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ABSTRACT

The Jeans instability of infinite homogeneous plasma has been investigated in the presence
of magnetic field considering the effect of radiative heat-loss function and quantum
correction. In the present approach, it is initiated that the criterion of Jeans instability is
modified due to radiative heat-loss function and quantum effect in the longitudinal mode of
propagation, while in transverse mode, it is affected by the presence of magnetic field. The
resulting curves are obtained, illustrating that the temperature dependent heat-loss function
and quantum correction have a stabilizing influence on the growth rate of instability.
However, density dependent heat-loss function has a destabilizing influence on the growth
rate of the instability. This analytic approach first discusses the quantum plasma with
radiative heat-loss function and a strong emphasis is put on the choice of appropriate
change in the instability criterion.

Keywords: Radiative heat-loss functions; jeans instability; quantum correction; thermal
conductivity; magnetic field.
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1. INTRODUCTION

There has been a great deal of interest in studying various collective processes in gaseous
plasma, which are ubiquitous in space, including diffuse and dense interstellar media, star
envelops, accretion disks, circumstellar shells, chromosphere, dark interiors and the out flow
of red giant star. Thus, in to the crucial phenomena of the interstellar medium (ISM), many
body gravitating system play an essential role. The gravitational instability is of the
fundamental concept of modern astrophysical plasma and it is connected with the
fragmentation of interstellar matter in regard to star formations. James Jeans [1] first studied
this instability problem and shows that an infinite homogeneous, self-gravitating fluid is
unstable for all wave number which is less then critical Jeans wave number.
Chandrashekhar [2] has given the comprehensive account of the effect of a magnetic field
and rotation separately and simultaneously on the gravitational instability of an infinite
homogeneous medium and observed that the Jeans criterion remains unaffected in each
case. In recent years, numerous researchers {Pensia et al. [3], Dangarh et al. [4], Ali and
Shukla [5] and Shaikh et al. [6] have been carrying out investigations on various salient
features of Jeans instability of infinite homogeneous gaseous plasmas contaminated by the
various parameters encountered very often in space and laboratory plasmas. Various
researchers have attempted to include the problem taking different assumptions and
parameters under consideration in their studies.

Field [7] has pointed out the importance of thermal effect in the process of star formation and
suggested that the observed filamentary condensations in nebulae may be due to thermal
effects. The problem of thermal instability in the fragmentation of a gravitating fluid has been
investigated by Aggarwal and Talwar [8,9]. Bora and Talwar [10] have investigated the
thermal instability in resistive plasma with radiative effects. Talwar and Bora [11] have
discussed the ISM model consisting of stars and optically thin radiative plasma. In this
connection, many authors have discussed the thermal instability of homogeneous plasma
considering the effects of various parameters {e.g. Vyas and Chhajlani [12], Chhajlani and
Parihar [13].

As a reasonably simple approximation, the radiative heat-loss mechanism plays an
important role in the star formation and molecular cloud condensation process in connection
with thermal instability. In the study of ISM structure, we find that the heat-loss process is the
major cause for the condensation of large astrophysical compact objects. The radiative heat-
loss functions have decay effects of heat in an embedded system with respect to local
temperature and density. These functions are similar to those of the cooling functions
considered earlier by Wolfire et al. [14] and Shadmehri and Dib [15]. Recently, Prajapati et
al. [16] have discussed the effect of arbitrary radiative heat-loss function and Hall current on
the self-gravitational instability of homogeneous, viscous, rotating plasma incorporating the
effects of finite electrical resistivity, finite electron inertia and thermal conductivity. Patidar et
al. [17] have studied the problem of radiative instability of homogeneous rotating partially
ionized plasma incorporating viscosity, porosity and electron inertia in the presence
magnetic field. It may therefore, be of importance in the dynamics of ISM field and is the
object of the present paper to study the effects of quantum correction on the Jeans instability
of magnetized radiative plasma.

In the recent study of astrophysics we find that quantum correction play a comprehensive
role to discuss self-gravitational instability of gaseous plasma. The quantum plasmas was
first investigated by Pines [18,19], and the kinetic model of the quantum electro-dynamical
properties of non-thermal plasmas has been discussed by Bezzerides and DuBios [20].
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Masood, et al. [21] have extended the above treatment by considering multi-component
quantum dusty plasma, which incorporates the quantum Bohm potential and statistical terms
of electrons and ions. Salimullah et al, [22] have investigated the Jeans instability in
homogeneous cold quantum dusty plasma in the presence of a magnetic field. The self-
gravitational stability of a streaming nonuniform quantum dusty magnetoplasma have been
discussed by Bashir et al. [23]. These studies suggest that the contributions of the quantum
correction in the ISM lead to many important phenomena, which are applicable in different
astrophysical processes.

From the above discussion, it is obvious that the inclusion of quantum correction in the
Jeans instability problem, together with radiative heat-loss functions, is of interest because of
its relevance to certain astrophysical contexts. Therefore, in the present paper we have
carried out an analysis of the Jeans gravitational instability of homogeneous magnetized
gaseous plasma incorporating the effects of quantum correction, radiative heat-loss
functions and thermal conductivity. We have discussed the implications of the quantum
correction and radiative heat-loss functions on the stability of the considered configuration.

2. EQUATIONS OF THE PROBLEM

We consider an infinite extended homogeneous, high density self-gravitating plasma
containing electrons and singly charged ions including, radiative heat-loss functions and
thermal conductivity. It is assumed that the above medium is permeated with a weak uniform
magnetic field B


(0, 0, B) along z- direction. We introduced the quantum effects through the

Bohm potential term in the momentum transfer equation. Due to the consideration that the
magnetic field is not strong, the quantum spin effect is not taken in the analysis [25,27].
Following Haas [24], basic set equation using the QMHD model is given as:

The momentum transfer equation for magnetized quantum plasma is

 
221

4 2 e i

dv p U B B
dt m m

 
 

 
          

 

       . (1)

The equation of continuity is given by

. 0d v
dt
   

  . (2)

Poisson’s equation for the gravitational potential

2 4U G    . (3)

The idealized Ohm’s law

 B v B
t

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


  . (4)
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0B 
 

. (5)

The heat equation for perfect gas

   
 1

L 0
1 1

dp p d
T

dt dt

 
 

  
     

 

 
. (6)

The equation of state

0p RT  . (7)

The parameters G, λ, p, T, U, R, γ, ρ, , ћ, denote the gravitational constant, thermal
conductivity, thermal pressure, temperature, gravitational potential, gas constant, adiabatic
index, density of ionized component, radiative heat-loss function, Planck’s constant divided
by 2π respectively. me and mi are the electron and ion mass, respectively.

The pressure term in Eq. (1) contains both the Fermion pressure PF and the thermal pressure

Pt. For low temperature plasma, the Fermi pressure
2

52 2 3
34 3

5 8



     

  


Fp n

m
is significant and

its contribution cannot be neglected. But for high temperature plasma thermal pressure
dominates thus Fermi pressure can be neglected and the total pressure is simply taken as
thermal pressure [27,28]. In the present analysis, we consider the case of high temperature
radiative and thermally conducting plasmas, so the effect of Fermi pressure is not included in
the study.

2.1 Linearized Perturbation Equations and Dispersion Relation

In the linearization, every space and time dependent quantities p, ρ, v, B


and U is supposed
to have the following form

0p p p  , 0    , 0U U U  , 0B B B 
  

, 0v v v 
  

. (8)

The terms with subscript ‘0’ denote the unperturbed value while  , ,x y zv v v v  , δp, δρ,

 , ,x y zB B B B


, δU, denote the perturbation in fluid velocity, fluid pressure, fluid density,
magnetic field and gravitational potential respectively.
The first order linearized perturbation equations obtained from (1) – (7), using equation (8),
are

   
2
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0B 
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. (13)
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   
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p T

p T

  


  . (15)

In equation (14) the perturbation in temperature and radiative heat-loss function are given as
δT, and δ respectively.

ρ,T
 are the partial derivatives of the density dependent   

T

and

temperature dependent  


  T , heat-loss functions respectively.

We seek solutions of the above equation i.e., (9)-(15) whose dependence on space
coordinates x, z-axis and time t is given by

  tzkxki zx .exp . (16)

where ω is the frequency of harmonic disturbances, kx, and kz, are wave numbers in x and z
direction, respectively, where 222 kkk zx  combining equation (14) and (15), we obtain the
expression for δp as



 












2Cp , (17)

where σ = iω, pC  , is the adiabatic velocity of sound in the medium. The parameter α
and  are given by
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
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1 
  . (18)

 4BV  , is the Alfven velocity, C 2 = γC' 2 where C and C' are the adiabatic and
isothermal velocities of sound. We obtain the following matrix relation

Xij Yj = 0 i, j = 1,2,3,4 (19)

where Yj is a single column matrix with elements  s,,, zyx vvv and Xij is forth order matrix
whose elements are
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  GkI 422  ,  GCkj 4222  ,

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





 22

2 Ij
T

.

Equation (19) has a nontrivial solution of the determinant of the matrix should vanish is to
give the following dispersion relation.
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. (20)

This dispersion relation shows the combined influence of quantum correction parameter,
radiative heat-loss function and thermal conductivity on self-gravitating magnetized plasma.
If as a first approximation, we neglect the thermal and radiative effects, then this dispersion
relation reduces to Ren et al. [25] excluding resistivity in that case, and Prajapati and
Chhajlani [26] in the absence of Hall current, viscosity and permeability. The most thoroughly
investigated we shall examine the cases; the dispersion relation is modified by the presence
of thermal conductivity and radiative heat-loss function in our case. Also in the absence of
quantum correction, this dispersion relation coincides with Bora and Talwar [10] excluding
the Hall current, resistivity and electron inertia effects in their case.

The effect mentioned above leads to a curious phenomenon. With these corrections, we find
that the dispersion relation (20) is modified due the combined effects of thermal conductivity
and radiative heat-loss functions. However, there is no doubt on the path of this goal that this
dispersion relation will be able to predict the complete information about the waves and
instabilities of the radiative quantum plasma considered and it will be able to explain the
physical situations, like the instability of the galaxy and the problems related with star
formation etc. After this lengthy dispersion relation, we precede to the brief study the effects
of each parameter we have now reduced the dispersion relation (20) for the following special
cases of wave propagation:

1. Longitudinal propagation kz = k. 2. Transverse propagation kx = k.

3. DISCUSSION

3.1 Longitudinal Propagation

For propagating along z-axis we have kx = 0, and kz = k. On substituting this, in equation (20),
we get the following dispersion relation

0
4

42
22

222




















ie
T mm

kVk 


 . (21)

It is observed, from (21), that magnetic field and radiative heat-loss functions both have a
separate independent mode. In the absence of radiative heat-loss function and thermal
conductivity, this dispersion relation is similar to that of Prajapati, et al. [16], in the
longitudinal mode of propagation, excluding Hall current, viscosity and permeability. In
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addition, the present dispersion relation coincides with the dispersion relation obtained by
Dangarh et al. [4], when the effect of quantum correction has been neglected. Dispersion
relation (21) is the product of three independent factors; each describes different mode of
wave propagation incorporating different parameters as discussed below. The first factor of
(21) is 0 and represents a natural stability of the system.

The second factor of the dispersion relation (21), equating to zero gives

0222  Vk . (22)

This gives the waves due to the magnetic field, which travels with Alfven velocity and the
third mode of propagation is given as

0
44
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ie
I

ie
j mm

k
mm

k  . (23)

This dispersion relation represents a self-gravitating mode modified due to the presence of
thermal conductivity, radiative heat-loss functions and quantum correction and not affected
by magnetic field. It is clear from equation (23) that when constant term is less than zero (i.e.
negative), then equation (23) will admit of at least one root of is positive (Appendix).
Hence, the system is unstable. Thus for the cases of equation (23) the condition of instability
is

04
4

4222
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


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p
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p
TTkTk
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



 . (24)

The above equation (24) represents the quantum corrected condition of radiative instability.
Even the most rigorous attempt that this is the new condition of Jeans instability found in the
present work. It is clear from the condition of instability (24) that the critical Jeans wave
number is modified by the thermal conductivity, radiative heat-loss functions and the
quantum correction parameter.

For thermally non-conducting, non-radiating, and neglecting the effect of quantum correction,
we have α = β = Q = 0, the dispersion relation (23) reduces to

  04222   GCk . (25)

It is clear from (25) that, when  GCk 422  < 0, the product of the roots of (25) and value of
σ is positive, hence the system is unstable. Thus in the cases of (25), the condition of
instability is

 GCkj 4222  < 0.
21
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Gkk j
 . (26)
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Where kj is the Jeans wave number. Equation (26) is an original Jeans expression for
instability. The Jeans length is given as

21





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







G
Cj

. (27)

The fluid is unstable for all Jeans length j  , of Jeans wave number jkk  . If we
neglect the effect of quantum correction Q = 0, the dispersion relation (23) reduces to

02223  Ij . (28)

Consequently, means from a condition of instability (28) that the Jeans criterion of instability
is modified due to inclusion of thermal conductivity and radiative heat-loss function. This
condition of instability is similar to the condition of radiative instability earlier obtained by
Prajapati et al. [16]. On comparing both equations (23) and (28), we found that the condition
of radiative instability is modified by the effect of quantum correction.

The molecular clouds of the interstellar medium (ISM) is often unstable because of the
instability of the gaseous plasma; thus, we study the effects of thermal conductivity, purely
density-dependent heat-loss functions, purely temperature-dependent heat-loss functions
and quantum correction parameter on the growth rate of instability by choosing the arbitrary
values of these parameters in the present problem. We write the dispersion relation (23) in
the non-dimensional form in terms of self-gravitation as

  0*2**2*2**2***2*3*   kQkQ Ij . (29)

Where the various non-dimensional parameters are defined as
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,  2**kT     ,  12*2*  kj ,

 *2**2*   kI .

The growth rate is plotted against the non-dimensional wave number k* with variation in the
normalized the effect of density dependent radiative heat-loss function *=0.0, 0.5, 1.0, 1.5,
the values of  T

*, Q* and * are taken 1.5 of each.

We pinpoint that the growth rate increases rapidly as the wave number increases. The
growth rate decreases further with increases wave number. Hence, the density dependent
heat-loss function has a destabilizing influence on the growth rate of instability.

The growth rate is plotted against the non-dimensional wave number k* with variation in the
normalized the effect of temperature dependent radiative heat-loss function  T

*= 0.0, 0.5, 1.0,
1.5, the values of  *, Q*, and * are taken 1.5 of each.
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We find that the temperature dependent heat-loss function has a reverse effect on the
growth rate compared to that of the density dependent heat-loss function parameter, in other
words, due to an increase in the temperature dependent heat-loss function, the growth rate
of the instability decreases. Hence, a temperature dependent heat-loss function can be
made stable with increasing temperature dependent heat-loss function.

Growth rate is plotted against the non-dimensional wave number k* with variation in the
normalized the effect of quantum correction Q* = 0.0, 0.5, 1.0, 1.5, the values of  T

*,  *, and
* are taken 1.5 of each

We find that the quantum plasma has a same effect on the growth rate compared to that of
the temperature dependent heat-loss function parameter, in other words, due to an increase
in the quantum plasma, the growth rate of the instability decreases.

In order to discuss the Jeans criterion of instability of the system for longitudinal propagation,
it is unaffected by the magnetic field but modified by the effect of quantum correction for self-
gravitational mode. From the Figure it is concluded that the equation (23); the growth rate of
instability and from (24); the condition of radiative instability, we successfully detected that it
is affected by quantum correction.

In the ISM, there are several cooling and heating mechanisms like free-free and free-
bounding transitions, heat conduction, shock wave heating and cosmic ray heating, which
depend, in a complicated way, on the local pressure and temperature. For radiative cooling,
the heat-loss function depends on density and temperature but there is no single definite
heat-loss function holds for an ISM, one can consider only non-dimensional parameters and
discuss numerically the influence of their nonzero values on the ranges and growth rate of
instability.

Numerical computation of roots of the dispersion relation (29) was done for a set of values of
the parameters involved. The results are shown in Figs. 1-3. To put the assumptions
graphically, we find that from Fig. 1 that the density–dependent heat-loss has a destabilizing
influence on the growth rate of instability, which is reduced by quantum correction. From Fig.
2, we find that temperature-dependent heat-loss function has a stabilizing influence on the
growth rate of instability, which is further increased by quantum correction.
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Fig. 1. Effect of density dependent radiative heat-loss function

Fig.  2. Effect of temperature dependent radiative heat-loss function

Whereas from Fig. 3, we conclude that growth rate decreases with increasing quantum
correction. Thus, the effect of quantum correction is stabilizing and which is reduced by
density dependent heat-loss function and increased by temperature dependent heat-loss
function. One can be found that thermal conductivity has a destabilizing influence. Owing to
inclusion of thermal conductivity, the isothermal sound velocity is replaced by the adiabatic
velocity of sound. We also obtain a non-gravitating Alfven mode, which is not affected by
quantum correction.
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Fig. 3. Effect of quantum correction

3.2 Transverse Propagation

For propagating along x-axis we have kz = 0, and kx = k. On substituting this equation (20),
we get the following dispersion relation
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The dispersion relation (30) shows the combined influence of thermal conductivity arbitrary
radiative heat-loss functions, magnetic field and quantum correction parameter on the self-
gravitational instability of the homogeneous fluid plasma. Thus equation (30) represents a
self-gravitating Alfven mode modified by quantum correction conductivity and arbitrary
radiative heat-loss functions and it is the product of two independent factors. These factors
show the mode of propagating incorporating different parameters. The first mode of
propagating is spurious stable mode and the second mode of transverse mode of
propagation is given as
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The above equation shows the radiative mode modified by the inclusion of quantum effect.
The condition of instability is obtained from the constant term of (33) which is given as
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The condition (32) represents condition of radiative instability and it is modified due to
magnetic field, and quantum correction. It is clear that magnetic field and quantum correction
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parameter decrease the value of critical wave number. Hence, magnetic field and quantum
correction have a stabilizing influence on the configuration.

On comparing equation (24) and (32), we found that the condition of radiative instability is
modified due to the consideration of quantum effect in both longitudinal and transverse
direction of propagation, while the magnetic field affects the radiative instability condition
only in transverse direction.

In the transverse propagation, we obtain two separate modes of propagation, one of them is
a spurious stable mode which is unaffected by all parameters involved is the systems. The
second mode is self-gravitating Alfven mode influenced by quantum correction, thermal
conductivity and radiative heat-loss function. It is clear that the condition of radiative
instability is dependent on quantum correction and the magnetic field. From the dispersion
relation (31) we find that the coefficient of σ is dispersion relation have quantum correction,
thermal conductivity, magnetic field and radiative heat-loss functions, thus the growth rate is
affected by the presence of these parameters.

From the preceding discussion, it is apparent that for the wave propagation, parallel to the
direction magnetic field, we get three independent modes but in the direction perpendicular
to the magnetic field we get a spurious stable mode and Alfven waves due to neutral
interaction of sonic and magnetic waves under the influence of thermal conductivity and
radiative heat-loss functions. For Alfven mode the condition of instability is given by
equations (32) in which along with the sonic speed, modified Alfven velocity due to magnetic
field, thermal conductivity, radiative heat-loss functions and quantum correction are also
introduced.

Thus, it is well to review that magnetic field, quantum correction, thermal conductivity and
radiative heat-loss functions affect the Jeans criterion in perpendicular direction to the
magnetic field but in parallel direction to the magnetic field, the medium behaves as if it is
non-magnetized for instability considerations.

4. CONCLUSION

The result of this work is that, with a suitable interpretation of the parameters involved, that
quantum correction has a predominantly stabilizing influence on the growth rate of the
system. In this colloquium, we obtain a general dispersion relation, which is modified due to
the presence of these parameters. This dispersion relation is reduced for longitudinal and
transverse modes of propagation. In the case of longitudinal propagation, the gravitating
mode modified due to presence of thermal conductivity, radiative heat-loss function and
quantum correction.

From the graphical packages mentioned above, we perceive that the density dependent
heat-loss functions have a destabilizing role on the growth rate of the system. Quantum
correction and temperature dependent heat-loss functions, shows the stabilizing effect on
the growth rate of instability. It is easy to extend a result that the quantum correction and
temperature dependent heat-loss function stabilizes the magnetized gaseous plasma
system.

In the transverse mode of propagation, we find a gravitating thermal mode influenced by
thermal conductivity and radiative heat-loss functions, magnetic field and quantum
correction. For the aforementioned reason, there is no doubt that instability criterion is
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adapted due to the presence of a magnetic field, thermal conductivity, quantum correction
and radiative heat-loss functions.

The results of the present analysis may be useful to understand the problem of wave
propagation and Jeans instability in self-gravitating dense strongly correlated systems
(astrophysical plasma, inertial confinement plasma, laser produced plasma, semiconductor
plasma). The results of the present study are applicable in the understanding of the
formation of white dwarf star and neutron star.

Dust impurities exist in the quantum plasma, forming a quantum dusty plasma thus the
present work can be further extended, in dusty plasma environment, considering the other
non-ideal effects viz. spin magnetization, Hall current, Rotation, finite ion Larmor radius
corrections which play significant role in the protoplanet formation.
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APPENDIX

We applied the method, used by several authors [4,12,16,17] for determining whether a
linear system is stable or not by examining the sign of the roots of the characteristic equation
of the system. If the dispersion relations obtained from the linear - perturbation analysis is a
polynomial of the form( ) = + + + − − − − − − − + = 0
If the sign of = −1,
So that the sign of [ (0)] = −1,
And because of

Thus at least one positive real root exist which renders the system unstable.
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