
Machine Learning: Science and Technology

PAPER • OPEN ACCESS

Fast 3D particle reconstruction using a
convolutional neural network: application to dusty
plasmas
To cite this article: Michael Himpel and André Melzer 2021 Mach. Learn.: Sci. Technol. 2 045019

 

View the article online for updates and enhancements.

You may also like
Modeling the Effect of Pt Precipitation on
PEM Degradation
Sergei Burlatsky and Vadim Atrazhev

-

Measurements of Particles in Liquid Using
Shear-Horizontal Surface Acoustic Wave
Sensor
Jun Kondoh, Taichi Oyama and Showko
Shiokawa

-

Multiplication of air shower particles in a
plastic scintillator
K Asakimori

-

This content was downloaded from IP address 223.236.224.249 on 04/07/2023 at 12:04

https://doi.org/10.1088/2632-2153/ac1fc8
https://iopscience.iop.org/article/10.1149/MA2015-02/37/1492
https://iopscience.iop.org/article/10.1149/MA2015-02/37/1492
https://iopscience.iop.org/article/10.1149/1.2214635
https://iopscience.iop.org/article/10.1149/1.2214635
https://iopscience.iop.org/article/10.1149/1.2214635
https://iopscience.iop.org/article/10.1088/0305-4616/14/8/019
https://iopscience.iop.org/article/10.1088/0305-4616/14/8/019


Mach. Learn.: Sci. Technol. 2 (2021) 045019 https://doi.org/10.1088/2632-2153/ac1fc8

OPEN ACCESS

RECEIVED

28 May 2021

REVISED

6 August 2021

ACCEPTED FOR PUBLICATION

20 August 2021

PUBLISHED

2 September 2021

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Fast 3D particle reconstruction using a convolutional neural
network: application to dusty plasmas
Michael Himpel∗ and André Melzer
University Greifswald, 17489 Greifswald, Germany
∗ Author to whom any correspondence should be addressed.

E-mail: himpel@physik.uni-greifswald.de

Keywords: 3D, particle, reconstruction, neural, networks, vision, dusty plasma

Abstract
We present an algorithm to reconstruct the three-dimensional positions of particles in a dense
cloud of particles in a dusty plasma using a convolutional neural network. The approach is found
to be very fast and yields a relatively high accuracy. In this paper, we describe and examine the
approach regarding the particle number and the reconstruction accuracy using synthetic data and
experimental data. To show the applicability of the approach the 3D positions of particles in a
dense dust cloud in a dusty plasma under weightlessness are reconstructed from stereoscopic
camera images using the prescribed neural network.

1. Introduction

Machine learning currently is a rapidly growing field in its application to physics questions. Many challenging
problems can now be addressed with different approaches from the constantly evolving artificial intelligence
repository. Machine learning has been especially applied to image analysis or image classification [1–4].

The three-dimensional reconstruction of particle positions from multiple-view camera setup is another
problem where machine learning can be of enormous help. Traditionally, the following different approaches
for particle position reconstruction are often employed: volumetric reconstruction, triangulation, and
iterative reconstruction. An example of a volumetric reconstruction method is tomographic PIV [5, 6].
There, the volumetric source field that contains the particles is computed by algebraic means using the
measurement images as projections of the source field. Its drawback is a very high computational effort and
thus the slow processing speed. Triangulation-based approaches [7, 8] are faster compared to tomographic
PIV. Triangulation relies on a camera calibration and reconstructs the three-dimensional particle positions
from known particle correspondences in the measurement images. The main problem that needs to be
solved here is to find these corresponding particle projections in the different camera views. Usually this
problem is addressed by means of epipolar geometry. The clear drawback of this approach is the ambiguity of
the correspondences when the particle density in the measurement is high. The iterative reconstruction
approaches [9, 10] optimize the particle positions to the given measurement images and use triangulation as
well as volumetric reconstruction at certain moments. The Shake-the-Box (STB)-algorithm [10] is based on
initial particle tracks, that are obtained using tomographic reconstruction. Then, these initial tracks are used
to predict further locations of the particles that are refined to match the measurement images. Approved and
optimized particles are erased from the measurement image and then new particles are detected using
triangulation. STB is currently considered to be one of the state-of-the-art algorithms for high particle
densities.

We want to apply the proposed AIPR algorithm in our field of research called Dusty- or Complex Plasmas.
There, micrometer sized particles are injected into a plasma environment and attain a highly negative charge.
This results in a variety of interesting collective effects like density waves or crystalline phases of the particle
system. To our knowledge, machine learning has been only applied to analysis of two-dimensional
investigations so far [11, 12].
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Figure 1. (a) Schematic of the camera setup in our experiment. Four cameras image micrometer-sized particles that are
illuminated by a laser-sheet. (b) Camera image of a 2 mm-slice of a volumetric dust cloud in a dusty plasma (inverted and
processed for clarity). Approximately 3000 particles are visible.

In this paper we will use a machine learning approach to reconstruct three-dimensional particle positions
in a dusty plasma experiment. We adopt a deep learning algorithm, AIPR (Artificial Intelligence Particle
Reconstruction) [13] that relies on a neural network to retrieve volumetric fields from preliminary (coarse)
tomographic reconstructions. We advance AIPR by applying it to the experiment data from a parabolic flight
campaign with about 3000 visible particles. Further, we extract the resulting three-dimensional particle
positions from the computed volumetric field. Our approach will be tested and compared against the
traditional STB approach, where a superior speed, maintaining a comparable accuracy, of AIPR is
demonstrated. It is special to this algorithm that the computing workload is separated into two parts: the
energy- and time consuming training, followed by the framewise non-intense and fast reconstruction. This
makes this algorithm especially suitable for remote applications. For example, future experiments on board
the ISS can highly benefit from such a data analysis workflow.

The MATLAB source code of the implementation is available [14].

2. Experiment

The experimental data used in the AIPR reconstruction are from dusty plasmas under weightlessness on
parabolic flights. Under such conditions the dust particles with a typical diameter of 4−8 µm attain a
high negative charge and form a large and dense volume-filling cloud [15–18]. In the experiment,
micrometer-sized grains are trapped in a low-temperature argon radio-frequency discharge. The plasma
chamber is very similar to the IMPF-K2 design from earlier experiments [19, 20]. The argon pressure was
30 Pa and the plasma power was 3 W. Under such conditions, by injecting the microparticles using a
dispenser, a dust cloud of about 106 microspheres can be confined in the plasma environment. There the
particles interact via their electrostatic repulsion and via plasma-mediated forces [21]. A laser illuminates a
volume of the dense dust cloud with an expanded beam of a few millimetres thickness. The light scattered by
the particles is recorded with high-speed video cameras as sketched in figure 1. To reconstruct the
three-dimensional positions of the particles, our camera setup consists of four synchronized cameras
(MV-BlueFox3-2-2051). The measurements have been done at 200 fps. The pixel size of the sensors was
3.54 µm, but we used a 2× 2 binning mode which results in an effective pixel size of 7.08 µm. The observed
volume in the dust cloud was about 14× 9× 2 mm. In that region, a few thousand particles were present.

For details regarding the setup and the calibration of this camera system, the reader is referred to [22]. In
this paper, we will revisit a measurement that has already been analyzed with a state-of-the-art algorithm
called STB [9, 10, 22]. The reconstructed three-dimensional motion of several thousands of particles has
revealed that the particles arranged in two distinct layers within the observed volume [22]. This finding is
confirmed by the AIPR approach, but the results are obtained much faster.

2



Mach. Learn.: Sci. Technol. 2 (2021) 045019 M Himpel and A Melzer

3d
 im

ag
e 

in
pu

t l
ay

er

1x
3 

3d
 c

on
vo

lu
tio

na
l l

ay
er

ba
tc

h 
no

rm
al

iz
at

io
n 

la
ye

r

re
lu

 la
ye

r

ba
tc

h 
no

rm
al

iz
at

io
n 

la
ye

r

si
gm

oi
d 

la
ye

r

re
gr

es
si

on
 la

ye
r

16
x3

 3
d 

co
nv

ol
ut

io
na

l l
ay

er

ba
tc

h 
no

rm
al

iz
at

io
n 

la
ye

r

re
lu

 la
ye

r

1x
3 

3d
 c

on
vo

lu
tio

na
l l

ay
er

( total of 8 )

Figure 2. Design of the AIPR neural network. The 3D convolutional layers use either one 3× 3× 3 filter or 16 3× 3× 3 filters
which is denoted here by 1× 3 and 16× 3. The network design is taken from [13].

3. Outline of the AIPR approach

Here, first, the general idea for the machine learning reconstruction is described, the details are given in the
following sections. The main processing chain of the proposed algorithm is as follows. The measurement
volume is discretized into a number of voxels, a so called volumetric field. The field contains Nx ×Ny ×Nz

voxels, where Nx,Ny,Nz is of the order of 100–400, which in our case is limited by the GPU memory. Then,
the measurement images of all four cameras are algebraically combined to a single initial volumetric field
that contains a kind of ray-casting information of bright image pixels that are projected into the volumetric
field. Then, a neural network is trained with synthetic data adopted to the measurement one wants to
analyze. The task of the network will be to predict the final volumetric field from the initial volumetric field.
This final field can then be used to extract the actual 3D positions of the particles.

When systems of indistinguishable particles (as in our case) are studied, there is a significant advantage
compared to many complex neural network designs that are typically applied for three-dimensional
reconstruction of real-life scenes. First, the objects are of simple shape (spherical) which can be easily
modeled artificially. There is no need for the recognition or classification of objets as an individual task.
Hence, the network does not need to compute feature maps but can be seen as a kind of sharpening filter in a
3D field. Another advantage lies in the possibility of artificial training data. A neural network generally needs
a large number of training datasets to be properly trained. In our case, these are image sets for the four
cameras and the desired final volumetric field. In many real-life applications of neural networks this training
data is hard or expensive to obtain. In our situation, we can easily calculate artificial images from randomly
chosen 3D positions with tuneable particle appearances. Also, the corresponding volumetric field is easily
constructed. As a result, the neural network can be fine-tuned to match the exact measurement conditions
such as particle sizes, brightness and the image noise of the cameras. In the following section we will present
the actual network design and give detailed information regarding the training process.

4. Network design

The network deign is taken from [13] and will be briefly outlined here. The neural network is designed to
transform the volumetric initial input field Ii of size Nx ×Ny ×Nz to the volumetric final output field If with
the same size. Its design is depicted in figure 2. The dimensionality and voxel numbers of the volumetric field
remain unchanged throughout the network. The network is built with a 3D image input layer matching the
size of the initial field Nx ×Ny ×Nz. The first convolutional layer is chosen as 3× 3× 3 sliding cuboidal
convolution filter with a single filter followed by batch normalization and a ReLu layer. The following
convolutional layers are set to maintain the data size—this is typically called same padding—and are followed
each by a batch normalization layer and a ReLu layer. The first block is continued with eight
3D-convolutional layers with filters of size 3× 3× 3 and a number of 16 filters each. The last convolutional
layer has a filter size of 1 and a kernel size of 3× 3× 3 followed by a batch normalization layer. To map the
network onto an output field with values between zero and one, a sigmoid layer is used here rather than a
ReLu layer.

The regression layer needs a suitable loss function to ensure that the network weights converge during
training. The loss function is necessary to define a match or mismatch between the desired result and the
actual result from the network. The originally proposed loss function used a fine tuning parameter ε to

3



Mach. Learn.: Sci. Technol. 2 (2021) 045019 M Himpel and A Melzer

ensure convergence of the network during training. Here, unlike the original network from [13], we employ
a dice coefficient as a loss function L [23]. This one is applicable without any input parameter or prior
knowledge of the user side. It is defined by

L= 1− 2
∑

(T ·Y)∑
T2 +

∑
Y2

, (1)

where T is the ground truth training data field (Target) and Y is the initial field. The summation is done over
all voxels of the field and over all batches and the multiplication is done element-wise (Hadamard product).
This loss coefficient is normalized so that it returns 0 for a perfect match between T and Y and 1 for
mismatching T and Y. For clarity it can be thought of as an intersection-over-union loss function that is
widely addressed in the literature [24, 25].

5. Network training details

The training of the neural network is very time consuming, especially when the volumetric field consists of a
fine voxel grid and many training images are used. Each training dataset contains the ground truth 3D field
and its corresponding projected camera images. The ground truth field is generated by choosing random
particle positions in the reconstruction volume. To the voxels around the chosen particle position, Gaussian
distributed voxel intensities are assigned. The spatial width of the Gaussian is chosen to significantly lift at
least the particle containing voxel and the closest neighboring voxels above noise level. The artificial camera
images are computed from the exact random particle positions using the camera projection matrices of each
camera. The particles in the image are then again modeled as a Gaussian with a width of typically 5 px. This
results in a particle diameter of 8–10 px in the image, whereas 1 px corresponds to about 12 µm in the
investigated plasma volume. To account for difficult imaging situations in our experiment, each particle is
given a randommaximum intensity in the range of 0.7–1. This intensity is used in the images as well as in the
volumetric field. To account for as realistic as possible training data, we also included background noise in
the images. However, we found that noise is not necessary to prevent overfitting during the training process.
Finally, the camera image data is stored as 8-bit data and the 3D field is stored in single precision to save GPU
memory during training.

After training, the network should of course be capable to correctly processing unknown input data
instead of just reproducing the training data. To obtain such a generalizing network, there is a minimum
number of different training datasets necessary. The minimum number of these training images can only be
estimated: every voxel should be covered by the initial field at least once in the whole training dataset. As a
rule of thumb, the necessary number of images can be calculated by the number of voxels divided by the
number of particles per training images. For our case, we found that a number of 1000 training images is
sufficient for the training to converge towards a generalizing solution for the network coefficients. Thereby,
the 1000 training images are synthesized with a number of 4000 particles randomly spread over the
investigated measurement volume as shown in figure 3. As the network’s memory footprint is usually large,
we propose to use a batch size of 1, which means that only one training dataset is used at a time to optimize
the network. We found that convergence is usually reached in 3 epochs with decreasing learning rates of 0.1,
0.01 and finally 0.001.

The training process is significantly faster using GPU-acceleration. We used a NVIDIA RTX-2080 Ti
graphics adapter for the training. It takes approximately 6 h compared to a CPU training of 16 h. The crucial
parameter is the amount of GPU memory. The volumetric grid on which the initial field is defined is the
main reason for the need of a large amount of memory. In our case we use a (332× 220× 68)-grid with a
spacing of 40 µm and a finer (456× 302× 91)-grid with a spacing of 30 µm. This results in almost full
occupancy of the 11 GB GPU memory during the training process.

When a neural network is trained, it has to be ensured that the converged result generalizes well to
unknown data instead of just learning the training data ‘by heart’. To study the generalization behaviour, we
ran different trainings with a varied amount of noise in the synthetic measurement images and never found a
converged solution that did not generalize to unknown data. Hence, we conclude that the network is
generalizing quite well by design.

6. From images to particle positions

In this section, we will give a detailed description of the necessary steps to retrieve particle positions based on
AIPR from measured images. An accurate camera calibration [26–29] is a prequisite for all further steps. The
network defined in the previous section is trained using the same camera calibrations as for generating the
training data and will be used in the corresponding processing step.
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Figure 3. (a) Synthetic camera image with 4000 particles. (b) Close-up of the synthetic image. The spatial particle intensity is
Gaussian distributed with a random maximum intensity between 0.7 and 1.

Figure 4. (a) Close up of measured image (inverted). (b) Identical close up after preprocessing.

6.1. Preprocessing of experimental images
In the presented design, the neural network processing needs the particles to have a common spherical shape
with comparable brightness and size. This prequesite is often hard to match in some experimental
measurements. Hence, we applied the following image preprocessing steps to achieve uniform particle
projections. The raw measurement image is processed by a Sobel filter which emphasizes intensity gradients.
Afterwards, a two-dimensional Gaussian bandpass filter is applied to filter out noise and to turn the particle
images into a Gaussian shaped spherical intensity profile. In figure 4 one can see the experimental raw image
(a) and the processed image (b). After preprocessing the images, the particles have a nicely spherical shape
but the intensity is still not uniform. To address this issue one can make the network learn to accept
non-uniform brightness in a certain manner. During network training, one has to keep in mind to produce
training images that also feature particle projections with non-uniform intensity. We found that enlarging
the particles in the training images as well as the measurement images will improve the network detection
outcome. This is probably due to our relatively coarse 3D grid (see next paragraph) which has a
corresponding resolution of about 4 px in the measurement image.

6.2. Initial field generation
After the measurement images are preprocessed, a so called initial field Ii,N is generated for every camera
view (N= 1, . . . ,4 in our case). The field is defined on the same volumetric grid as the ground truth field.
For a known projection matrix or mapping function, typically obtained by camera calibration, the initial
field is generated as follows. First, for each voxel of the volumetric field, one needs to find that pixel onto
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Figure 5. A small sub-sample of the volumetric field showing the processing steps. The particle image is ‘ray-casted’ into the
volumetric field using the projections of each of the N cameras, (a)–(d). The four different camera views of the same particle
result in slightly different voxels being activated. (e) The resulting initial field from equation (2) in this region. (f) Predicted
volumetric field of (e) from the trained network. (g) The ground truth field used to train the network from the exact 3D position
of the particle.

which the voxel center is projected. Then, the (scalar) entries of the initial field of each camera Ii,N are given
by the intensity of the corresponding pixels connected to each voxel (‘ray-casting’). We want to note that the
algorithm is sped up for processing a large number of images when a lookup table is generated so that the
projection is not computed again for every image. When this computation is done for all camera views, then
the N initial fields are combined by

Ii =

(∏
N

Ii,N

)1/N

. (2)

For clarity, this combination-process is sketched in figure 5. Images (a)–(d) show a small subsample of the
volumetric fields Ii,N from the projections of the sensor pixels. As the cameras have slightly different lines of
sight into the volume, this ray-casting process results in slightly different directions of the activated voxels.
After combining the fields (a)–(d) by using equation (2), the initial field Ii as shown in image (e) is ready to
be processed by the neural network. The initial field combines the ray-casting information from each camera
into a single volumetric field.

6.3. Network processing
The network processing itself is just the call of the trained network (in MATLAB this step is called prediction)
with the initial field as an input. The predicted output field If produced by the neural network is again a
volumetric field of the same size as the input field where the particle intensities range from zero to one.
Particle locations are then encoded by contiguous bright voxels or ideally as 3D Gaussian distributed
intensity regions (if the grid resolution is fine enough). The given example in figure 5(f) shows the result of
an example prediction of the network. The elongated initial field from figure 5(e) seems to ‘collapse’ into a
3D spot. For comparison we also show the ground truth field in figure 5(g), which is known as test data from
the network, but has not been used as learning data. The ground truth field and the predicted field are in
good agreement demonstrating the capability of the network.

6.4. Particle position extraction
To extract the actual three-dimensional particle positions from this output volumetric field, we propose the
following approach. In experiments it is not always possible to guarantee a uniform illumination of the
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observed particles. This results in a volumetric field that contains voxels representing reconstructed particles,
which have a non-uniform brightness. A simple threshold filter applied on the 3D field will thus not recover
all particle positions in this case. To detect the positions of as many as possible particles, we propose a
step-wise reduced threshold value followed by identifying contiguous regions in the volumetric data. In
MATLAB, the regions above a certain intensity threshold can be found using the regionprops function. If a
region with 7 or more voxels above the current threshold is found, their intensity-weighted mean is then
associated with the particle position. Before proceeding with the next lower threshold to find particles with
lower intensity, it is neccessary to zero all previously identified connected regions from the volumetric
dataset. In our measurements we found that reducing the intensity from 0.7 to 0.05 with a stepsize of 0.05
works well. These values, of course, depend on the noise level and the general data quality.

6.5. Position refinement based on STB
As the AI reconstruction algorithm is based on a volumetric grid with a limited spatial resolution, it is clear
that the accuracy of the reconstructed particle positions is also limited. Due to hardware restrictions or to
reduce computing time the volumetric field might be chosen coarser than the required spatial resolution.
Nevertheless, in this case the coarser positions serve as a perfect starting point for a refinement step using the
STB method [10]. In the following, we will carry out benchmark tests with and without the additional STB
refinement to show its influence.

7. Results—synthetic data

In this step we generate test data in the same way as the learning data. However, these test data have not been
used in the learning data set, hence, the network does not ‘know’ the test data. To estimate the performance
of the trained network, we will show different measures for varied parameters. One measure will be called the
mean error. This is defined as the distance (in µm) from a reconstructed position to its nearest neighbor in
the ground truth of the test data. Another measure is the detection rate R= NNN/Ngt, which is defined by the
fraction of the correctly reconstructed number of particles NNN that are closer than 50 µm to one of the Ngt

ground truth particles. It tells us, how many of the synthetic particles are successfully reconstructed. The last
important measure will be the ratio of ghost particles. Particles that are reconstructed, but do not match a
ground truth particle within a distance of 50 µm, will be considered as a ghost particle. The ratio
G= Ngh/NNN is then defined as the ratio between the number of ghost particles Ngh and the total number of
reconstructed particles NNN. The following benchmarks on synthetic image data have been done using the
neural network based on a 30 µm (456× 302× 91 voxels) and a 40 µm (332× 220× 68 voxels) grid. The
image input data and the reconstruction volume was identical in both cases. The slight reduction of voxel
size from 40 to 30 µm increases the number of voxels by a factor of 2.5. A further reduction of voxel size was
not possible with our hardware.

The benchmark results using the coarser grid are shown in figure 6. The number of particles that has been
used for each benchmark run is shown as a total number and as a seeding rate (particles per pixel or ppp),
which is more useful to be comparable with other experiments and simulations. Figure 6(a) shows the results
that are obtained by just using AIPR, figure 6(b) shows the same results followed by STB refinement. It can be
seen that for particle numbers of about 3000 which we find typically in our experiments, 90% of the particles
without refinement and 80% with STB-refinement are reconstructed. For clarity, the particle number of 3000
is also indicated by the vertical dashed line in the plot. Note that the higher reconstruction fraction without
using the refinement comes at the cost of a higher ghost particle rate which is 7% without refinement and 3%
with refinement. This means STB effectively reduces ghost particles, but also true particles. STB is therefore
more restrictive. The positioning error (dotted line) of the reconstruction based on the 40 µm grid is about
15 µm without refinement and just 10 µm with refinement at a particle number of 3000.

The neural network based on the finer grid performs slightly better as shown in figure 7. The
reconstruction rate is on a higher level for the non-refined results in figure 7(a). The ghost particle rate is
slightly lower compared to the coarse grid from figure 6. This might be due to the fact that the volumetric
field is now less sparse and contains more ‘hot voxels’ that contribute to a particle which eases the particle
detection. The mean error is almost the same for the raw network processing and the STB-refinement
pos-processing.

The network that was defined on a finer grid performs reasonably well. The prediction step of the neural
network followed by the position extraction from the volumetric field is done in about one second or less on
our GPU. The STB refinement, which takes several minutes per frame does not improve the reconstruction
too much. The accuracy is comparable to the STB-refined approach while the ghost particle fraction is still
low considering about 3000 visible particles. The reader should note that a further reduction of ghost
particles is possible by tracking particles over many frames. Ghost particles would only ‘exist’ for a few
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Figure 6. Network performance tested on synthetic data with variation of the particle number. The grid resolution was 40 µm.
(a) Results obtained by neural network processing. (b) Results obtained by neural network processing followed by
STB-refinement.

Figure 7. Network performance tested on synthetic data with variation of the particle number. The grid resolution was 30 µm.
(a) Results obtained by neural network processing. (b) Results obtained by neural network processing followed by
STB-refinement.

tracked frames. For the application to our experimental data, we will use the neural network with the finer
(30 µm) resolution.

For both cases it can be seen that the performance gets worse when the particle number or seeding
density gets too high. We think that this is based on the fact that we need a certain minimum particle
distance in the volumetric field for our particle position extraction to work accurately. Unfortunately, this
means that with increasing seeding density one would need an increasing grid resolution which is not
possible in most cases due to hardware limitations.

8. Results—experimental data

Here, we now use experimental data from the parabolic flight as described in section 2. The neural network
has been trained with a set of projection matrices that are obtained from an actual calibration of our
experimental setup. The volume of the volumetric field was adjusted to match the investigated volume in the
experiment. Thus, the trained network can be directly applied to reconstruct particles from a set of

8



Mach. Learn.: Sci. Technol. 2 (2021) 045019 M Himpel and A Melzer

Figure 8. (Top) The reconstructed particle trajectories from ten consecutive frames. Blue trajectories are obtained using STB,
orange trajectories are obtained from neural network processing. (a) Trajectories in the full reconstruction volume. (b) Close-up
for clarity.

measurement images that have been done with the camera system. One image from the experiment is shown
in figure 1.

As this is a measurement, there is no ground truth data available which can be used to verify the
reconstruction results. However, these data has been previously analyzed using STB [22] and we can now
compare the results from the neural network with the STB results. It should be noted that in this analysis of
the experiment the STB approach was used completely independently of the neural network and not as a
refinement step of neural network predictions. In figure 8 we show sample particle trajectories that have been
tracked for ten frames. As one can see, the different methods seem to be sensitive to different aspects as the
detected particles appear partially in different regions in the dust cloud. While AIPR has more detections in
the positive y-direction which cannot be found in the STB data, there are less AIPR detections in the negative
y-region compared to the STB results. To quantify this, we identified all matching particle positions that are
characterized by a proximity between the reconstruction techniques of less than 40 µm.

One result of this position matching is, that the mean distance of the particle positions from both
approaches is 16 µm. In other words, when the approaches reconstruct a particle, the positions agree quite
well. On the one hand, 58% of the AIPR positions match the STB positions and 42% of the AIPR positions
are exclusively detected in this approach. On the other hand, only 32% of the STB positions match the results
from the AIPR processing and 68% of the positions are exclusively found by STB.

The difference in the results between both algorithms may be due to their basic principles. Whereas the
AIPR algorithm makes a single snapshot-like detection in every single frame, the plain STB-algorithm tries
to follow the particle path consecutively by using Kalman [30] or Wiener [31] filtering. Both approaches have
pros and cons. The AIPR algorithm is thus insensitive to a sudden change of the particle system, that can be
induced by vibrations in the measurement setup which is the case in our measurements on parabolic flights.
The STB-algorithm has the advantage that particles are projected, reconstructed and then tracked for a
relatively long time even if the brightness or imaging quality of this particle varies in consecutive frames.

Another possibility to compare both algorithms is to look at the physical properties obtained with either
approach. The number density profile along z-direction of the observed dust cloud will now be compared. In
earlier work on this dataset, we found that the z-profile of the number density nd revealed a layered structure.
In figure 9, this profile obtained by STB is shown by circles. The corresponding solid line represents a fit with
three Gaussian distributions to the density data. The same dataset, but analyzed with AIPR, gives a quite
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Figure 9. Density profiles created using STB (blue) and AIPR (red) algorithms. The data points are fitted with three Gaussian
functions.

similar impression of the structure. The AIPR data in figure 9 shows two strong peaks with a much clearer
separation of the layers. The third peak near z≈ 0.7 mm suggested by the STB analysis is only faintly present
in the AIPR analysis. It can be suspected, that the AIPR algorithm seems to be less susceptible to ghost
particles in between the peaks compared to STB. More ghost particles would result in an smeared out
distribution. On the other hand, the faint third peak in the AIPR analysis may be caused by the poor imaging
quality of particles that are not well focused or illuminated. As already said, it is difficult for the AIPR
approach to handle particle projections with a poor signal-to-noise ratio. In contrast, some parameters in
STB can be fine-tuned to also handle at least some of the weakly illuminated particles.

9. Conclusion

We have presented the application of a neural network to reconstruct three-dimensional particle positions
from a multi-view imaging diagnostic. With an exemplary 4-camera setup the necessary steps for training
and applying a neural network are described. It was shown that the neural network performs nearly as good
as the Shake-the-box algorithm, whilst being extremely fast (once the trained network is available). The
prediction step can be done on any modern office PC, but for training of the network a GPU with a large
memory is recommended. For remote application of such reconstruction tasks, as e.g. on the International
Space Station, this possibility to share the computation load is very welcome. The demanding computations,
namely the network training, can be done before the measurement and on high-performance computers.
After this energy and time consuming task, the analysis of the measurement images can be done with regular
hardware in short time.

The reconstruction approach was benchmarked on synthetic data and applied to experimental data. The
AIPR approach can be suggested for stereoscopic measurements of particles at a decently high seeding rate.
With AIPR the successfully reconstructed particle fraction is in the range between 80% and 90% even at a
high particle seeding rate. The number of ghost particles is still in an acceptible level and the position error is
smaller than the voxel size.

AIPR has problems when the imaging conditions are not perfect. The influence of camera models and
errors in camera positioning need to be addressed in future investigations. Nevertheless, we were able to
reliably reconstruct 3D positions from experimental data of a dusty plasma. The results were very compatible
with earlier analysis using STB. With AIPR we could verify the layering of the investigated dust cloud.

There is still work to be done to optimize the behaviour of the AIPR when imaging conditions are not
perfect. Additionally, it is not yet clear how camera models and camera positioning may affect the
performance of the neural network reconstruction. But as we presented in this paper, the speed of the
reconstruction process which is nearly independent of the particle number is a sufficient reason to continue
research in this field. Furthermore, the reconstruction of particles at higher seeding rates than we see in our
experiment is still challenging. In future work we hope to get better results of higher particle density using
more sophisticated position extraction from the final volumetric fields obtained by the neural network.
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