
plasma causes by the presence of an additional negative ion and makes a heuristic
milestone in soliton dynamics. The observations yield latter successfully in auroral
ionosphere and magnetosphere by the Freja scientific space satellites Wu et al. [7] as well
as in laboratory plasmas Watanabe [10], Lonngren [11], Cooney et al. [12]. Parallel works
have studied also this novel features in different plasma constituents with multiple electrons
in discharge phenomena Jones et al. [13], Hellberg et al. [14] and have shown the plasma
constituent effects on the evolution of new features as similar to those have been observed
theoretically by Das [9] as well as in laboratory plasmas (Watanabe [10], Lonngren [11],
Cooney et al. [12] with negative ions. Many thorough advancements have been derived the
occurrences of nonlinear ion-acoustic solitary waves of different kinds e.g.  compressive and
rarefactive solitons, double layers by many authors Raadu [15], Das et al.[16], followed by
the new findings as of spiky and explosive solitary waves Das et al. [17], Nejoh et al.[18] as
well as experimental evidences in multiple electron plasmas (Jones et al. [13], Hellberg et al.
[14],  Nishida et al. [19]). Again interest has been widened in presence of magnetic field
which  yields  the formation of compressive and rarefactive solitons (Kakutani et al.[20],
Kawahara [21] but with the effective variation on dispersiveness  causes  by the interaction
of magnetic field. However, fewer observations have been made to show the role of
dispersive effect on the existences of different solitons. Actual argument lies on the
derivation of nonlinear wave in unmagnetized plasma which does not ensure the variation of
dispersive effect and thus could not sustain such behaviour in solitary waves. But the
magnetized plasma exhibits the occurrences of compressive and rarefactive solitons
(Kakutani et al.[20], Kawahara [21] ) which arises due to the effect of embedded magnetic
field. Again several solitary wave modes have been investigated by many  authors (Haas
[22], Sabry et al .[23], Chatterjee et al. [24]) in quantum plasma configurations. Totality of
soliton dynamics in plasmas depend on the nature of nonlinearity and dispersive effects.
Both the nature find the  typical role in plasmas explored in astrophysics, space plasmas and
astroplasmas as well as in  laboratory plasmas  and concluded that plasma contaminated
with an additional negative charge could exhibit many different nature on solitary waves.

Again, during last several years, there has been a flurry of theoretical studies on solitary
waves as of dust acoustic waves(DAW), dust magnetosonic waves in plasmas contaminated
with  negatively dust charged grains Goertz [25], Goertz & Morfil [26]. In fact study has been
acquiring a great significance and subsequent studies showed many applications in
understanding the salient features of acoustic modes because of new and its vital role
finding in astrophysical and space environments. Since its theoretical concept on the
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occurrences of DAW in plasma, predicted probably first by Rao et al. [27], and supported by
the experiments of Barkan et al. [28], studies have then growing interest in plasmas with
having different configuration of dust charged grains. In planetary rings, earth’s
magnetosphere, interstellar clouds, over the Moon’s surface [29-32]. Numerous
investigations on nonlinear wave phenomena have been studied theoretically relying on the
experiments and satellite observations, but we are very much reluctant to cite all papers
here. Recent  works in different plasma models appear in laboratory and space plasmas [33]
that too in unmagnetized or magnetized plasmas with temperature effect [34], nonlinear
phenomenon as of sheath formation in  inhomogeneous plasma and ionization effect [35,36],
in astroplasmas with electron-positron-ion-plasmas [37-39] especially observable in the
pulsar magnetospheres [40], dust charging variation effect [41], nonlinear phenomena in
relation to the observations of spokes in the Saturn’s B ring [42]  are to be quoted. Results
have derived many aspects of scientific values on nonlinear waves boosting with an uneven
competition between theory and experiments as well as with the satellite observations in
astroplasmas. We further for new features on nonlinear waves in astroplasmas under the
action of Coriolis force appears due to the slow rotation of the medium. It is very much
necessary to consider the plasma model under the interaction of rotation. It is observed that
the heavenly body under slow rotation, however small it might be, shows interesting findings
in astrophysical environments [43]. Because of rotation, two major forces known as Coriolis
force and centrifugal force, Chandrasekhar [43], Greenspan [44] play very important role in
the dynamical system. But, because of slow rotation approximation, centrifugal force in the
dynamics could be ignored, and could be a common applicable in the study of wave in many
astroplasmas environments. Based on Chandrasekhar’s proposal [45] on the role of Coriolis
force in slow rotating stars, many workers have studied latter the nature of wave propagation
in rotating space plasma environments. Lehnert [46]’s study on Alfvén waves finds that the
Coriolis force plays a dominant role on low frequency Alfvén waves leading to the
explanation of solar sunspot cycle. Earlier knowledge pointed out that the force generated
from rotation, however small in magnitude, has the effective  role in slow rotating stars
[45,46] as well as in cosmic phenomena [47]. Latter, from the theoretical point of view, linear
wave propagation had been studied elaborately in rotating plasma Bajaj and Tandon [48],
Uberoi and Das [49] and references therein , and the results on  wave propagation in lower
ionospheric plasmas conclude that the role of rotation cannot be ignored otherwise
observations might be erroneous. Further, it has shown that the Coriolis force has a
tendency to produce an equivalent magnetic field effect as and when the plasma rotates
[49]. Interest has then widened well to theoretical and experimental investigations because
of its great importance in rotating plasma devices in laboratory and in space plasmas too.
But, earlier works were limited to study the linear wave in simple plasmas. Whereas, all the
observations with nonlinear waves indicate that the plasma-acoustic modes might expect
new features in rotating plasmas related to such problems in astrophysical environments.
Das and Nag [50] have studied  the  nonlinear wave phenomena with  due effect of  rotation
as in  astrophysical problems  observable in slow rotating stars Chandrasekhar [45], Lehnert
[46] as well as  in cosmic physics Alfvén [47] and in ideal plasma model [49]. Study
evaluates that  the rotation plays the progenitor of various nature of nonlinear wave as of
the formation of rarefactive and compressive, bursting or collapses of soliton pulses as
similar to those observed in multicomponent plasmas earlier [7,8,16,17,40]. Variation of
Coriolis force creates  a narrow wave packet of soliton with the creation of  high electric force
and magnetic force and, as a result of which, density depression occurs causing  the
radiation-like phenomena coined as soliton radiation [51,52]. Latter Mamun [40] has shown
this nature of small amplitude waves generated in highly  rotating neutron stars or pulsar and
concludes that the variation of rotation causes the soliton radiation termed as pulsar
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radiation. Moslem et al. [53] and Kourakis et al. [54] executed such observations
convincingly in pulsar magnetospheres.

To study the totality on existence of nonlinear wave propagation in rotating plasma, we have
considered a simple unmagnetized plasma rotating with an uniform angular velocity.
Sagdeev Potential (SP)-like wave equation has been derived by the use of quasi-potential
method, and thereafter wave equation has been analyzed with the variation of nonlinear
effects and rotation. Investigations will be  structured as append : Sec.2.1 describes  the
basic equations governing the plasma dynamics under the action of Coriolis force and
thereafter nonlinear Sagdeev-like wave equation has been derived. To derive the
properties and propagation of different pulse excitations, modified sech-method (or tanh-
method) has been employed to solve wave equation as for solitons, double layers, shock
waves(in secs. 2.2-2.7). Results are summarized in the concluding Sec.3.
.
2.1 Basic Equations and Derivation of Nonlinear Wave Equation

To study the nonlinear solitary wave propagation, we consider a plasma consisting of
isothermal electrons (under the assumption Te >>Ti) and positive ions. Here nonlinear
acoustic wave propagation has been taken unidirectional (say along x-direction). We
assume the plasma is rotating with an uniform angular velocity,  around an axis making an
angle θ with the propagation direction. Further the plasma is having the influence of Coriolis
force generated from the slow rotation approximation. Other forces might have effective role
in the dynamics but all have been neglected because of having the aim to know the effect of
Coriolis force in isolation. The basic equations governing the plasma dynamics are the
equations of continuity and motion, and, following Uberoi and Das [49] can be written (with
respect to a rotating frame of reference) in the normalized forms as

0xnvn
t x

 

 
(1)

x x
x y

v v
v v sin

t x x
 

  
   
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( )y y
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t x
  
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 
 
  
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where the normalized parameters are  defined as n = ni / n0, x = x /,  vx,y,z = (vi)x,y,z / Cs, t = t
ci ,  = Cs / ci , Cs = ( kTe/mi )1/2, ci = eH/mi with =2.  ωci and  denote respectively  the
ion-gyro frequency and ion-gyro radius, Cs is the ion acoustic speed. H = 2m/qα has been
produced due to the rotation,  mi is the mass of ions moving with velocity vx,y,z , and n be the
density.

Basic equations are supplemented by Poisson equation which relates the potential  with
the mobility of charges as
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For the sake of mathematical simplicity, equations for electrons are simplified to Boltzman
relation as

exp( )en   (6)

where  = e/kTe is the normalized electrostatic potential and ne is the electron density
normalized by n0 (= ni0 = ne0).

Now to derive the Sagdeev potential equation, pseudopotential method has been employed
which  needs to describe plasma parameters  as the function of  [ =  (x −Mt)] with
respect to a frame moving with M (Mach number) and −1 is the width of the wave. Now
using these transformations along with appropriate boundary conditions at   given as
[50]

(i) 0v  (  = x,y,z) (7a)

(ii) 0  (7b)

(iii) 0d
d

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(iv) 1n (7d)

basic Eqs. (1) – (4) are reduced to the following ordinary differential equations
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Now integrating equations once, along with the boundary conditions, Eq.(8) evaluates vx as
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The substitution of vx into Eqs.(9) and (10) gives
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Again use of  vy in Eq.(10), vz evaluates as
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We, substituting Eqs.(13) and (15) in Eq.(14), obtain the nonlinear wave equation  as
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where
2
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and ( , )V M which could be regarded as modified

Sagdeev potential. Multiplying both sides of  Eq.(16) with A(n) and thereafter mathematical
manipulation with  once integrating in the limit  = 0 to ,  Eq.(16) evaluates as

2 2 2
2

2
0
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A(n), which is a function of plasma constituents,  plays the main role in finding the different
nature of  nonlinear wave phenomena. This is the desired equation to derive the sheath
formation along with different acoustic modes in plasmas. But, due to the presence of A(n),
solution of Eq.(17 ) cannot be evaluated analytically, and consequently as for  the desired
observations in astrophysical problems, we make a crucial approximation of having small
amplitude acoustic modes. Mathematical simplicity has been followed by the quasineutrality
condition in plasmas. This condition is based on the assumption that the electron Debye
length is much smaller than the ion-gyro-radius, and, following Baishya and Das [55],  ion
density approximates  as

exp( )n   (18)
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and A(n) can be modified  explicitly as

2( ) 1 exp( 2 )A n M    (19)

Now Eq. (17), with the substitution of Eqs.(18) and (19),  reads  as
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From the set of equations, d/d can be evaluated from Eq.(20), and  leads to a nonlinear
equation in F(). But to solve the modified nonlinear equation, some typical numerical
values of plasma parameters are to be needed. F() has been  expanded in power series of
 up to the desired order which, in turns,  exhibits the evolution of  different nature of solitary
waves.

2.2 Derivqation of Soliton Solution with Lowest Order Nonlinearity in 

First, we consider  1 i.e. small amplitude wave approximation and Eq. (20) modifies as
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and correspondingly A(n), following  Baishya and Das [55] and  Das et al. [56], finds as

2( ) 1 exp( 2 )A n M     1 M2 (23)

To analyze the existences of nonlinear acoustic waves, sech-method based on which wahas
been used to derive soliton solution in the form of sech() or might be in any other hyperbolic
function and  extended successfully in the astrophysical problems [57]. Thus we have, in
contrast to steady state method, used an alternate method called as sech-method of having
the desire on  solitary wave solution in the form of sech(ξ) nature [58]. It is true that the K-dV
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equation, under the small amplitude approximation, derives soliton solution in the form of
sechξ or tanhξ. We, for the need of present method, introduce a transformation Φ(ξ) = W(z)
with z = sechξ, which, in fact, has wider application in complex plasma. Nevertheless, one
can use some other procedure to get the nature of soliton solution of the wave equation. But,
since the sech-method is comparatively a wider range [52,57], and has an easier success
and merit as well. Using this transformation, Eq.(22) has then reduced to a Fuchsian-like
nonlinear ordinary differential equation as

2
2 2 2 2 2 2

1 22(1 ) (1 2 ) 0d W dWAz z Az z AW A W
dzdz

       (24)

Eq. (24)  has a regular singularity at z = 0  and encourages the fundamental procedure of
solving this differential equation by series solution technique and follows the most favourable
straightforward technique known as Frobenius method (Courant & Friedricks [59].
Accordingly, we assume the solution for W(z) to be a  power series in z as :
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The nature of roots from the indicial equation determines the nature of soliton  solution of the
differential equation. The problem is then modified to find the values of ar and . The
procedure is quite lengthy as well as tedious. To avoid such laborious procedure, we adopt a
catchy way [57] to find the series for W(z). We truncate the infinite series (26) into a finite
one with (N+1) terms along with ρ = 0. Then the actual number N in series W(z) has been
determined by the leading order analysis in Eq.(26) i.e. balancing the leading order of the
nonlinear term with that of the linear term of the differential equation. The process
determines N = 2 and W (z) becomes

2
0 1 2( )W z a a z a z   (27)

Substituting expression (27) in Eq.(24) and, with some algebra, the recurrence relation
determines the following expressions

− A1 a0 + A2 a0
2 = 0                                                                              (28)

− 2 A a1 − A1 a1 + 2A2 a0 a1 = 0                                                              (29)

42 A a2 − A1 a2 + A2 a1
2 + 2 A2 a0 a2= 0 (30)
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−22 A a1 + 2 A2 a1 a2 = 0                                                                          (31)

−6 2 A a2 + A2 a2
2 = 0 (32)

From these recurrence relations, we, based on some mathematical simplification, following
Das and Sarma. [57], the values of a’s and  are evaluated as
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where
1

4A
A

  is the width of the wave.

The solution represents solitary wave profile and fully depends on the variation of A1 and A2.

3. RESULTS AND DISCUSSIONS

Study describes the derivation of nonlinear wave equation as Sagdeev potential like
equation in rotating plasmas. Soliton profile derives from the first order approximation on
Sagdeev equation, and fully depends on the variation of A1 and A2 along with variation of
Mach number, M and θ i.e. for different magnitudes of rotation. Different plasma
configurations have the different values in M. Its variation has the restriction by the plasma
configuration. However, we, without loss of generality, have considered the Mach number
greater than one for the numerical estimation. We plot the variation of A1 and A2 in Fig.1 for
some typical plasma parameters of varying Mach number, M with different, . Out of which,
variation of A1 shows be positive always and causeway the soliton profile yields a schematic
variation by the variation of A1.
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Fig. 1. Variation of A1and A2 with Mach number for different angles of rotation

Thus  the amplitude depends crucially on the variation of A2 as it could be  positive or
negative depending on  and M, and thereby highlights compressive soliton in the case of A2
being positive  while it shows the rarefactive nature for A1 and A2 having opposite signs.
Fig. 2. shows that rarefactive soliton could be observed in the case of small Mach number
(i.e. when A2 < 0) and  it, with increasing of M and , changes from rarefactive to
compressive soliton leaving behind a critical point at which A2 goes to zero and existences
of soliton pulse  breaks down. Thus the Coriolis force introduces a critical point even in a
simple plasma at which A2 goes to zero, and the formation of soliton will disappear. Coriolis
force shows a destabilizing effect on the formation of soliton in plasma-acoustic modes.
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Fig. 2. Variation of Amplitude with Mach number for different angles of rotation

Again, at the neighborhood of critical point, the width of the solitary wave narrows down
(amplitude will be large) because of which soliton collapses or explodes depending
respectively on the conservation of energy in solitary wave profile. Now the explosion of the
soliton depends on the amplitude growth wherein soliton does not maintain the energy
conservation. Otherwise the case of preserving the energy conservation leads to a collapse
of soliton. Again it describes the fact that, due to formation of a narrow wave packet, there
is a generation of high electric force and consequently high magnetic force within the profile
of soliton. Because of high energy, electrons charge the neutral and other particles as a
result density depression occurs and phenomena term as soliton radiation has been seen.
Such phenomena on solitons and radiation do expect similar occurrences of solar radio burst
[50,57]. Finally, it concludes that the rotation, however small in magnitude,  plays important
role as the progenitor of showing all new observations in soliton pulses even  in a simple
fully ionized  plasma coexisting with electrons and ions.

3.1 Derivqation of Soliton Solution with Second Order Nonlinearity  in  and
Results

In order to get rid of singular  observations on soliton propagation or properly to say to know
more about the nonlinear solitary waves derivable from the Sagdeev wave equation, we
consider next higher order effect (i.e. third order effect) in the expansion of  and derives
Eq.(17) as

2
2 2 3

1 2 32

d
A A A A
d




    

with
2 2

3 2

7
1

6

cos
A

M

 
 
 
 
 

(34)
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Eq.(20), under  a linear transformation as F =   +  with  =1 and 2

33
A
A


 
  
 

, derives a

special type of  nonlinear wave equation known as Duffing equation of the form

2
2 3

1 22 0d FA B F B F
d



   (35)

where B1 = A1 – 2 A2  + 3 A3 
2 , B2 = - A3 are used along with a relation A1 – A2  + A3 

2

= 0 and must be followed to get a stable solution of the wave equation. Now to get the
results on acoustic modes,   Duffing equation has been solved again by tanh-method. That
needs, as before, a transformations () = W(z) with z = tanh  to be used to Duffing
equation causeway it gets a  standard Fuschian equation as

 
222 2 2 2 3

1 221 2 (1 ) 0d F dFA z Az z B F B F
dd

 


      (36)

Forbenius series solution method derives a trivial solution with  N = 1, which does not ensure
to derive the nonlinear solitary wave  propagation in plasmas. This necessitates the
consideration of an infinite series which after a straightforward mathematical manipulation
derives the solution as

 
1

2 2
0( ) 1F z a z  (37)

Following the earlier procedure along with the substitution of Eq.(37),Eq.(36), after similar
mathematical manipulation(Das and Sarma [57]),  evaluates the soliton solution as

2 1

3 2

3
( , )

3
A B x Mtx t ech
A B

s


          
  

(38)

Where B1 = A1- 2 A2 + 3 A3 
2 and  B2 = - A3

The solution depends on the variation of B1, B2 and thus on A2, A3 which are controlling by
the variation of rotation and Mach number, M. Thus to know the characteristics of solitary
wave, B1 and B2 are plotted in Fig.3 with the variation of Mach number, M and. It is evident
that the soliton existences and its propagation fully depends on the variation of rotation. For
slow rotation, both B1 and B2 are negative and confirm the evolution of solitary wave
propagation otherwise, for opposite signs in B1 and B2, wave equation fails to exhibit soliton
dynamics. The (±) signs represent respectively compressive and rarefactive solitons
appeared in the same region. The required condition for the existence of soliton propagation
must be as B1 < 0, i.e. A1 + 3 A3 

2 < 2 A2 , otherwise non-existences lead the solution as of
a shock wave occurring  for high rotation. Thus the consideration of slow rotation justifies to
the findings of solitary wave propagation in astroplasmas.
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Fig. 3. Variation of B1 and B2 with Mach number for different angles of rotation
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3.2 Derivqation of Soliton Solution with Next Higher  Order Nonlinearity   in 
and  Results

Now to avoid the singular behaviour in soliton propagation, wave equation Eq.(17) again
approximated with next higher order term as:

2
2 2 3 4

1 2 3
2 1
3 2

d A A A
d




 
 
 

       (39)

The procedure of tanh-method is not taken up as our intension is to use an alternate
procedure to find the soliton propagation. The reason of not using the same tanh-method for
solving the nonlinear wave equation as it seems to be needed an appropriate transformation
for getting a standard form [57,60]. Using some mathematical simplification along with  =
1/ , Eq.(39) has been modified as

 (A1
2 - 2/3 A2  - 1/2A3 )-1/2 d =  ½ d (40)

The straightforward mathematical manipulation derives the solution as

11
2 2

32 2
2

3 113 29
c

AA A x Mtosh
A AA 


 

    
          

     (41)

where
1A
 

Solution depends on the variation of A1, A2 and A3 which are functions of angular velocity,
Mach number and angle of rotation. It has already shown that A1 is always positive with the
variation of M and θ i.e. for different magnitudes of rotation controlling the strength of
rotation. Now, because of having varying values of A3, which can be positive or negative
(shown in Fig.4). the expression Cr =(2 A2

2 – 9A1A3) has to be controlled to be positive for
the existences of nonlinear solitary wave otherwise the negative value of (2A2

2 – 9A1A3)
leads to a shock wave. Again based on the some typical case where A1< A3, Wave
equation (41) can be expanded as a series and along with limiting case A3  0 the solution
(41) reduces to the soliton solution of sech2(~) profile) as similar to the profile given by
Eq.(33). In alternate case when A2 0 , solution deduce the soliton in the form of  sech(~)
profile (as similar to solution given by Eq.(38). These properties of nonlinear wave equation
have discussed expeditiously elsewhere Devi et al. [60] and thus we are very much reluctant
to repeat all here. Now from the discussions it is clear that the plasma parameters has to be
controlled along with the effect of Coriolis force i.e. rotation and M to get the different soliton
features which are quite different from the observations could be found in simple plasma
(where compressive soliton exists). All new findings are due to Coriolis force generated in
rotating plasmas, and concludes that the observations in astroplasmas without rotation will
not be having full information rather it might get erroneous conclusions.
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Again Eq.(39) can be  furthered as of simpler Sagdeev potential equation as

2
2 ( ) 0d V
d




 
   

 
(42)

The Sagdeev potential like equation could reveal the double layers which has important
dynamical features in plasmas. To derive, Eq.(42) has been transformed as

 r
d p
d




 
    

 
(43)

Where the new parameters have redefined as

3

2
A

p  and 2

3

2
3r
A
A

 
   

 

along with the double layer condition 2A2
2 = 9A1A3,   for A3 > 0.

Following tanh-method[57], double layer solution has been obtained as

( )1( ) 1 tanh
2 r

x Mt


 
  

    (44)

Fig. 4 shows that for lower value of the Mach number and A3 takes only negative values for
slow rotation, while it flips over to positive value with the increase of rotation. This may
influence the formation of double layers in the rotating plasma what exactly be studies
interest. Thus for plasma parameters controlled by the variation on Coriolis force and Mach
number, double layer solution might coexist with other solitary waves provided the higher
order nonlinearity in the dynamical system is incorporated. Moreover the control might
require necessary condition on A1, 2, A3 along with the necessary condition on (2 A2

2 –
9A1A3).
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3.3 Derivqation of Soliton Solution With Next Higher  Order Nonlinearity in  and
Results

In order to have further investigations on nonlinear wave phenomena derivable from Eq.(17),
we consider  next higher   order nonlinearity in , and Eq.(17) derives  as

2

2 2 3 3 4
1 2 3 4

d
A A A A

d




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      

 
 
 

(45)

where,
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Using the transformation F =  +  with  =1 and 3

44
A
A

  Eq.(45) has been simplified as

2
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2 0d Fa bF cF
d
   (46)

where 2a  , 2 3
1 2 3 42 3 4b A A A A      , and 4c A  , supported by two

additional conditions 2 3
1 2 34 4 3 0A A A     and 2 32 3 0A A  

Eq. (46) resembles very much to Painleve equation. To follow the proposed tanh-method,
the process encounters a problem of getting N = 2/3 by balancing the order of linear and
nonlinear terms. Thus the alternate choice the solution to be some higher order of sech-
nature. Thereby solution has been obtained as

1
22 3 3

3 1 2 3 4 3

4 4

2 3 4
( , )

4 2
A A A A A x Mtx t sech
A A

  


               
(47)

The mathematical analysis reveals that, Sagdeev potential equation with higher-order
nonlinearity admits the compressive solitary wave or double layers depending on the nature
of the expression under the radical sign which are functionally dependable on rotation and
Mach number.

Fig. 5 shows that slow rotation maintains the existences of the solitary wave propagation
while the increases in rotation magnitude (signified by higher values of rotational angle, )
the amplitude shows a discontinuity, which might explain  the explosion or collapse in
solitary wave. In such phenomena, there must be  either conservation of energy (collapse of
solitary wave), or dissipation of energy (as in case of explosion) which may be related as the
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similar occurrences of  solar flares, sunspots and other topics of astrophysical interest
[7,8,25,51,52,61].
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Fig. 5. Variation of amplitude of the solitary wave with Mach number

The procedure ensures that continuation could be interesting in finding the features of soliton
propagation in a wide range of configurations, along with the existences of narrow region in
which a shock like wave is expected and then the study has to be furthering by the use of
higher order effect in nonlinearity.

3.4 Derivqation of Soliton Solution with n-th Order Nonlinearity in  and
Results

To generalize the analysis, Sagdeev potential equation is expanded up to the n-th order
nonlinearity and following [57] the solution is obtained as

1
21

1 1( , )
n

n n

n n

x Mts
A Mx t ech
nA A 


 
   
   

  
   


(48)

where  = M1/2 and M is a linear combination of A1, A2,  …………, An

Eq. (48) gives shock wave solution depending on the sign of the quantity under the radical.

Now to find out the higher order solution of Sagdeev potential equation with other possible
acoustic modes, we integrate Eq. (17) to obtain
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d
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(49)

Next with suitable mathematical transformation and use of proper boundary conditions,
Eq.(49) can be transformed to the following form
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Comparing Eqs. (35) and (34) we obtain the relations 4
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A  and 3
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are supported by the condition 2
3 2 4
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Finally the solution comes out with a new feature of showing sinh-nature.

1
32

2 2

2
( ) psinh p

p
p  
  

            

   (51)

-1000 -500 0 500 1000

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

= 45O

 = 30O

Pl
as

m
a 

Po
te

nt
ia

l

Distance

 = 0O

Fig. 6. Variation of nature of the Sinh- wave for different angles of rotation

Fig. 6 shows the analysis of the fourth order nonlinear approximation in Sagdeev potential
equation and derives new wave propagation with the nature of having identically to sin-
hyperbolic curve. The wave is also influenced by the interaction of rotation parameters and
the magnitude of the wave shows an increase with the decrease in value of  and thereby
shows the influence of slow rotation on the existences of nonlinear solitary waves.

4. CONCLUSIONS

Overall studies exhibit the evolution of different nature of nonlinear waves showing the
effective interaction of Coriolis force. The model is taken under the approximation of slow
rotation which are appropriate to rely on astrophysical plasmas, and concludes that the
present studies could be an advanced theoretical knowledge as well. It has shown that small
amplitude approximation in Sagdeev wave equation derives compressive or rarefactive
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solitary waves and slow rotational effect is the progenitor of solitary waves even in simple
fully ionized plasma. There exists a critical point at which A2 equals to zero and causeway
derives   rarefactive nature of soliton when A2< 0 otherwise a changes occur from  the
rarefactive to compressive soliton profile bifurcated by the  critical point at which existences
break down. At the neighborhood of this critical point, solitary wave grows to be large
forming a narrow wave packet and, because of which, the soliton either collapses or
explodes depending on the conservation of energy in the wave packet. Because of which,
there is a generation of high electric force and consequently high magnetic force within the
narrow wave packet as a result density depression occurs and exhibits soliton radiation
resembles this phenomenon bridging with the occurrences of solar radio burst [8,61], soliton
radiation [51,52] as well as in plasma environments of pulsar magnetosphere [40] finds at
the neighbourhood of a critical point occurs due to rotation of the plasma.

Further with the variation of nonlinear effect along, interaction of slow rotation derives many
other plasma-acoustic modes like double layers, shock waves and sin-hyperbolic wave
profile in the dynamical system. It has been observed that the Mach number does not show
any new observation on the existences on solitary wave rather it reflects schematic variation
on the nature of the soliton wave, Coriolis force interaction, however small might be, exhibits
different salient features of acoustic modes. The results emerging from the present studies
is quite different as compare to the observations made in simple non-rotating plasmas and
reflects that the wave phenomena in astroplasmas must consider the rotational effect
otherwise the studies will not give full observations rather it misses  many acoustic modes in
observations.

We have shown, in comparison to a non-rotating plasma, rotation brings all kinds of
nonlinear plasma waves and rotational effect is a progenitor of compressive and rarefactive
solitons, double layers, shock waves along with soliton radiation similar to those could be
found in pulsar magnetosphere as well as in the high rotation neutron stars. The complete
solution of the Sagdeev potential equation i.e. without having any approximation on
nonlinearity, derives a special feature of nonlinear wave phenomena known as sheath in
plasmas. Fewer observations have been made among them recent works on showing
sheath formation in dusty plasmas [62], in rotating plasmas (Das and Chakraborty [63])
deserve the merit. Study has shown the sheath formation over the Earth’s Moon surface
[63], and thereafter finds the dynamical behaviours of dust grains levitation into sheath. It
predicts the important role of Coriolis force in the problems of astroplasmas without which
the results are likely to be erroneous. They have discussed also the formation of nebulons
i.e. formation of dust clouds over the Moon’s surface and bridges a good agreement with
some observations given by NASA Report [64].
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