
________________________________________ 
 
++Former Researcher; 

*Corresponding author: Email: lattanzio.lattanzi@alice.it; 
 

J. Adv. Math. Com. Sci., vol. 38, no. 8, pp. 101-121, 2023 

 
 

 

Journal of Advances in Mathematics and Computer Science 

 
Volume 38, Issue 8, Page 101-121, 2023; Article no.JAMCS.100586 
ISSN: 2456-9968 

(Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851) 

 

______________________________________________________________________________________________________________________________________________________ 

 

Computer Simulation Model of Prime 

Numbers 
 

Daniele Lattanzi 
a++*

 
 

a
 Department of ENEA-Fusion, Frascati Research Centre, Frascati, Roma, Italy. 

 

Author’s contribution 

 

The sole author designed, analysed, inteprted and prepared the manuscript. 

 

Article Information 

 
DOI: 10.9734/JAMCS/2023/v38i81794 

 

Open Peer Review History: 

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,  peer review 

comments, different versions of the manuscript, comments of the editors, etc are available here: 

https://www.sdiarticle5.com/review-history/100586 

 

 

Received: 12/04/2023 

Accepted: 16/06/2023 

Published: 04/07/2023 

__________________________________________________________________________________ 
 

Abstract 

 
Prime numbers represent one of the major open problems in number theory mostly in that at present it is not 

possible to state that the induction principle holds for them. The methodology of experimental mathematics 

has been little endeavored in this field thus the present report deals with an innovative approach to the 

problem of primes treated as raw experimental data and as elements of larger and larger finite sequences {Pn}. 

The modified Chi-square function in the form -1/X
2

k(A,n/μ) with the ad-hoc A, k and μ parameters is the 

best-fit function of the finite sequences of primes {Pn}, like the truncated progressions {Cαn
α
} with domain N 

and co-domain R
+
, being (α,k)≡(1

+
,0

-
) and k=2-2α and just like the function λn×n×ln(n), what leads to 

induction algorithms and to many fit relationships Pn≈P(n) though within the precisions of the calculations 

that is approximate. A bi-injective map can be set between the prime sequences and any of these three fit 

functions showing that the property of scale invariance does not hold for the fits of the finite sequences of 

prime numbers. Moreover an approximate inductive algorithm is shown capable of finding the approximate 

value of a prime Pn+1 starting from the value of the previous Pn.   

 

 

Original Research Article 
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1 Introduction  

 
The problem of prime numbers in number theory has always been a challenge and still nowadays it remains one 

of the major open problems of mathematics, notwithstanding the many theoretical successes achieved both 

historically [1-9] and more recently [10-18]. The main problem concerns the fact that neither an exact 

relationship that links the value of a prime Pn to its counter n  i.e. Pn=P(n) has yet been found (or simply it does 

not exist) nor there is an analytical relationship that links any prime number Pn+1 to its preceding Pn. In other 

words, presently it is not possible to state that the principle of induction holds for prime numbers and they seem 

to show a non-deterministic nature. Moreover prime numbers are of  the utmost importance in that strictly 

connected to geometry and physics, and so is the problem of the zeroes of Riemann’s zeta function and his 

renowned hypothesis [19-24]. Thus the prime number problem seems to be one of the so-called intractable 

problems [25,26] whereas an intractable problem is one which is very difficult (if not impossible) to solve in 

that, because of the great number of unknown processes and/or hidden variables to be considered, one cannot 

quickly reach the result so that there would be just a method to treat intractable problems i.e. approximations. 

Many real-life problems are of this kind, for instance models explaining economy or treating the climate 

changes are necessarily approximate due to the presence of many variables involved, more or less hidden.     

 

In mathematical domains, where exact rules exist, we encounter intractability, though seldom, owing to the 

many ways of application of the processes, so that approximation is an attractive practice for use in problem-

solving techniques because it allows us to explain some intractable problems and at the same time it can 

sometimes lead to more efficient solutions to problems which do not require a precise answer. As a matter of 

fact in some cases the exact solution is no more desirable than an approximate one.  

 

This paper shows how the approximation technique can be used to get some explanations in the field of prime 

numbers which show a kind of hidden intractability that takes shape mostly in raising the question whether 

prime numbers are deterministic or stochastic or whatever else. At the present time this aspect cannot be treated 

and determined in any way thus being considered a typical intractable problem. As for the nomenclature i.e. 

terminology, the term fit is used along all the article as a synonym of approximation together with the two terms: 

data interpolation and extrapolation. Among the aims of the study there is to investigate the innermost nature of 

prime numbers as far as possible and to highlight their deterministic aspect, if any.  

     

As for the chronology of the work it should be highlighted that the whole study and all the connected 

calculations took about some months to be performed. The starting point has been the question of whether and 

how the finite sequences of prime numbers could be treated, a question that was raised by the Author himself 

some time ago. In the present report, after some introducing topics like approximations, statistics and so on, the 

many and long calculations on the finite sequences of prime numbers are examined and some examples shown 

with the aim of finding some remarkable link, if any, between any of them and analytic functions. These 

calculations took approximately some hundreds person-hours to be made, that is approximately some months by 

the sole Author himself. As a matter of fact more than 90 prime sequences have been investigated, any of them 

made of 200 prime numbers for which about ten variables (both statistical and not) have been calculated by 

means of ad-hoc code (spread-sheet) for the three fit functions so that an amount of approximately half a million 

numbers have been managed.     

          

1.1 Approximations   
 
One of the most appealing approximations in number theory is that concerning factorial numbers n! = 

1×2×3×4× … ×(n-1)×n = Γ(n)   n, Γ ∈ N  given by the renowned Stirling’s formula   n! ≈ √(2πn)×(n/e)
n
 the 

accuracy of which has been well confirmed and its proof well established. As a matter of fact the Fig. 1 shows 

the function  f(n) = log(n!)  as fitted by Stirling’s function  s(n) = log[√(2πn)×(n/e)
n
]  up to the maximum value 

of N = nMax = 170  i.e.  n! = 170! = 7.2574156153079900×10
306 

 the maximum value supported by the CPU of 

the PC used by the Author. The good matching between the actual data and the Stirling fit i.e. formula is evident 

from the quasi-perfect superposition of the two curves, or the two data point sets, as depicted in the Fig. 1.     
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Fig. 1. Fit between n!  and Stirling’s formula     Fig. 2.  % Difference between  n!  and Stirling’s          

                                                                                               formula 

 

Just for instance at nMax = N = 170 one can easily verify that the values are 170! = =7.257415615307990E+306 

and Stirling(170) = 7.253858934542950E+306 with a percentage difference between the two values equal to 

0.049007538682848400%. As a matter of fact also the % differences are presented in Fig. 2 showing that 

Stirling’s approximation works very well most of all because, by the extrapolation of the experimental data, one 

has limn→∞
%

δ = limn→∞[n! - √(2πn)×(n/e)
n
]/n!×100 = limn→∞[n!-FIT] / n!×100 = 0

   
what means that Stirling’s 

approximation (or fit) works better and better as n→∞. Thus - while factorial numbers are one of the most 

representative and resolved aspects of intractable problems in mathematics well treated by Stirling’s 

approximation - they are a paradigmatic example of how this kind of problems can be explained by 

approximation methods therefore leading to ask oneself whether this technique can be applied to other 

intractable problems, typically to the problem of prime numbers.     

 

In addition Stirling’s formula addresses another important concept in mathematical analysis: that of continuation 

of a discrete function or of a numeric progression with domain and co-domain in the natural field  N  to a 

continuous function defined in the real field R
+
 what implies also the notion of data interpolation and 

extrapolation, as already said. This approach is of a fundamental and paramount importance in this whole report 

and methodology. Moreover, Stirling’s formula shows how one can find a solution to a problem in a so-called 

closed form.  

 

Thus, starting from the classical Prime Number Theorem (PNT)  π(x) = Li(x) = ∫ln
-1

(t)dt  (the integral runs from 

2 up to x) so that  limx→∞π(x) = x / ln(x), it is well known that an equivalent formulation is Pn ≈ P(n) ≈ n×ln(n) 

and that’s why in the present context the Author shall refer to the standard PNT as to the law (Gauss’ estimate)  

Pn ≈ n×ln(n). Nonetheless, despite its brilliance and its being nearly right asymptotically, this latter canonical 

representation of the PNT does not work at best both to get the finite value of a prime number Pn∈P⊂N starting 

from its counter n∈N and to give the asymptotic values of a prime (Fig. 3). Indeed, the Gauss estimate is by far 

the best one. For instance the estimate  limx→∞π(x) = x/[ln(x)-1]  is more attractive and so are many other ones, 

for instance ∑P≤n1/Pn≈ln[ln(n+1)]-ln(π
2
/6). As a matter of fact, the next figures 3 and 4 show that - despite the 

fact that the percentage difference between the classical PNT and the actual Pn vs n goes to 0 (not shown) - the 

simple difference  actualPn - n×ln(n) versus n increases more and more (Fig. 4).  

 

The same happens for many other fits or approximations such as Pn≈n×{ln(n)+ln[ln(n)]} and the fits by Gandhi 

[17] Pn ≈ n×{ln(n) + ln[ln(n) - 1]} and by Cipolla [18] Pn ≈ n×(log(n)+log log(n) - 1 + (log log(n)-2)/log(n)-((log 

log(n))
2
-6log log(n)+11)/ (2×log

2
(n))). Actually, this latest formula oscillates a great deal and the errors O[n[log 

log(n) / log(n)]
3
] are still too large. The main feature common to all these estimates is that the percent 

difference, or the mere difference, between the actual data and the fitting formula shows an increasing trend vs.  

n  instead of a decreasing one as in Stirling’s formula for n!   

 

As a remark, in these two previous figures (as well as in most cases in all this report) the engineering notation 

has been used for the numbers, for instance 1K=1E3=1×10
3
,  1M=1E6=1×10

6
=1Mega, 1G=1E9=1×10

9
=1Giga, 

1T=1E12=1×10
12

=1Tera, 1P=1E15= =1×10
15

=1Peta, 1m=1E-3=1×10
-3

=1milli, 1μ=1E-6=1×10
-6

=1micro and  

so on.  
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Fig. 3. Comparison between actual Pn and n×ln(n)       Fig. 4.  Difference between actual Pn and n×ln(n) 

 

In addition, another question arises for prime numbers. If the standard limit Pn≈n×ln(n) holds asymptotically 

how do the prime sequences reach this infinite limit? Is there any pattern or pathway on its trend towards this 

standard asymptotic limit? The aim of the present work is to answer these questions too. As a matter of fact 

most of the research on primes has been dedicated and focused, in these latest years, to this topic, that is to 

understand whether or not the prime number sequences cover hidden connections or relationships or patterns or 

whatsoever.      

  

Moreover, despite the fact that the experimental side of prime numbers is relatively new (this question is still 

little addressed nowadays), it is the Author’s opinion that time is ripe to face this topic with the necessary tools 

and that now there is room enough for treating primes even from this innovative and modern computational and 

experimental perspective [27-36] that could flank the celebrated classical ideas, also owing to the admirable 

successes got by computer experiments in the field of mathematics. Many mathematical problems are 

fundamentally inductive in nature, so that they can be addressed experimentally in order to determine how 

Bayesian inference, the logic of partial confidence, can be used in order to quantify a general law. Another basic 

idea in the background is a famous assertion of Hugh Montgomery who stated that, in the end, prime numbers 

seemed to behave just like experimental data. This is the viewpoint adopted and shown in  the present report.  

  

1.2 The Modified Chi-square Function   
 
Thus, in the attempt to solve the above-told problematics as well as that on what is the actual behaviour of prime 

numbers as experimentally assessed and whether and how it can be approximated, in the present report an 

innovative approach is suggested starting from the experimental viewpoint and using the opposite inverse (-1/) 

(i.e. additive inverse and multiplicative inverse) of the modified Chi-square function (Χ of X
2
k(A,n/μ) and Chi 

of Chi-square are pronounced  ki  just like in kinematics) in the form    

 

- 1 / X
2
k(A, n/μ)  =  - 1 / { [A / (2Γk/2)] × [n / (2μ)]

(k/2-1) 
× e

-[n / (2μ] 
}                                                        (1)   

 

as the best-fit function along the whole study to match, from the analytical standpoint, both the finite sequences 

of prime numbers {Pn} and the truncated progressions {Cαn
α
} having domain N and co-domain R

+
, with (α,k) ≡ 

(1
+
, 0

-
) and k = 2-2α = k(n) = 2-2α(n) as reported later on. The rationale underlying the entire issue has been to 

use equation (1) taking advantage of the adjustment of its three parameters k, A and μ which allows to optimize 

the fits as much as possible, up to 99.999% and even more whenever possible. In other words a plot & fit 

algorithm has been set up.   

 

The original modified Chi-square function with k degrees of freedom    

 

X
2
k(A, n/μ)  =   [A / (2Γk/2)] × [n / (2μ)]

(k/2-1) 
× e

-[n / (2μ] 
                                                                           (2) 

 

is a new general form of the standard Chi-square function  X
2
k(n) = [1 / (2Γk/2)] × (n/2)

(k/2-1)
  [37,38] used also in 

statistics [39-41] with the two additional new parameters A and μ where Γk/2 = Γ(k/2) is the standard gamma 

function [42-44] the values of which can be easily found in the net [45,46]. It is easy to verify that we have 
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limn→∞ k(n) = 0
-
 (see also Fig. 13)  and to identify μ=μ(n) as a decay parameter for which the limits hold (see 

Fig. 14)    

  

limn→∞ μ(n) = + ∞                           

limn→∞ [n/μ(n)] = 0     

         

 so that the further limit holds too    

 

limn→∞ X
2

k[A,n/μ(n)] = constant = <X
2

k>  

 

As a matter of fact, one of the basic features of (2) is that in increasing the value of k (at A constant) towards 2
-
 

the value of μ=μ(k) increases more and more → +∞ as already told and the X
2

k(A,n/μ) function tends to become 

flatter and flatter (as the Author has thoroughly checked experimentally up to μ~1E300=1×10
300

 and as can be 

easily verified analytically) until it becomes a constant function in the limit k→2
-
. In addition, acting on the 

three parameters A, k and μ the function (1), as well as (2), sweeps the whole R
+
 plane (n,X

2
) thus showing a 

high degree of versatility, flexibility and usefulness. In fact the parameter A shifts rigidly the function (2) up and 

down along the X
2
 axis, the parameter μ stretches and strains it along the n axis and the parameter k determines 

the shape of the function (it is interesting to underline that for k>>2 i.e. at values k~30 40 and beyond the 

modified X
2

k function tends to approximate a bell-shape, or normal or Gaussian function more and more). 

Furthermore, another distinctive feature that marks the pronounced difference between (2) and the standard Chi-

square function is that  ∫X
2

k(A,x/μ)dx = A×μ  for the former, while  ∫X
2

k(x)dx = ∫X
2

k(1,x/1)dx = 1  for the latter, 

where both integrals run from 0 up to ∞,  a  result coming from the fact that the standard Chi-square function is 

just a particular case of the modified one with A=1 and μ=1.    

 

It has already been shown by the same Author [47-50] that the function (2) in one of its four forms 

±(1×/)X
2
k(A,n/μ) well approximates, i.e. interpolates and extrapolates, the finite sequences of the prime number 

frequencies {fn} = {n/Pn} in the range Δk≡(1.5 ÷ 2
-
) i.e. Δα ≡ ≡(-0.25 ÷ 0

-
) and {ρn} = {ln(n)/ln(Pn)} in the lower 

left neighbourhood of the point (α,k)≡(0
-
, 2

-
) in the R plane along the half-line with equation k=2+2α. 

Furthermore the same function X
2

k[A,n/μ]  has been used to fit the statistics of prime numbers fitting their 

differential distribution functions [51]. Therefore in the present report it is the Author’s aim to show also that the 

function (1), that is -1/X
2

k(A,n/μ), can fit the finite sequences {Pn} themselves and the same for the truncated 

progressions Cα×{n
α
} with α= 1 - k/2, in the lower right neighbourhood of the point (α, k)≡(1

+
, 0

-
), each of these 

functions having the adequate values of its parameters, as shown later on. All that proves the great flexibility 

and effectiveness of these functions themselves and of the adopted methodology. 

     

1.3 Fit Methodology and Statistics 
 
Apart from the usual improvements of the statistical values of the fits, for any truncated progression or function 

Cα{n
α
}  -1/X

2
k(A,n/μ) or {n×λn×ln(n)} the results in no way depend on the number of the terms, what is a 

consequence of the scale invariance of any progression itself, whilst for prime numbers just larger and larger 

finite sequences, subsets of their whole infinite sequence, have been examined, i.e. sequences of the kind: {2 3 5 

7 ... Ph-1 Ph} ≡ {Ph} ⊂ {Pi} ⊂ {Pj} ⊂ … ⊂ {Pn} ⊂ … being of course  h < i < j < … < n < …  and the reason for 

such an unconventional choice is the strict consequence of the scale non-invariance (i.e. scale variation) of the 

fits for the prime sequences and of scaling laws holding for them from the analytical viewpoint.  

 

Any {Pn} sequence with a finite number of terms (i.e. primes) has been examined at nΔ (typically nΔ=200) 

equally spaced values or data-points and it has been fitted at these nΔ data points by the modified Chi-square 

function in the form -1/X
2

k(A,n/μ) with the appropriate values of the parameters k, A and μ. The same for the 

truncated progressions Cα×{n
α
} being k=2-2α (α>0) what means  

 

{Pn} ≈ -1/{X
2
k(A,n/μ)} ≈ -1/X

2
k(A,x/μ) ≈ Cα{n

α
} ≈ Cαx

α
                        k = 2 - 2α 

 

Speaking in a strict and formal way any Cα×{n
α
} progression can be analytically continued to the function f(x) = 

Cαx
α
 and also to the function g(x) = -1/X

2
k(A,x/μ) with both functions analytic on the whole R plane. In other 

words, the real function -1/X
2
k(A,x/μ) is an interpolating function, though within the chosen accuracy, of the 

Cα×{n
α
} progressions for non-integer x∈R just like the Cαx

α
 function and the same for the sequences {Pn} and 
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the function -1/X
2

k(A,n/μ). Finally, what has been done is nothing but a data smoothing, a procedure typical of 

any experimental discipline.   

 

As a matter of fact it is easy to verify that it is enough to choose in (1)   

 

- 1/[A/(2Γk/2)]×(1/μ)
(k/2-1)

 = Cα = C(1-k/2)     

 

to get   

 

-1/X
2

k(A,n/μ) = -1/{[A/(2Γk/2)]×[n/(2μ)]
(k/2-1)

×e
-[n/(2×μ)]

} = C(1-k/2)×n
(k/2-1)

×e
-n/(2μ(k)

 ≈ Cα×n
α   

 

being  n ≪  μ (  k and  n) so that, for high values of n, one gets  e
-[n/(2μ)]

 ≈ 1  and k = 2 - 2α  (α>0)  as already 

told.   

              

In the fit performed between the experimental data points, that is the actual values of Pn, and the theoretical 

fitting functions  Cαn
α
  or  n×λn×ln(n)  or  -1/X

2
k(A,n/μ) - once fixed the value of A (in the present study the 

value A=1E-70=1×10
-70

 has been chosen once for all for convenience reasons) - the first concern has been to get 

the precise value of  α  thus of  k = = 2-2α (usually up to the 14
th

 or 15
th

 decimal digit that is, being α~1
+ 

and 

k~0
-
, with a very good precision) by means of a trial-and-error procedure, letting μ vary and, at any value of it, 

balancing the mean <F> of the fit function to the mean <Pn> of the actual values, up to the 14
th

 or even the 15
th

 

decimal digit. In such a way the μ value has been used to find the best fit. At the same time both the correlation 

(or Bravais-Pearson) coefficient R = BPR = =R(Pn,F) and the non-linear index of correlation I = I(Pn,F) between 

the actual values or counts Pn and the fit values F have been calculated and maximized up to the value 

0.9999….. during the variation of μ. In all the formulas the sums extend from 1 up to nΔ = 200 the number of the 

cells of  the spread-sheet commonly used for the calculations. This value of 200 cells has been chosen in order 

to avoid a useless burdening of the calculations and it has been recognized to be a good compromise between 

speediness and efficiency of the calculations.  Maximizing the two statistical markers R and  I  means making 

both of them to approach the value of  1
-
 ~ 0.99999…  as much as possible by adjusting the value of  μ  for any 

value of  k  in order to match the fit curve and the Pn points as much as possible, as well as to balance their 

average values <Pn> = <F> up to the 14
th

 or 15
th
 decimal digit. In addition, also the two standard deviations of 

the means σprimes=σPn and  σF=σfit have been examined in order to ascertain that they would be approximately 

equal and that each of them would be much lower than its respective mean <Pn> and <F>. Finally, two further 

gauges of the fits have been minimizing the values of the Least Square Sum (LSS) according to the principle of 

the maximum likelihood and minimizing the value of the Chi-square Test, in that both of these variables 

measure the goodness of the fit. Just to summarize, most of the tools available in statistics and probability have 

been implemented in order to make the best possible fits at the utmost statistical reliability and consistency. 

However it should be taken into account that, in optimizing all these gauges and markers (at least seven), some 

compromise has always had to be made which, nonetheless, in no way and in no case has ever endangered the 

reliability of the results but just influenced occasionally, though weakly, their precisions.  

 

Though complex, cumbersome and time-consuming, this fitting procedure has proven all its effectiveness and 

usefulness in finding out not only the best values of α, k and of the decay parameter μ but even the fundamental 

relationships  k=k(α)=kα  k=k(n)=kn  μ=μ(n)=μn  Cα=Cα(n)  α=α(n)=αn  λ=λ(n)=λn  and so on for the progressions  

-1/X
2

k(A,n/μ)  Cα{n
α
}   n×λn×ln(n)  which fit the prime sequences {Pn}.    

 

The precisions, error sources, error propagations and the consistency of the results have been investigated too, 

being these issues crucial to the whole algorithm. After all, what has been done is just what is usually done in 

treating experimental raw data, a procedure that is common to all the fields of experimental physics and all the 

other experimental disciplines. The only difference has been to treat prime numbers themselves just as 

experimental data in a broad sense, to which all these concepts and criteria can be applied, with the further 

undisputable difference from standard experimental data (always written as W±δW) and the advantage of 

having zero inaccuracy (i.e. no systematic errors) and zero imprecision (no random errors) on the base data 

(being of course Pn = Pn±δPn = Pn±0 = Pn) whilst both inaccuracies and imprecisions are present on the final 

results owing to the approximations of the fits. In such a manner a computer simulation model has been set up 

and implemented to the finite prime sequences just like a computer simulation of any physical effect or 

phenomenon. Thus, all the calculations, as well as all the final results and considerations, can be applied to the 

model itself (instead of the original mathematical objects Pn) that is on the three fit functions -1/X
2

k(A,n/μ)  Cαn
α 
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and
 
 n×λn×ln(n). Consequently the whole issue can be simplified a lot and the entire algorithm and methodology 

can be of valuable help to try to  provide solutions to some of the problems related to prime numbers.    

 

In such a manner, by means of these approximation techniques, for most cases it is possible to reduce the 

problem of prime numbers simply to a problem of mere precision of the calculations, though still hard and not 

yet fully solved, however no more intractable. Moreover, having chosen an empirical and pragmatic approach to 

the problem and having adopted the viewpoint of computational experimental mathematics that is of a numeric 

computer simulation instead of a formally rigorous and stringent theoretical approach, it is plain to remark that 

the computer itself has been a fundamental tool in performing all the calculations on a very large data base of 

raw data, amounting to N=nmax=2E15=2.0×10
15

= =2P = 2Peta primes processed analytically from P1 = 2 through 

P2P = P(2E15) ≈ ≈7.5674484987353E+16. The PC used is of a commercial kind with about 700 GB HD 

memory, 8 GB RAM and the SW used can support calculations up to 1E308 = 1×10
308

 with 15 decimal digits (π 

value) though in some cases the precision has been limited to 12 decimal digits as a maximum for simplicity’s 

sake. A wide use has been made of standard well-known commercially available scientific computer codes and 

software applications, most of all spreadsheets, as well as of open-source software applications available in the 

net and finally even of some free websites which have proven to be very useful either to get the values of the 

parameter Γk/2 [45,46] as already told or as prime sources [52,53] or simply for documentation.  

 

One of the basic backgrounds of the study has been the use of the principle of extrapolation and interpolation of 

the experimental data that has been widely used all over the article whenever required and possible, even though 

not explicitly cited, a principle widely used in all experimental science, its counterpart being the induction 

principle in mathematics. This mathematical principle can be used to prove many theorems as for instance the 

well-known statement of the summation of all the natural numbers n up to N:  n=1toN n = N×(N+1) / 2. 

  

It is interesting to remark that, in this case too, like in Stirling’s approximation, one gets the solution to the 

problem in a so-called closed form.   

 

As a final consideration, it is well-known that there are no large primes, in that any prime number can be 

defined small in comparison to the infinitude of all the primes. But, though always condemned to deal with 

small numbers, now we can at least try to treat prime numbers much bigger than in the past (up to n=2E15) so 

that the induction principle can be freely implemented without any constraint. In addition the situation will grow 

better and better in the future owing to the two-pronged computational progress both in the technology, i.e. 

hardware features, and in the algorithm, i.e. software development.  

 

2 Finite Sequences of Prime Numbers  

 
The analytical aspects concerning prime number sequences {Pn} examined in the frame of experimental 

mathematics represent a first attempt to get an algorithm of the kind Pn ≈ P(n), if any, for the construction of a 

prime Pn starting from its counter n though with the due approximations, or alternatively an algorithm of the 

type Pn→Pn+1 for which it is possible to forecast a prime from the knowledge of its preceding one.     

 

Beginning from the alleged relationships i.e. fits   

 

Pn ≈ P(n) ≈ -1/X
2

k[A,n/μ]  ≈ Cα×n
α
  ≈ n×λn×ln(n)              k = 2 - 2α           (α, k) ≡ (1

+
,
 
0

-
)  

  

 

the plot of the actual values of Pn (not shown) displays fluctuations for the first few hundreds of primes no < ≈ 

1,000  though almost disappearing at higher values, henceforth displaying a much more regular trend. It is just 

this regularity that leads to examine the trend of Pn versus n that is Pn≈P(n). The algorithm previously shown has 

been applied: i.e. choosing larger and larger prime sequences {Ph}⊂{Pi}⊂{Pj}⊂ … ⊂{Pn}, with h < i < j < … < 

n, fitting any finite sequence by the function -1/X
2

k(A,n/μ) where k=0
-
 as well as by the function Cαn

α
 with α=1

+
  

and by the function  n×λn×ln(n)  too and plotting them versus n. The example of the next figure 5 shows that the 

sequence of the first actual 1.5×10
6
 prime numbers {P1.5M}={2  3  5  7 … …23,879,519} is indistinguishable 

from these three fit functions. As a matter of fact this Pn sequence can be best fitted by the function  -

1/X
2
k[A,n/μ] with the parameter values A=1E-70 μ=2.83453022475825E+65 k=-0.15067569115100 Γk/2=-

13.9308749425917000 and the fit values R=0.9999971560 I=0.9999888120 <P>=<F>=11,596,146.05000 

δmean=(<P>-<F>)/ /<P>=-6.51E-15 test-valueX
2
=8.87E+03 LeastSquareSum=LSS=1.108E-03 while for the fit by 
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the Cα×n
α
 function the values are Cα=5.467256340728670 α=1.07533784557550 and the fit parameters 

R=0.999997156 I=0.999988812 <P>=<F>=11,596,146.050 δmean=1.9275E-15 test-valueX
2 

= 8.889E+03 

LSS=1.108E-03  that is the same of the fit by the function -1/X
2
k[A,n/μ] what is to be expected owing to what 

aforesaid. Finally the fit by the function n×λn×ln(n) shows the feature  λn = 1.121041116691750  with the fit 

parameters R = 0.9999995376  I = 0.9999954322  <P>=<F>=11,596,146.0500 their δmean=-4.176E-13 test-

valueX
2
=5.20766E+03 LSS=4.528E-4. A significant feature of all these three fits is the trend of the errors that is 

the differences δ = (Pn-fit) / Pn  versus n as shown in the Fig. 6.  

 

 A zoom-in view of the Fig. 5 shows again the small difference of the three fit functions among them and the 

1.5M prime sequence (Fig. 7) while, as for the errors  δ  between any fit and the actual sequence {P1.5M}, the 

Fig. 8 (zoom-in of Fig. 6) shows that the first two fits, -1/X
2

k(A,n/μ) and Cα×n
α
, work much better than the third 

one n×λn×ln(n) in simulating the actual data-points Pn (1m means 1E-3 = 1×10
-3

).     

  

  
 

Fig. 5.  The sequence of the first 1.5M primes and 

fits 

 

 

Fig. 6.  The errors δ of the fits for the first {P1.5M} 

and fits 

 

  
 

Fig. 7.  Zoom-in of Fig. 5 between 1.40M and 

1.50M 

 

Fig. 8. Zoom-in of Fig. 6 between 1.40M and 

1.50M 
 

An important comment has to be made about this example concerning also all the other cases and the whole 

methodology of the study. It has already been pointed out that this instance takes into account the first 1.5M 

prime numbers at just 200 points, that is nΔ=200 values - one out of Δ=7,500 - in that it is not possible to deal 

with all the first 1.5M primes, as well as with all the first 1G, all the first 10T=1E13 and so on for all the other 

sequences, due to obvious reasons of computer and spread-sheet memory. Thus a choice has been made, i.e. that 

of choosing just 200 prime numbers for any sequence, from the first ones up to the final Pn of the sequence, that 

is up to P1.5M, P1G, P10T and so forth on which all the calculations have been executed. It has been thoroughly 

checked that this choice by no means has ever altered the final values or the reliability of the final results and 

most important of all the trends, as careful comparisons between 200 Pn and all the Pn for some initial sequences 

{P50K} {P100K} {P200K} {P0.5M} and so on have shown. Just little differences in some parameters have been 

found, non-essential to the concluding results and trends.  
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A second example can be shown regarding the sequence {P50G} that is the first 50G= =5×10
10

=5E10 prime 

numbers up to P50G=1,344,326,694,119. In this case too, the sequence of the first actual 5×10
10

 prime numbers 

{P50G} is indistinguishable from the three fit functions as the figure 9 shows. As a matter of fact this sequence 

can be best fitted by the function -1/X
2

k[A,n/μ] with parameter values: A=1E-70  decay parameter 

μ=4.123236900808860E+67 k= - 0.082209819607980   Γk/2 = - 24.94746914106250  and the fit  values  R = 

0.999999739  I=0.999998987 <P>=<F>= 6.625089876368810E+11 δmean = -1.283E-15 test-valueX
2 

= 4.216E7  

LSS = 1.10E-04 while for the fit by the Cα×n
α
 function the values are Cα= =9.7745299527836700 α = 

1.041104909803990 so that one gets for the calculated Pn ≈ ≈Cα×n
α 

≈ 9.7745299527836700×n
1.041104909803990 

with 

the fit parameters R=0.999999738 I=0.999999002 <P>=<F>=6.625089876368810E+11 δmean=-1.105527E-15 t-

vX
2
=

 
=4.319290E+07 and finally the value of the  Least Square Sum LSS = 9.917313E-05.  

 

Lastly the fit by the function λn×(n)×ln(n) = λ50G×(50G)×ln(50G) gives the value λn= =1.0924154306022810 

with the parameters R=0.999999811 I=0.999998031 <P>=<F>= =6.62508987636880E+11 relative difference 

between the means δmean = - 4.422E-15  t-vX
2 
= =1.25303E+08  LSS = 1.955E-04. Again, one of the noteworthy 

features of these three fits is the trend of the errors that is of the relative differences δ = (Pn-fit) / Pn  versus n as 

shown in Fig. 10, on the other hand common to all the sequences examined.  

 

  
 

Fig. 9.  The sequence of the first 50G primes and 

fits 

 

 

Fig. 10.  The errors δ of the three fits  for the first 

{P50G} 

 

  
 

Fig. 11.  Zoom-in of Fig. 9 between 45G and 50G 

 

Fig. 12. Zoom-in of Fig. 10 between 45G and 50G 

 

In this example too, the previous Figs. 11 (zoom-in view of Fig. 9) and 12 (zoom-in of Fig.10), both between 

49G and 50G, show that the first two fit functions  -1/X
2

k[A,n/μ]  and  Cαn
α  

work much better than the third one 

n×λn×ln(n) as already highlighted.    

 

Of course these are just two examples, though representative of the whole situation, while many additional cases 

have been examined for the purposes of the calculations, approximately 90 as already remarked. In all these 

situations the best values of the fit parameters for the best approximations have been found, thus assuring the 

goodness of the whole practice.  
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However it should be kept in mind that all the equations hold locally (i.e. just for the nearby interpolations and 

extrapolations) in that, owing to the scale variation of the fits, as a general rule all the coefficients of the fits 

themselves depend upon n, as thoroughly checked and shown later on. Nonetheless the most important fact is 

that in such a way one owns a relationship, though approximate, by means of which one can estimate the value 

of a prime number, the precision of which can be improved as much as reasonably achievable with future 

evaluations and investigations and most of all by means of more powerful computers as well as taking into 

account all the primes of any single sequence and not just 200 as done here for computer memory reasons. 

 

In addition, after having calculated the fits for a reasonable number of prime sequences, the trend of the function  

-1/X
2

k[A,x/μ(k)]  vs. A  has been studied too, with A ranging from the value A = 1E-260 up to A = 1E-7 in 13 

steps, finding that there is a linear law between μ and A on a log-log scale, i.e. lg(μ) = 0.35907 - 0.92769×lg(A)  

with R = 1.000… up to the 12
th

 decimal digit and σ = 0.00504 for 13 data-points. Of course in this case too the 

value R = =1.000… up to the 12
th
 digit means that one has reached the precision of the computer code for that 

calculation. All the other parameters are just slightly influenced by the change of the coefficient A.  

 

Thus, simply using the above reported relationships and fit functions, the problem of prime numbers can be 

reduced, at least in principle for their deterministic aspect, to a mere problem of precision, as well as of data 

interpolation and extrapolation (taking into account the scale non-invariance problem) though of not so 

immediate solution. It is possible to conclude that there are many ways, just some of which shown here, to get 

an approximation of the {Pn} finite sequences as well as an estimate of the finite value of a prime number Pn 

starting from its own ordinal number n by the algorithm shown that uses systematically the above-told functions 

as fitting functions. Nevertheless one of the major findings of this study is the scale variation of the fits of the 

finite sequences of prime numbers, a remarkable result.    

 

The next step of the study is quite trivial, i.e. finding the trend of all the fit function parameters after having 

examined a sound number of prime sequences (about 90) and their fits. Starting from the modified Chi-square 

function -1/X
2

k[A,x/μ(k)] the trend of its three parameters k, μ and Γk/2  vs. n is shown in the next three Figs. 13, 

14 and 15. The first one (Fig. 13) clearly shows that  limn→∞k(n)=0
- 
 while Fig. 14 seems to suggest the limn→∞ 

μ(n) =∞  and finally the linear trend of  Γk/2  vs.  ln(n)  is visible in Fig. 15 with the  limn→∞Γk/2(n)  = - ∞  while 

the Fig. 16 describes the trend of  α(n)  vs.  ln(n)  with the evident limit  α(n)n→∞→1
+
. At last the Fig. 17 

describes the trend of  Cα(n) vs. ln(n)  with the  limn→∞Cα(n) = ∞ while Fig. 18 reports the trend of  λ(n)  with 

the  limn→∞λ(n) = 1
+ 

so that the asymptotic limit exists  limn→∞ λn×n×ln(n) = 1×n×ln(n) that is the classical prime 

number theorem. All these figures refer to the first 2E15 primes with ln(2E15)=35.2319235754… and 

log(2E15)= 15.3010299…         

 

  
 

Fig. 13.  Trend of k(n) for all the first 2E15            

primes 

 

Fig. 14.  Trend of  μ(n) for all the first  2E15 

primes 

    

Thus, according to the fits, one gets for the features of the function -1/X
2

k[A,x/μ(k)]  the following relationships.  
 

- As for the trend of the parameter k versus ln(n) (Fig. 13) the fit is:   

 

k(n) ≈ - (2.16±0.04) + (1.76±0.03)×[1 - e
ln(n)/(2.64±0.04)

]
 
+ (0.36±0.01)×[1 - e

ln(n)/(11.28±0.29)
]
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that is the so-called exp-assoc function (as given by the PC ad-hoc software) with the  

        

values of the fit markers R
2 
= 0.9993 and  test-valueX

2 
= 6.9E-7  

 

- As for the trend of the parameter μ vs. log(n) (Fig. 14) one gets the fit:  

 

log[μ(n)]≈log{(24.831±0.606)+(34.456±0.369)×[1-10
log(n)/(1.359±0.024)

]+(9.813±0.279)× ×[1 -10
log(n)/(5.634±0.161)

]} 

that is again the exp-assoc fit function with the fit markers R
2
=

 
= 0.99995 and  test-valueX

2 
= 0.00037  

 

  
 

Fig. 15.  Trend of  Γk/2(n) for the first  2E15 

primes 

Fig. 16.  Trend of  α(n) for the first  2E15 primes 

   

- Finally the trend of Γk/2(n) vs. ln(n) (Fig. 15) is simply weakly quadratic i.e. Γk/2(n) ≈ ≈(1.032±0.039) - 

(1.058±0.004)×ln(n) + (1.90±1.06)E-4×ln
2
(n) with R

2
=0.99994 and tvX

2
=0.06419   

 

In such a way, combining all the above-told fitting functions it is possible to get a relationship linking the finite 

value of a prime number Pn to its counter n, i.e. Pn ≈ P(n), though approximate and rather complex.     

 

  
 

Fig. 17  Trend of  Cα(n) for the first  2E15 primes 

 

Fig. 18  Trend of  λ(n) for the first  2E15 primes 

 

The same procedure applied to the other fitting function  leads to  

 

- α(n) vs. n (previous Fig. 16) is best fitted by an ExpDecay3 function (again as given by the PC ad-hoc 

code) in ln(n), that is α(n) ≈ 1.000 + (0.21±0.03)×e
-ln(n)/(7.3±1.)

 + +(0.897±0.024)×e
-ln(n)/(2.37±0.12)

 + 

(0.058±0.011)×e
-ln(n)/(44.36±8.70)

  
 
with the fit parameters R

2 
= 0.99993  test-valueX

2 
= 1.67E-7 and with  lim n→∞ 

α(n) = 1.000  
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- Cα(n) vs. ln(n) (previous Fig. 17) is best described by the following weakly quadratic fit function: Cα(n) ≈ 

-(0.785±0.012)+(0.4532±0.0013)×ln(n)-(9.965±0.332)E-4×ln
2
(n) with R

2
=0.99996 and σ=0.020  

 

Thus, in this case too, one gets an approximate formula for the finite value of a prime number vs. its counter n. 

Combining the first fit of Cα(n) and the second fit of α(n) one gets: Pn ≈ Cα(n)×n
α(n)

 ≈ Cα(n)×n^[α(n)] ≈ [- (0.785 

± 0.012) + (0.4532 ± 0.0013)×ln(n) - (9.965 ± 0.332)E-4×ln
2
(n)] × n ^ [1.000 + (0.21 ± 0.03)×e

-ln(n)/(7.3±1.) 
+ 

(0.897 ± 0.024) × e
-ln(n)/(2.37±0.12)

 + (0.058 ± 0.011)×e
-ln(n)/(44.36±8.70)

]  while taking into account the limit limn→∞α(n) 

= 1 and the weakly quadratic fit of Cα(n) one gets the asymptotic relationship  Pn ≈ - (0.785 ± 0.012) + (0.4532 ± 

0.0013)×ln(n) - (9.965± ±0.332)E-4×ln
2
(n)   

 

As for the third fit function Pn≈ λn×n×ln(n) the fitting methodology leads to the result (Fig. 18):    -        λn ≈ 

(1.04±7E-4) + (0.1445±5E-4)×e
-ln(n)/(24.50±0.25)

 with R
2 
= 0.99979  t-vX

2 
= 1.1E-7  and the approximate limit λn→1 

for n→∞  so that, in this case, one gets the standard PNT  Pn ≈ n×ln(n)  asymptotically.  

 

As a conclusion one can state that, though cumbersome, awkward and time wasting these procedures work very 

well, as already told and also checked, to provide an approximate result Pn ≈ P(n).    

 

3 Results and Discussion  

 
One of the main results of the research is the correspondence between prime numbers and any of the three fit 

functions employed. Thus the next Fig. 19 summarizes the whole situation showing the relationships among the 

finite sequences of prime numbers {Pn} and the three fit functions or progressions -1/X
2
k(A,n/μ)  {Cα×n

α
} and 

{λn×n×ln(n)}, anyone with its own parameters. Of course it is plain to say that any of these three functions is 

best fitted by anyone of the other ones and this particularly holds for Cαn
α
 and for -1/X

2
k[A,n/μ] as already 

highlighted with k=2-2α. However, not only does any finite sequence of primes correspond to any fit function 

with the ad-hoc values, but also any single prime itself is in correspondence with a single value of any fit 

function with the appropriate values and parameters so that one can drop out the curly brackets in Fig. 19.  

 

  
 

Fig. 19  Relationships among {Pn} and their fit 

functions 

 

Fig. 20 The prime sequences {Pn} on the (α,k) 

plane 

          

The previous Fig. 20 shows the position of the {Pn} sequences on the half-line k=2-2α (k<2 and α>0)) in the 

plane (α,k). All these sequences lie in the right lower neighbourhood of the point (1,0) that is at (α,k)≡(1
+
,0

-
). In 

the same Fig. 20 the positions where the other prime sequences (already examined in the previous works by the 

same Author, see Ref.) lie are shown, i.e. {Pn/n} in the range (Δα , Δk) ≡ (0.  0.25 , 1.5  2.) along the half-

line k = 2-2α (again k<2 and α>0),  {fn} = {n/Pn} inside the range (Δα , Δk) ≡ (-0.25  0. , 1.5  2.), 

{lgPn/lg(n)} in the neighbourhood (α, k)≡(0
-
, 2

-
), the sequences {Pn

-1
} in the neighbourhood (α, k)≡(-1

-
,0

-
). 

These three latest cases are along the half-line k=2+2α (k<2 and α<0). Thus, both the modified Chi-square 

function and the Cα×n
α 

function appear to be a kind of characteristic functions of prime numbers, capable of 

describing the primes themselves. The former function is also shown, in its four forms (+-1×/)X
2

k(A,n/μ), in the 
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earlier Fig. 20 while, as for the latter function Cαn
α
, it is defined all along the α axis i.e. α both <0 and >0. In 

the same Fig. 20 the present research at the point (α, k)≡(1
+
, 0

-
)

 
is highlighted by a rectangle.      

 

Now it is time to check the reliability of the whole procedure calculating the value of a single prime number Pn 

starting from its counter n implementing the above-told algorithm.  

 

Just two cases will be examined as instances.   

 

Let us check the prime number with n = 8.00E+10  that is P8.00E10 = 2,190,026,988,349 and check the calculation 

by  Cα×n
α
 = 10.149719912370500×(8.00E10)

1.0395214037981300
 leading to the value Cα×(8.00E10)

α
 = 

2,190,026,988,349.0000000 with a percentage difference from the actual P8.00E10 equal to %δ = -

1.3377403637E-13% (as given by the PC software), a very good result indeed, though valid locally. However 

there are many ways to approximate a prime number by means of the function Cαn
α 

simply by changing the 

value of Cα and the same for the other fit functions. That is due also to the fact that any Pk belongs to a multitude 

of sequences i.e. {Pk} itself and also  {Pk+1}  {Pk+2} {Pk+3} …  {Pn}  and so forth, any of them with its own fit 

curve and parameters so that there are many fit equations, obviously any of them leading to about the same 

approximate value, among which one chooses the best fit-function that is the function leading to the best-fit.  

 

However it must be highlighted that in this case one knows the value of the prime Pn a priori.  

 

Accordingly, an important fact of the present study is that a methodology has been found capable to simulate a 

prime number that is to replicate it at the maximum level of precision and that this simulation can be attained in 

many ways. As a matter of fact for the prime P8.00E10 the following simulation holds by the modified Chi-square 

function with the parameters of the fit: A=1E-70 k=-0.079042807596259900  Γk/2(n)=Γ(-0.039521403798130000/2)(n)= 

= Γ(-0.039521403798130000/2)(8.00E10) = - 25.920530013642100 μ=5.235340400213330E+67 with the final result 

P8.00E10~-1/X
2
k[A,n/μ(k)]=2,190,026,988,348.820 and an error i.e. imprecision in comparison to the actual prime 

P(8.00E10) = 2,190,026,988,349 equal to δ% = =8.427764291578800E-12% and absolute difference δ=0.180 , 

another good result indeed. Again in this case too there are many ways to get a profitable fit by the modified 

Chi-square function with different parameters. Finally, the fit by the function Pn ≈ λn×n×ln(n) gives the values: 

λ8.00E10=1.090420969415450 ln(8.00E10)=25.105292471620300 and the final value of 

λ8.00E10×n×ln(8.00E10)=2,190,026,988,349.0100 with an absolute difference δ=0.0100 and a percentage error of 

%δ = - 3.678786000292E-13%.   

 

Another example examines the prime Pn = P(477M+741,961) = P477,741,961  which is known, from the net, actually to be 

equal to 10,523,089,897. A simulation by the modified Chi-square function -1/X
2

k[A,n/μ(k)]  with the fit values 

of  A = 1E-70   k = - 0.1008262675847200    Γk/2(n) = - 20.46561661688820  and  μ = 

1.028375774310410E+67   gives the value  calculatedPn = P477,741,961 = 10,523,089,897.000  with a relative 

difference between the actual prime and the calculated one equal to  - 1.279650890E-13 (as given by the spread-

sheet).  

 

Thus, knowing the value of n and Pn it is very easy to simulate/reproduce a prime number by the reported 

method and algorithm, however just knowing its value a priori and it is clear and evident that there are many 

ways to mimic i.e. duplicate the value of a known prime number. However the question arises: what if one does 

not know the value of a prime Pn but just its counter n? How to simulate Pn only from the knowledge of n? Well, 

the matter is much more critical and complex so that a thorough extrapolation calculation must be performed 

taking into account all what already said.  

 

Let’s make an example using the simplest and most precise fit by the function  Cα(n)×n
α
. The use of the fits of  α  

vs.  n  (Fig. 16)  and Cα  vs.  n  (Fig. 17) and their relative equations will be of some importance. Let us consider 

just one simple case, that of the 1,000,000,000,000,000
th

 prime number i.e. actualP1E15 = 37,124,508,045,065,437 

(one of the highest prime examined in the study) the calculated value of which is (by means of the Cα×n
α 

approximation) Cαn
α
=Cα×n^α≈[-(0.46±0.02)+(0.414±0.001)×ln(n)]×n^[1+(0.06±0.01)×n

-1/(44.±9.)
 

+(0.90±0.02)×n
-1/(2.37±0.13)

+(0.21±0.03)×n
-1/(7.3±1.0)

] ≈ [-(0.46±0.02)+(0.414±0.001)×ln(n)]× 

×n^[1+(0.90±0.02)×n
-1/(2.37±0.13) 

≈ [-0.46+0.414×ln(n)]×n^[1 + 0.90×n
-1/2.37

] ≈ [-(0.46)+(0.414)× 

×ln(n)]×n^[1.+(0.06)×n
-1/(44.)

+(0.90)×n
-1/(2.37)

+(0.21)×n
-1/(7.3)

] ≈ 39,228,250,270,115,900  with a relative 

difference between the two values (actual and calculated) =  δ% = 5.667%  and an absolute difference δ = 

2,103,742,225,050,447 without taking into account the single errors on the coefficients. No doubt that this is a 
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huge error for the calculation of a prime number what means that surely this procedure is not suitable. In fact it 

has to be kept in mind that for a function  f = f (x, y, z, …)  with any independent variable  x, y, z, … affected by 

an error δx, δy, δz, …the final overall error on the dependent variable is  δf (x, y, z, …) = (∂f/∂x)δx + +(∂f/∂y)δy 

+ (∂f/∂z)δz+ … where ∂f/∂… are the partial derivatives, what shows that the propagation of the errors leads to 

an enhancement of the final error. In the fits of Cα vs. n and of α vs. n all the uncertainties are ± some% so that 

the final result Cα×n
α
 is affected by an even greater error. Thus this latest methodology is not appropriate to 

estimate the value of a prime number Pn≈P(n) just starting from the counter n, so that another technique must be 

implemented keeping in mind all what already told about the local validity of the algorithm. Nonetheless, all 

what told until now has not been useless in that the features of the fit functions used will be useful to forecast 

the value of a prime Pn+1 from its previous (already known) Pn.     

 

The procedure is implemented in such a way: 

 

- 1
rst

 step. To fit the single n
th

 prime act.P(n), the value of which is known, at the utmost level of precision 

i.e. with the least possible error, by the chosen fit function (for instance Cα×n
α 

the simplest one) thus 

finding the calculated value calc.Pn≈Cα×n
α
.This procedure gives also the value of both Cα and α.      

- 2
nd

 step. To extrapolate the value α(n) to α(n+1) starting from act.Pn≈calc.Pn≈Cα×n
α
 in order to calculate 

calc.Pn+1 ≈ Cα×(n+1)
α
 so finding the approximate value of the latter calc.Pn+1 from the former, using the 

extrapolation of the fit function from n to n+1, thus performing the operation  Pn → Pn+1  by means of the 

local validity of the algorithm.  

 

Some examples can better exemplify this technique.  

 

The first instance examines the prime number act.P82.5M = P(8.25E7) = P(8.25×10
7
) = =1,664,674,813 (=actual 

value) while the calculated/simulated value is P(8.25×10
7
) ≈ Cαn

α
 ≈ 

≈7.885508741692040×(8.25E7)
1.0515440050765500 

= 1,664,674,813.000110 with least difference (that is percentage 

error %δ = 6.645515378691860E-12% and absolute error δ = 0.00011).  

 

Extrapolating the fit function Cα×n
α 

→ Cα×(n+1)
α
 that is from P(82,500,000) to P(82,500,001) gives the values 

P82.5M+1 = Cα×(n+1)
α
 = 7.885508741692040×(82,500,001)

1.0515440050765500 
= =1,664,674,834.218040 with an 

absolute error in comparison to the actual prime actualP(82,500,001) = 1,664,674,819 of δP(8.25×10
7
+1) = 

15.21803808212280 i.e. ≈ 15 and a %δ = 9.141748231203830E-07% an error rather high nonetheless still 

acceptable.     

 

The second example consists in investigating the prime  P300M = P(3E
8
) = P(3×10

8
) = =6,461,335,109 with the 

next actual prime P(3×10
8
+1) = 6,461,335,171. Here too, one gets Cαn

α
 = Cα×(3E8)

α 
= 

7.885508741692040×(300M)
1,051476353871230

 = 6,461,335,108.999990 with a % error %δ = 8.85582592747319E-

14% and absolute difference δ = 0.00001 while extrapolating the fit function Cαn
α
→Cα×(n+1)

α
 from P(300M) to 

P(300M+1) provides P300M+1 = =Cα×(n+1)
α 

= 7.885508741692040×(300M+1)
1.051476353871230 

= 

6,461,335,131.6464700 with the absolute error (in comparison to the actual Pn+1) of δP(3×10
8
+1) = 39.3535 ≈ 

39 and a % discrepancy = 6,09061813390E-07% again a rather high value though tolerable.  

 

Also in studying the prime P10G+1=P(1E
10

+1) from P10G=P(1E
10

), the third example, one can see that in effect 

any prime number of the sequence can be fitted i.e. simulated by a value of any of the three fit functions and that 

in this calculation one uses the prime sequence but only and just to extrapolate from the known prime to the 

interested prime itself that is from Pn to Pn+1.  

 

Thus one gets for n = 1E10 the actual value P(1E10) = 252,097,800,623 while the calculated value is Cα×n
α 

= 

Cα×(1E10)
α 

≈ 9.125800459342760×n
1.0441298088325100 

≈
 
252,097,800,623.0010  with a relative error  (Pactual - 

Pcalculated) / Pactual  equal to δ%=6.052726E-12% and δ=0.0010 in comparison with the actual value. It is to be 

remarked that in this way too the fit is made just with this prime number Pn itself and not with the whole 

sequence, though using the features of the whole fit function. The same happens by fitting the chosen Pn value 

by the values given by the other two functions and the same is with all the other sequences and primes. Thus 

simply by extrapolating this fit function to the next value  n+1 = 10,000,000,001  one gets the value 

P(10,000,000,001) ≈ Cα×(n+1)
α 

≈ Cα×(1E10+1)
α 

≈ 9.3139764474155300× ×(10,000,000,001)
1.043243392139520 

≈ 

252,097,800,649.300 and dropping the decimal digits (of course) the value P(10G+1) = 252,097,800,649. with a 

relative error = 8.054992E-11 and an absolute error actual-calculatedδP(10
10

+1) = 20.3060 ≈ 20  in respect to the 



 

 
 

 

Lattanzi; J. Adv. Math. Com. Sci., vol. 38, no. 8, pp. 101-121, 2023; Article no.JAMCS.100586 
 

 

 
115 

 

actual value actualP10G+1 = 252,097,800,629. As for the next actualPn+2 = =act.P10G+2 = 252,097,800,637  one gets the 

result P(10
9
+2)≈Cα×(n+2)

α
≈9.3139764474155300× ×(10,000,000,002)

1,043243392139520
 = 252,097,800,675.601 and 

the difference is even larger amounting to 1.532304E-10 i.e. absolute error [calc.P(10
9
+2) - act.P(10

9
+2)] = 38.601 

≈ 38.   

 

The last example involving P800G = 23,812,036,414,963 gives the result calc.P(8E
11

) = 

=23,812,036,414,963.00000 again calculated by the fit function Cα×n
α 

≈ 

≈11.067495661792100×(800G)
1.0360962734124300

 to be compared to the actual value 23,812,036,414,963 with 

relative error equal to -1.640452E-15 and difference  δ = - 0.0390 (an error probably due merely to the computer 

accuracy). The value calculated for the next 

P800G+1≈Cα×(n+1)
α
=Cα×(800,000,000,001)

α
=(11.067495661792100)×(800G+1)

1.03609627341243
≈ 

 

≈23,812,036,414,993.90 to be compared to the actual value act.P800G+1 = 23,812,036,415,029 
 
with a relative error 

of 1.473290E-12 that is an absolute error δ = [calc.P(8×10
11

+1)- act.P(8×10
11

+1)] = 35.10 ≈ 35   

 

It is possible to see, in these four cases, that, while the value of the known prime i.e. the starting one Pn is exact, 

i.e. perfectly reproduced/simulated, the next one Pn+1 is only approximate with the discrepancy (or error) 

δP=Pactual-Pcalculated shown due to the extrapolation of the fitting function from Pn to Pn+1 and that the next Pn+2 is 

still more approximate i.e. with a higher error.   

 

The following table summarizes just these four examples showing the percentage differences δ% = (Pactual-

Pcalculated) / Pactual×100 between the actual and calculated prime value and their absolute differences δPn+1 = Pactual - 

Pcalculated where the calculated value is the extrapolated one and the differences δPn+1 are integers.  

 

Table 1.  Examples of some next (Pn+1) primes (actual and calculated) and errors δPn+1 
 

Counter  n + 1        Actual Prime  Pn+1    Calculated value Cα×(n+1)
α 

            δ%                 δPn+1 

82,500,001              1,664,674,819 1,664,674,834.218040   9.141748E-07%     ≈15 

300,000,001 6,461,335,171         6,461,335,131.646470 6,09061E-07%      ≈39     

10,000,000,001 252,097,800,629 252,097,800,649.3060 8.05499E-11%      ≈20    

800,000,000,001   23,812,036,415,029 23,812,036,414,993.90 1.473290E-10%     ≈35 

 

It would appear a random behaviour for the error δPn+1 and it is correct to conjecture that the reported 

extrapolation from one prime Pn to the next Pn+1 depends also on the gap ΔPn+1=Pn+1-Pn between the two primes 

themselves and the prime gaps can be conjectured to be stochastic. However this topic, already suggested in a 

previous work by the same Author, will be the matter of future in-depth studies and discussions.   

 

Of course all the discrepancies observed are very high if one wants to get the exact Pn+1 or Pn+2 value, 

nonetheless, in doing so, one has got a method that can reproduce the exact value of a prime Pn starting from 

which, one can go on to examine the next nearby following number Pn+1  by means of a primality test, having the 

mathematical certainty that the prime searched is there, in the vicinities of the estimated one Pn+1. In doing so a 

step by step procedure is established and it is possible to compute the next prime number, though approximate 

that is with an error. Afterwards, sweeping the whole range of odd numbers (of course with the last digit = 1, 3, 

7, 9) between calc.Pn+1 and act.Pn  one can look for and find the actual value of the next actual prime act.Pn+1. In 

such a way machine-time can be saved in the search of new prime numbers in that, being the difference calc.Pn+1 - 

act.Pn ≈ 30 40 (see Table 1), one can check just 12 16 numbers, nevertheless keeping in mind that the gap 

values tend to increase in increasing n.     

 

In addition another key question can be addressed. It has been always questioned on the nature of primes, 

whether deterministic or stochastic, so that, according to the results got in  the present study, now one can 

assume or conjecture the twofold nature of prime numbers, having both a deterministic aspect and a stochastic 

one at the same time. As a matter of fact the possibility of treating primes by fit functions (though 

approximately) reflects the former facet while the impossibility to fit them in an exact way is a clue of the latter 

feature. All that might explain their volatility and unpredictability. The global or coarse facet (deterministic) of 

primes is in strong contrast with their local or fine structure (stochastic) so that they appear to display a sort of 

double personality.  
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The fact that the actual prime gaps  act.ΔPk
 
= act.Pk+h - act.Pk+h-1  are locally highly irregular and that the calculated 

gaps are regular, due to the fact that the fit function (whatever it might be) is regular just like any analytic 

function, is what prevents to fit primes locally by an analytic function itself in an exact way, thus shredding a 

vivid light on prime gaps and their stochastic nature as well as on primes themselves: globally deterministic and 

locally stochastic.  

 

From this viewpoint one can look at the following two tables relative to a typical example.   

 

Table 2. Example of actual and calculated Pk+h=0thru5 with actual and calculated gaps 

  

Counter  k + h  

(h =  0 thru 5) 

Actual  Pk+h=0thru5 ΔPk
actual

  =   

= Pk+h  - Pk+h-1 

Calculated Pk+h =       

=  Cα×(k+h)
α
 

ΔPk
calculated

  =   

 =  Pk+h - Pk+h-1    

292,000,000,000 

292,000,000,001 

292,000,000,002 

292,000,000,003 

292,000,000,004 

292,000,000,005 

8,386,246,028,197   

8,386,246,028,219 

8,386,246,028,263   

8,386,246,028,291   

8,386,246,028,311 

8,386,246,028,333   

// 

22 

44 

28 

20 

22 

8,386,246,028,195.870 

8,386,246,028,225.610 

8,386,246,028,255.370 

8,386,246,028,285.140      

8,386,246,028,314.900 

8,386,246,028,344.640 

//  

29.734375000 

29.763671875 

29.764648437 

29.763671875 

29.735351562 

 

One can calculate, from the same table, the relative differences and the absolute differences δ between any 

actual and calculated prime examined getting the following Table 3. All the errors in this example, as well as in 

all the other cases studied, are fairly low.   

 

Table 3. The same actual and calculated Pk+h=0thru5 with relative & absolute differences 

 

Counter  k + 

h=0thru5 

Actual  Pk+h=0thru5 Calculated Pk+h=0thru5 =       

=  Cα×(k+h)
α
 

RelativeδPh =   

 =  (Pact. - Pcalc) / Pact.   
AbsoluteδPh =   

 =  Pact. - Pcalc.    

292,000,000,000 

292,000,000,001 

292,000,000,002 

292,000,000,003 

292,000,000,004 

292,000,000,005 

8,386,246,028,197 

8,386,246,028,219     

8,386,246,028,263     

8,386,246,028,291     

8,386,246,028,311     

8,386,246,028,333     

8,386,246,028,195.870 

8,386,246,028,225.610 

8,386,246,028,255.370 

8,386,246,028,285.140 

8,386,246,028,314.900 

8,386,246,028,344.640 

1.341482E-13  

7.881208E-13  

9.094597E-13    

6.990380E-13   

4.652102E-13 

1.387596E-12 

1.125000      

6.609375 

7.626953   

5.862305 

3.901367 

11.636719   

 

Remarkably, we can observe that the discrepancy δPh tends approximately to increase in increasing h that is in 

moving away from Pn, what is an evidence of the fact that the algorithm is highly local.  

 

Thus no doubts that, by the present approach, an algorithm and a methodology have been set up to simulate the 

deterministic aspect of prime numbers what could lead, in the future, through the appropriate means and tools, 

to the desired goal of attaining the value of a prime number Pn ≈ P(n) from its counter n with the least error i.e. 

the maximum possible approximation using the twofold criterion of both adopting the method here shown - 

though by the help of a much more powerful computer (or even of a mainframe) in order to reach a much higher 

precision - and studying the stochastic aspect of prime numbers what will allow to fill the discontinuity between 

the calculated value and the actual one. This latter aspect will be the topic of a next research by the Author.    

 

4 Conclusions and Future Developments  

 
The new algorithm presented in this paper, that makes a wide use of the modified Chi-square function under the 

form -1/X
2

k(A,n/μ), of the function Cα×n
α
 and of the function  λn×n×ln(n) as fit functions to simulate the finite 

sequences of prime numbers {Pn} and their major features as well as of the single primes themselves Pn ≈ -

1/X
2
k(A,n/μ) ≈ Cαn

α 
≈ ≈λn×n×ln(n), constitutes an innovative methodology for the former and the latter. The 

following ones should be considered some of the main findings of the study, at this very early stage.  

 

- Prime number sequences, as fitted by the three fit functions, have not the property of scale invariance 

holding for them the scaling laws given by k = k(n) = 2 - 2×α(n) of the opposite inverse modified Chi-

square function  -1/X
2

k(A,n/μ) and of Cαn
α
.     
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- It is possible to find many inductive algorithms which allow to simulate, i.e. to reproduce, the value of 

a prime Pn starting from its counter n  i.e. such that Pn ≈ P(n) though with the results affected by 

uncertainties i.e. errors. By now the most precise approximation appears to be that given by the 

function  Cαn
α 

≈ Pn with the ad-hoc values of Cα and α.    

- Prime numbers seem to display a twofold nature: deterministic and stochastic, the former having been 

examined in the present report, though in an approximate context, the latter which is still entirely to be 

studied and even understood. As a matter of fact, while the long-distance or large-scale behaviour 

presents a kind of global predictability, at least approximate, the short-distance or small-scale one is 

much less predictable. That could be the topic of future investigations starting from the fits reported 

here, for instance asking for any Pn what is the behaviour of the distance between the prime itself and 

the fit curve on the  (n, Pn)  plane where both the primes and the curve lie, while another possibility 

would be to examine the prime number gaps  ΔPn = Pn+1 - Pn , another interesting issue of study.   

- Given the value n it is possible to reproduce/simulate the value (already a-priori known) of a prime Pn 

with the smallest approximation, about 10
-12 

% or 10
-13 

% for the relative inaccuracy between the 

calculated prime and the actual one, that is δ%, with an absolute error δPn equal to few decimals by 

means of a fitting process.     

- Starting from a known prime actualPn It is possible to forecast the next one Pn+1 by the function Cα×n
α 

(for instance) and its application to the next n+1 i.e. Pn+1 ≈ Cα×(n+1)
α 

and by a simple exploration and 

survey of the numbers found in the surrounds of Pn+1 that is present in the range (actualPn  calculatedPn+1) 

and less beyond, applying a primality test to them, thus saving much computer memory and machine-

time.  

- The whole algorithm and the entire procedure hold just taking into account all the approximations 

adopted, as well as the imprecisions and the error propagations as usually done in experimental physics 

and in all the other experimental sciences. However no doubt that future investigations, by the use of 

much more powerful computers or mainframes or even supercomputers as well as of an ad-hoc 

software, will be easily able to improve all the precisions that is to reduce the uncertainties as much as 

possible.    

 

Despite the investigation is at its first stage, anyhow it is the Author’s opinion that the algorithm and the 

experimental methodology here shown can open a new wide field of study as the experimental counterpart of 

number theory which can reveal all its power more and more in the future. Despite many issues (some of which 

here just suggested or mentioned or simply hinted) are still to be examined and deepened, nonetheless in this 

initial phase of the research the aim and the goal are just to set up an innovative and suitable algorithm for the 

analytical treatment of prime numbers leaving to the next future studies the widening and deepening of the 

whole matter, first of all the fundamental issue of precision improvement i.e. of the reduction of the errors to as 

low as possible values, taking into account the results got just in this early part of the study.      
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