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Background: Alzheimer’s disease (AD) is the most common form of age-

related neurodegenerative disease. Unfortunately, due to the complexity

of pathological types and clinical heterogeneity of AD, there is a lack of

satisfactory treatment for AD. Previous studies have shown that microRNAs

and transcription factors can modulate genes associated with AD, but the

underlying pathophysiology remains unclear.

Methods: The datasets GSE1297 and GSE5281 were downloaded from

the gene expression omnibus (GEO) database and analyzed to obtain the

differentially expressed genes (DEGs) through the “R” language “limma”

package. The GSE1297 dataset was analyzed by weighted correlation network

analysis (WGCNA), and the key gene modules were selected. Next, gene

ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG)

pathway enrichment analysis for the key gene modules were performed.

Then, the protein-protein interaction (PPI) network was constructed and

the hub genes were identified using the STRING database and Cytoscape

software. Finally, for the GSE150693 dataset, the “R” package “survivation”

was used to integrate the data of survival time, AD transformation status and

35 characteristics, and the key microRNAs (miRNAs) were selected by Cox

method. We also performed regression analysis using least absolute shrinkage

and selection operator (Lasso)-Cox to construct and validate prognostic

features associated with the four key genes using different databases. We also

tried to find drugs targeting key genes through DrugBank database.

Results: GO and KEGG enrichment analysis showed that DEGs were

mainly enriched in pathways regulating chemical synaptic transmission,

glutamatergic synapses and Huntington’s disease. In addition, 10 hub genes

were selected from the PPI network by using the algorithm Between

Centrality. Then, four core genes (TBP, CDK7, GRM5, and GRIA1) were

selected by correlation with clinical information, and the established model

had very good prognosis in different databases. Finally, hsa-miR-425-5p and
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hsa-miR-186-5p were determined by COX regression, AD transformation

status and aberrant miRNAs.

Conclusion: In conclusion, we tried to construct a network in which miRNAs

and transcription factors jointly regulate pathogenic genes, and described the

process that abnormal miRNAs and abnormal transcription factors TBP and

CDK7 jointly regulate the transcription of AD central genes GRM5 and GRIA1.

The insights gained from this study offer the potential AD biomarkers, which

may be of assistance to the diagnose and therapy of AD.

KEYWORDS

Alzheimer’s disease (AD), differentially expressed genes (DEGs), COX regression,
transcription factors, miRNAs

Introduction

Alzheimer’s disease (AD) is the most common and complex
neurological disease in the world. Neurological conditions
such as AD are the leading cause of 70% of dementia
worldwide (Mayeux and Stern, 2012). Global Alzheimer’s cases
are increasing year by year and are expected to reach 78 million
by 2030. While the pathogenesis of the disease is not yet known,
many believe the accumulation of over-phosphorylated tau and
Aβ plaques in neurofibrillary tangles are the main causes of
AD (Andreasen et al., 1999; Shao et al., 2011; Arvanitakis and
Bennett, 2019). When extracellular amyloid plaques build up in
specific areas of the brain, they can lead to amyloid vascular
disease or neurodegenerative diseases (Thanvi and Robinson,
2006; Jäkel et al., 2022). The neurofibrillary tangles (NFTs) are
huge paired intracellular helical strands of hyperphosphorylated
tau proteins, which induce neuronal and synaptic loss (Moloney
et al., 2021). The predominant regions of the pathological
process underlying AD in human brain are the association
areas of the cerebral cortex and the hippocampus (Wang et al.,
2010). Despite these extensive findings on both, there are few
effective drugs to improve and treat AD. Worse, many patients
have to wait a long time to be diagnosed with the disease.
During this period, the Aβ burden is significant and memory
loss has already occurred (Arvanitakis et al., 2019; Long and
Holtzman, 2019). Typical AD has gone through a gradual and
hidden development process, and there is no specific detection
method, which cannot be accurately diagnosed, difficult to cure,
difficult to control, and poor prognosis. Therefore, it is urgent
to explore new potential biomarkers for early diagnosis and
effective treatment of AD.

Alzheimer’s disease is the most common neurodegenerative
disorder with limited therapeutics, and AD is characterized
by the formation of plaques made by protein aggregates.
Mounting studies have suggested that targeting transcription
factors holds promise for treating neurodegenerative disorders

including AD (Ping Yang et al., 2022). CMV promotor-driven
transcription factor EB (TFEB), for example, is injected with
adeno-associated viral particles in targeted mice, which are
mainly localized in neuronal nuclei and upregulated lysosomes.
This resulted in decreased steady state levels of Aβ in APP
proteins and cerebral stromal liquid (Xiao et al., 2015; Song
et al., 2020). A growing body of evidence also suggests that
the accumulation of misfolding proteins in AD is caused by
damage to macromolecular autophagy and autophagy lysosomal
pathways, making TFEB, which regulates autophagic lysosomal
pathway, a promising target for AD treatment (Zheng et al.,
2021). We also found decreased expression of the transcription
factor Nrf2 and its NQO1, HO-1, and GCLC driver genes,
and changes in related Nrf2 pathways in AD brains. Nrf2
activation may provide cellular protection and prevent an
increasing number of diseases including neurodegenerative
diseases. These avenues of evidence point to the activation of the
Nrf2 transcription factor as a potential new therapeutic scheme
for AD (Osama et al., 2020). Additional research shows that
ATF6 transcription factor activation can attenuate amyloidosis
through BACE1 downregulation, and concomitantly ATF6
overexpression significantly reduces Aβ1-42. The results of this
study suggest ATF6 may become a potential focus for targeted
therapy of AD. Interestingly, TBP and CDk7 also belong to the
basal transcription factor family like ATF6 among the 10 key
genes selected in our study (Geng et al., 2016; Du et al., 2020).

Recently, progress has begun to clarify the physiological
and pathological roles of non-coding RNAs (ncRNAs) in a
variety of diseases, including cancer. ncRNAs do not have
protein coding functions, but are important regulators of
many cellular processes (Esteller, 2011). Of these, miRNAs
are the most studied and have become key players in
the pathogenesis of AD involved in regulating key growth
regulatory pathways (Swarbrick et al., 2019; Toden et al., 2021).
miRNAs are small endogenous non-coding RNA molecules that
can inhibit or silence the expression of post-transcription genes.
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Many miRNAs play an important role in post-transcriptional
regulation and are highly conserved (Sand et al., 2009). Previous
research has found that numerous miRNAs, including miRNA-
126a-3p, MicroRNA-455-3p, miR-501-3p, and miRNA-101a-3p,
have a role in the pathogenesis of AD, showing that miRNAs
are strongly linked to the development of AD (Hara et al., 2017;
Kumar et al., 2017; Kumar and Reddy, 2019; Lin et al., 2022;
Xue et al., 2022). However, the specific role and potential
mechanisms of miRNA in AD pathogenesis are unclear.

We here established a miRNA-mRNA, TF-mRNAs
regulatory network by integrating relevant TFs (transcription
factors), miRNAs and mRNAs to try to gain further insight
into the potential functions of ncRNAs as well as transcription
factors in AD. This study may provide a better understanding
of the underlying pathogenesis of AD and potentially new
biomarkers for diagnosis and treatment of AD.

Materials and methods

Gene expression profile data collection

The gene expression datasets used in this investigation were
collected from the gene expression omnibus (GEO) database.1

This database generated a total of 340 datasets on human AD.
After a careful review, four gene expression profiles (GSE5281,
GSE1297, GSE122063, and GSE150693) were selected. Among
them, GSE5281 was based on the GPL570 platform ([HG-
U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0
Array), GSE1297 was built on GPL96 Affymetrix Human
Genome U133A Array. All data were freely accessible online.
The GSE5281 expression profile consists of 161 samples and
approximately 55,000 transcripts from 74 disease-free patients
and 84 patients with AD. There are 31 samples in the
GSE1297 dataset, including 9 normal and 22 AD subjects
with different severities. The correlation between each gene
expression and clinical information of the 31 subjects was
verified by the Neurofibrillary Entanglement Score (NFT)
and the Minimental Examination (MMSE) (Blalock et al.,
2004; Liang et al., 2007). GSE122063 is a gene expression
profiling in frontal and temporal cortices from 36 patients
with vascular dementia, 56 diseases (AD), and 44 non-
demented controls (Control) obtained from the University of
Michigan. Brain Bank Mild cognitive impairment (MCI) is a
precursor to the development of AD. The GSE150693 data
were downloaded from the GEO database from the GPL21263
platform, among them 197 miRNA samples from MCI sera
included 83 patients who were converted from MCIs to AD,
and 114 patients who did not convert from MCI to AD
(Shigemizu et al., 2020).

1 https://www.ncbi.nlm.nih.gov/geo/browse/

Application of weighted correlation
network analysis algorithm

First, the GSE1297 sample data obtained from the GEO
database was processed by using the log scale robust multi-array
analysis (RMA). Then the missing values in the samples were
filled by using the K-neighborhood algorithm to improve the
accuracy and usability of the data. Next, expression relationships
among genes were measured by correlation coefficients to
construct weighted co-expression networks in the absence of
outlier samples through cluster analysis of gene samples. Based
on this, gene modules were identified by using a clustering
algorithm as well as a dynamic shear tree algorithm. The
calculated correlation coefficients between gene modules and
clinical performance traits were used as the association criteria.
Using the Pearson correlation test can analyze the relationship
between module eigengenes and clinical features, and select the
modules for focused mining. Among them, clinical information
includes: Age, age at death; NFT, neurofibrillary tangle count;
Braak, Braak stage; MMSE, adjusted Minimental Status Exam;
PMI, postmortem interval. Finally, the key modules were further
mined to find the key core genes.

Functional classification and pathway
enrichment of differentially expressed
genes

The above differentially expressed genes (DEGs) screened
from the weighted correlation network analysis (WGCNA)
were submitted to gene ontology (GO) function enrichment
analysis, which was consisted of cellular component (CC),
biological process (BP), and molecular function (MF), and was
analyzed and visualized by using the R language “cluster profile,”
“GGploT2,” and “enrichPlot” packages. Kyoto encyclopedia
of genes and genomes (KEGG) pathway enrichment analysis
of DEGs in this study was performed by the Database for
Annotation, Visualization, and Integrated Discovery (DAVID)
tools.2 KEGG pathway visualization was analyzed by Sangerbox
online pathway analysis tool (Shen et al., 2022). Enriched GO
terms with adjusted value P < 0.01 and gene number> 12 were
selected, and P > 0.05 of KEGG pathways and gene numbers>
5 were considered statistically significant.

Analyzing differential expression

DEGs are processed using the “R” language “limma” package
and calculate adjusted P values and | logFC|. For GSE5281 and
GSE97760 gene expression profiles, Log2 Fold Change (FC) | >

1.0 and adjusted P-values < 0.05 were selected as cut-off criteria.

2 https://david.ncifcrf.gov/
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Protein-protein interaction network
and module analysis

WGCNA was used to directly set thresholds for gene
saliency (GS) and module feature (MM). Based on | MM|
> 0.8, | GS| > 0.1 threshold value for the standard to filter
core genes, 269 key genes were selected from 789 genes
in the “midnightblue” module. To explore the relationship
between these 269 hub genes and MAPT (AD is defined by
the presence of extracellular and intracellular neurofibrillary
tangles composed of hyperphosphorylated tau proteins) and
AD disease (Corbo and Alonso Adel, 2011; Bakota and Brandt,
2016; Chong et al., 2018), the Search Tool was used for the
Retrieval of Interacting Genes (STRING version 11.5) for known
or predicted, direct (physical) and indirect (functional) PPIs
(Szklarczyk et al., 2015). The interaction confidence score of
>0.4 was used as the cutoff value for statistical significance.
Subsequently, the PPI network was visualized by Cytoscape3.9
software.3 To better search for proteins related to Tau protein
(MAPT), the algorithm between Centrality was adopted in this
study to find the important nodes [the calculation formula is (1)
and (2)].

We used CytoHubba, a plugin in Cytoscape, to compute
nodes in the protein network that efficiently convey data. In our
study, the top 10 genes were identified as central genes.

CB(Ni) =
∑g

k,j=1
sd
(
k, i, j

)
,
(
k 6= j

)
(1)

sd(k, i, j) indicates that the shortest path from k to j passes
through i, which means, i is on the shortest path from k to j.

C′B (Ni) =
CB(Ni)∑g
k,j=1

(
k, j
) , (k 6= j) (2)

The formula can be standardized to obtain (2), where
the denominator represents the number of paths between two
points in the figure, that is, the number of all paths.

Gene set enrichment analysis

For Gene Set Enrichment Analysis (GSEA), we obtained
data from GSEA (DOI: 10.1073/pans.0506580102)4 website
for the GSEA software (version 3.0), the samples were divided
into high expression group (≤50%) and low expression
group (<50%) according to the expression level of GRM5
and GRIA1. Obtained from the Molecular Signatures
Database (DOI: 10.1093/bioinformatics/btr260),5 a subset
of “c3.mir.v7.4.symbols.gmt” and “c3.tft.v7.4.symbols.gmt”
was downloaded to evaluate related pathways and molecular
mechanisms, based on gene expression profile and phenotype

3 www.cytoscape.org/

4 http://software.broadinstitute.org/gsea/index.jsp

5 http://www.gsea-msigdb.org/gsea/downloads.jsp

grouping. The minimum gene set was 5. The maximum gene
set was 5,000, 1,000 resampling, P-value < 0.05 and FDR < 0.25
were considered statistically significant, to verify the binding
relationship of miRNAs and transcription factors with the
target genes, and to indicate that they are on the relevant
biological pathway.

MicroRNAs associated with hub

Genes
The ENCORI (The Encyclopedia of RNA Interacts) database

is used to construct Hub genes and target miRNA interactions
with them. We then used the “R” software package “Survival”
to integrate data on survival, AD transformation status, and
35 features, and evaluated the prognostic significance of these
features in 197 samples by Cox and selection of key microRNAs
(miRNAs). Finally, these central genes and miRNA networks
were mapped using Cytoscape software.

The least absolute shrinkage and selection
operator logistic regression algorithm model
was constructed

Here, we used the R package “glmnet” to integrate AD
status and gene expression data from GSE5281 database for
regression analysis using least absolute shrinkage and selection
operator (Lasso)-Cox. Tenfold cross validation was performed
to obtain the optimal model. We set the Lambda value to
0.00208765767322578 and finally obtained four genes. The
model formula is: RiskScore = −0.00111259701091014 × TBP-
0.00540566228324965 × CDK7 + 0.0013635456849925 ×
GRM5 − 0.000512469864405875 × GRIA1 and then, the
database GSE122063 was used to verify the model to ensure the
rationality of the model.

The key genes obtained from network analysis
were verified with FpClass tool

The FpClass for predicting high confidence PPIs on a
proteome-wide scale, including proteins with few (low-degree
proteins) or no known binding partners (orphans). To identify
co-expressed genes with the queried genes, the tool considers
two specific scores: the gene expression score and the topological
network score. The gene expression score is based on the
Pearson correlation of the gene expression pattern. The topology
score of the network shows whether genes exist in the training
data and the strength of their interaction (Kotlyar et al., 2015;
Sriroopreddy et al., 2019).

Drug selection of hub gene
Drugs targeting key genes were retrieved from the

DrugBank database, which is a web-enabled database.6 The
database collects more than 7,800 drugs, including interactions

6 www.DrugBank.ca
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and their targets, drug binding data, drug-drug and drug-food
interaction data. It also includes hundreds of drug impact
information on metabolite levels, protein expression levels,
hundreds of drug clinical trials and drug reuse trials (Wishart
et al., 2018).

Results

Gene co-expression modules

To explore the co-expression patterns of mRNA in AD,
we performed WGCNA analysis on the GSE1297 dataset. The
dataset contained 22 columns of AD samples and 9 columns
of normal human samples, with a total of 22,283 genes. The
raw data can be downloaded from the GEO database of
NCBI.7 The read-in data was first preprocessed by the rma
function in the Affy package in R language, which contains
background correction, normalization, calculation of expression
to normalize the data. Then, for the missing values in the data,
we used the K-neighborhood algorithm (KNN) to complement
the missing values data. Through this algorithm, genes with
high similarity were identified to supplement the null values.
The absolute median difference (MAD) is the median of the
difference between each data in a set of data and the median
of that set of data. To filter out a large number of genes with
relatively constant expression in different gene samples, the top
7,200 genes of MAD values were selected for WGCNA analysis
in this paper. To explore the co-expression patterns of mRNA in
AD, we performed WGCNA analysis on the GSE1297 dataset
(Figures 1D,F). To ensure scale-free networks, we chose soft
thresholds of b = 12 (Figures 1A,B), used WGCNA packages
as soft threshold power to generate hierarchical clustering
trees (Figure 1C), and then we built co-expression networks
of associations between clinical features and these modules.
As shown in Figure 2 the “Midnight” module of GSE1297 is
significantly related to the clinical features of AD.

Kyoto encyclopedia of genes and
genomes pathway and gene ontology
analysis of differentially expressed
genes

GO analysis of DEGs (including molecular function,
biological processes and cell composition analysis) and KEGG
pathway analysis, respectively, can provide valuable evidence
of processes and pathways in which gene sets may be
involved. This type of information is crucial for hypothesis
development and for the design of future research. Functional

7 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1297

enrichment analyses of KEGG pathway enrichment and
DEGs GO function enrichment analysis for DEGs were
performed using the DAVID And R package “cluster profile”
(Tables 1, 2). The enriched GO terms were divided into
CC, BP, and MF ontologies. The results of GO analysis
indicated that DEGs were mainly enriched in BPs, including
modulation of chemical synaptic transmission, regulation
of trans-synaptic signaling, regulation of supramolecular
fiber organization, regulation of membrane potential, vesicle
localization, the establishment of organelle localization, protein-
containing complex disassembly and regulation of protein-
containing complex assembly. MF analysis showed that
the DEGs were protein serine/threonine kinase activity,
tubulin binding, guanyl nucleotide binding, and geranyl
ribonucleotide binding. For the cell components, the DEGs
were synaptic membrane, presynapse, mitochondrial matrix,
transporter complex, neuron-to-neuron synapse, microtubule,
and microtubule. In addition, the results of KEGG pathway
analysis showed that DEGs were mainly enriched in pathways in
retrograde endocannabinoid signaling, human papillomavirus
infection, tight junction, purine metabolism, and dopaminergic
synapse (Figures 3, 4B and Supplementary Data 1).

Identification of differentially
expressed genes in Alzheimer’s disease

We downloaded the series GSE1297 and GSE5281 datasets
about AD from the NCBI GEO database. After using the
“limma” package in R software, screening with the threshold
of an adjusted p-value < 0.05 and | log2FC| > 1.0, 959 DEGs
(320 upregulated and 639 downregulated) were identified in
the GSE5281 dataset and DEGs were identified by comparing
AD samples with normal samples. 622 DEGs (408 upregulated
and 215 downregulated) were identified in the GSE1297 dataset,
the DEGs were identified by comparing "control" with the
"Severe" status of AD samples. The volcano plot and heatmap
analyses were used to visualize the DEGs of the two data sets
shown in Figures 5A,B, 6A,B, respectively. In addition, a Venn
diagram analysis was performed to evaluate the common DEGs
between GSE5281, WGCNA-hub, and GSE1297. As presented
in Figure 6C, Intersecting, with 10 hub genes identified two
overlapping DEGs (CDK7 and GRIA1).

Building protein-protein interaction
networks and screening 10 key genes

A total of 177 nodes and 343 edges were involved in
the final PPI network from 269 proteins using the STRING
tool, as presented in Figure 7. The top 10 genes evaluated
by the algorithm Between Centrality were adopted in the
final PPI network. The results showed that the protein, a
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FIGURE 1

Co-expression network of differentially expressed genes in AD. (A,B) Soft threshold power selection. (C) Clustering tree dendrogram of
co-expression modules. Different colors represent distinct co-expression modules. (D) Correlation analysis between midnightblue module and
clinical condition, each column represents one module, individual rows represent clinical status. (E) Correlation between modules. (F) Specific
clinical information of the sample.

regulatory protein involved in mitosis (CCNB1), was the
most outstanding one, with a score = 10,430, followed by
the predominant excitatory neurotransmitter receptors in
the mammalian brain which are activated in a variety of
normal neurophysiologic processes (GRIA1; score = 4,243).
The TFIID basal transcription factor complex plays a major
role in the initiation of RNA polymerase II (Pol II)-dependent

transcription. Other proteins are TATA-binding protein (TBP;
score = 4,035), the microtubule-associated protein, tau (MAPT;
score = 4,000), Protein Phosphatase 2 Regulatory Subunit
Bdelta (PPP2R2D; score = 3,479), Cyclin-Dependent Kinase 7,
involved in cell cycle control and RNA polymerase II-mediated
RNA transcription (CDK7; score = 3,158), USO1 Vesicle
Transport Factor (USO1; score = 2,905), a gene essential for
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FIGURE 2

Midnightblue module and clinical relevance. (A) Scatter plot between module membership in midnightblue module and the clinical information
MMSE. (B) Scatter plot between module membership in midnightblue module and clinical information ref number. (C,D) Scatter plot between
module membership in midnightblue module and clinical information NFT and break, respectively.

TABLE 1 Significantly enriched gene ontology (GO) terms of differentially expressed genes (DEGs).

Category Term Description P-value Count

BP term GO:0051648 Vesicle localization 0.00000495 13

BP term GO:0051656 Establishment of organelle localization 0.0000306 17

BP term GO:0032984 Protein-containing complex disassembly 0.0000637 14

BP term GO:0043254 Regulation of protein-containing complex assembly 0.00015812 16

BP term GO:0050804 Modulation of chemical synaptic transmission 0.000179862 15

BP term GO:0099177 Regulation of trans-synaptic signaling 0.000184724 15

BP term GO:1902903 Regulation of supramolecular fiber organization 0.000237205 14

BP term GO:0042391 Regulation of membrane potential 0.00034946 15

CC term GO:0098793 Presynapse 0.0000018 19

CC term GO:0097060 Synaptic membrane 0.0000146 16

CC term GO:0005759 Mitochondrial matrix 0.0000279 18

CC term GO:1990351 Transporter complex 0.000311367 13

CC term GO:0098984 Neuron to neuron synapse 0.000348414 13

CC term GO:0005874 Microtubule 0.000822817 14

CC term GO:0043025 Neuronal cell body 0.002387617 14

MF term GO:0004674 Protein serine/threonine kinase activity 0.000143327 16

MF term GO:0015631 Tubulin binding 0.000968776 13

MF term GO:0019001 Guanyl nucleotide binding 0.001949535 13

MF term GO:0032561 Geranyl ribonucleotide binding 0.001949535 13
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TABLE 2 Significant enrichment of the Kyoto encyclopedia of genes and genomes (KEGG) pathway.

Category Term Description P-value Count

KEGG_PATHWAY hsa04723 Retrograde endocannabinoid signaling 0.004813647 8

KEGG_PATHWAY hsa05165 Human papillomavirus infection 0.018148818 11

KEGG_PATHWAY hsa04530 Tight junction 0.031975382 7

KEGG_PATHWAY hsa00230 Purine metabolism 0.034383145 6

KEGG_PATHWAY hsa04728 Dopaminergic synapse 0.038482344 6

KEGG, Kyoto Encyclopedia of Genes and Genomes.

FIGURE 3

Differentially expressed gene’s (DEG’s) GO analysis. (A) GO bioprocess enrichment. (B) Cell composition enrichment results. (C) Results of
molecular function enrichment. The color of each bubble represents the fitted p-value: the redder the color, the higher the concentration.
(D) The relationship between the classes. (E) The genes contained in the more enriched category. GO, Gene Ontology.

cell survival and DNA repair (PRPF19; score = 2,809), The
protein is a metabotropic glutamate receptor, whose signaling
activates a phosphatidylinositol-calcium second messenger
system. This protein may be involved in the regulation
of neural network activity and synaptic plasticity (GRM5;
score = 2,800) and Mitochondrial Ribosomal Protein S15
(MRPS15; score = 2,510). Table 3 shows the top 10
hub genes.

Prediction of microRNAs and
identification of common differentially
expressed miRNAs

In addition, we explored the predicted miRNAs of GRM5
and CRIA1 in AD patients using the ENCORI platform to
establish potential miRNA messenger RNA (mRNA) regulatory
networks (Wu et al., 2021). We found 53 predicted differentially
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FIGURE 4

Kyoto encyclopedia of genes and genomes (KEGG) pathway map, TBP binding site map, and key mRNA miRNAs prediction. (A) TBP
transcription factor binding site. (B) KEGG pathway diagrams of differentially expressed genes (DEGs). (C) The miRNAs to GRM5 and GRIA1 bind
are predicted. In the network, thin lines represent sequence matches, green balls represent miRNAs and blue balls represent mRNA. (D) The
mRNA binding to hsa-miR-425-5p and hsa-miR-186-5p was predicted. In the network, thin lines represent sequence matching, green spheres
represent mRNA, and blue spheres represent miRNA. (E) The network diagram of Hub gene and miRNA. The yellow ball represents the gene, the
green represents the miRNA, and the green triangle is the miRNA we finally screened.

expressed microRNAs (Figure 4C). Also, 140 specifically
dysregulated differentially expressed miRNAs (DEmiRNAs)
(58 downregulated and 82 upregulated DEmiRNAs) in blood
samples of patients with AD were identified and used in

our work, according to the report by Leidinger et al. (2013;
Supplementary Data 2). The DEmiRNAs from AD were
intersected with the 82 upregulated DEmiRNAs from blood
samples; the common DEmiRNAs were identified. Respectively,

Frontiers in Aging Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnagi.2022.1069606
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-1069606 December 6, 2022 Time: 16:26 # 10

Zhang et al. 10.3389/fnagi.2022.1069606

FIGURE 5

The volcano plot, heat map, and pathway’s bubble diagram of DEGs. (A) A heat map of DEGs in GSE1297. (B) Volcano plot of DEGs in GSE1297.
(C) Pathway bubble diagram of DEGs screened by weighted correlation network analysis (WGCNA). There are also two horizontal dashed lines
in the panel (B), representing log2FC at –1 and 1, The vertical dashed line represents the adjusted p-value at 0.05, RAD21L1 and USP9Y
represented the genes with the largest and smallest difference, respectively, GRIA1 and CDK7 are the key genes in this study. DEGs, differentially
expressed genes.

hsa-miR-186-5p and hsa-miR-425-5p were identified to be
potentially involved in the regulation of GRM5 and GRIA1
(Figures 8C,E).

Prediction of transcription factor
binding to target genes

We downloaded the TBP’s primary structure of the amino
acid sequence from the Uniprot database,8 and then found the
TBP transcription factor binding site features in the JASPAR
database9 (Figure 4A). Then, 1,000 bp promoter regions of
GRM5 and GRIA1 sequences were downloaded from the UCSC
database10 (Supplementary Data 3). Finally, their promoter
sequences were entered into the JASPAR database to predict

8 https://www.uniprot.org/

9 https://jaspar.genereg.net/

10 http://genome.ucsc.edu/

regulatory transcription factors. Even when the threshold was
set as 80%, TBP could be found to be the transcription factor of
both. For a more accurate prediction of transcription factors, we
used the HumanTFDB database.11 Interestingly, not only TBP is
a transcription factor of GRM5 and GRIA1, but CDK7 is also a
transcription factor of both (detailed results are provided in the
Supplementary Data 4).

Drug selection results

Fifteen drugs targeting the four core genes were selected
based on drug and target information contained in DrugBank
database. Of these, nine medications have been approved, six
are investigational and experimental. All four GRIA1 drugs
are primarily responsible for the activity of AMPA glutamate
receptors and extracellular glutamate gated ion channels.

11 http://bioinfo.life.hust.edu.cn/HumanTFDB#!/
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FIGURE 6

The volcano plot, heat map, and Venn diagram of DEGs. (A) A heat map of DEGs in GSE5281. (B) Volcano plot of DEGs in GSE5281. (C) Venn
diagram of GSE5281, GSE1297, and WGCNA-hub. There are also two horizontal dashed lines in the panel (B), representing log2FC at –1 and 1,
The vertical dashed line represents the adjusted p-value at 0.05, ID3 and SST represented the genes with the largest and smallest difference,
respectively. GRIA1 and CDK7 are the key genes in this study.

Isoflurane (DB00753), Methodflurane (DB01028), Desflurane
(DB01189), Sevoflurane (DB01236) are all known to be an
antagonist medication. Isoflurane is a general inhaled cosmetic
used in surgery. Methoxyflurane is a general inhalational
anesthetic used for the induction and maintenance of general
anesthesia. Desflurane is a general inhalational anesthetic for
both inpatient and outpatient surgery in adults. Sevoflurane
is an inhalational anesthetic agent used for the induction and
maintenance of general anesthesia during surgical interventions.
Additional information on the features and specific usage
of other gene-targeted drugs is presented in Supplementary
Data 6 and in Table 4.

Discussion

Due to the heterogeneity of AD pathology, there is a lack
of sufficient efficacy in treating AD (Lam et al., 2013; Byun
et al., 2015). In the past decades, neurodegenerative therapy for
AD has made more and more progress, and drug resistance
is often allowed in traditional histology (Nandigam, 2008).

Hence, identifying more appropriate molecular regulation of
transcriptional clusters is critical to guiding personalized AD
treatment. In this work, the top 7,200 genes based on MAD
values were chosen for WGCNA analysis. The "Midnight"
module of GSE1297 was chosen as it is significantly associated
with clinical AD (Figure 2). Subsequently, according to the
cytoHubba plug-in of Cytoscape, we made use of the algorithm
Between Centrality to screen 10 key DEGs as hub genes in the
PPI network, including CCNB1, GRIA1, TBP, MAPT, PPP2R2D,
CDK7, USO1, PRPF19, GRM5, and MRPS15. It’s suggesting that
these genes may play important role in the mechanism of AD
and the specific flow chart is shown in Figure 9G.

Luckily, we discovered that in GO analysis, GRM5
and GRIA1 were predominantly enhanced in the synaptic
membrane of CC (cellular component), Neuron to Neuron
synapse, postsynaptic membrane, postsynaptic density, and
postsynaptic specialization. In BP (biological process), GRM5
and GRIA1 were predominantly enriched in the modulation
of chemical synaptic transmission, regulation of trans-synaptic
signaling, and regulation of membrane potential. More and
more studies have shown that neuron synapse and AD are
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FIGURE 7

PPI network of hub genes, PPI network of genes constructed in the STRING database. Then, visualization of a STRING-derived network of
molecular interactions in Cytoscape pathway visualization and analysis software, the 10 genes in the middle are the key genes to be screened,
and the closer the color is to red, the higher the score.

closely related, synapse loss and Tau pathology are hallmarks
of AD and other tauopathies (Yoshiyama et al., 2007; Skaper
et al., 2017; Dejanovic et al., 2018; Kurucu et al., 2022). In
KEGG pathway analysis, GRM5 and GRIA1 are co-enriched
in glutamatergic synapse and retrograde endocannabinoid
signaling pathways. TBP, GRM5, and GRIA1 were co-enriched
in Huntington’s disease pathway. Both Huntington’s disease
(HD) and Alzheimer’s disease (AD) are similar, albeit clinically
distinct, neurodegenerative disorders that share pathologic
features related to selective brain injury (Naia et al., 2017;
Mukherjee, 2021). TBP and CDK7 are basal transcription
factors among them. In addition, through FpClass analysis, we
know that TBP and CDK7 have high reliability based on gene

expression and topological network analysis, and GRM5 and
GRIA1 also have high scores (Supplementary Data 7). In the
verification in the GeneMANIA database, they still have the
same relationship network (Supplementary Data 5, Figure A).

All three nuclear RNA polymerases have a subunit of the
TATA binding protein (TBP) complex required for transcription
(Davidson et al., 2004). In all fields of life, transcription
regulation by DNA-dependent three-types RNA polymerase
is largely achieved at the initial level. Among them, TBP
is the most conservative initiation factor, which is crucial
to the transcription initiation of all ancient eukaryotes, and
is the only initiation factor required for the complete start
of RNA polymerase in all eukaryotes (Kramm et al., 2019;
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TABLE 3 The hub genes.

Rank Name Score

1 CCNB1 10429.51

2 GRIA1 4242.677

3 TBP 4035.28

4 MAPT 4000.436

5 PPP2R2D 3479.117

6 CDK7 3157.932

7 USO1 2904.839

8 PRPF19 2809.138

9 GRM5 2799.903

10 MRPS15 2510.792

Mishal and Luna-Arias, 2022). Back in 2004, they demonstrated
significant differences in TBP between the AD group of
normal subjects and patients. In addition, their number and
distribution are not proportional to the number and the
distribution of positive tau or β-amyloid structures, and the
TBP accumulates in AD brains, suggesting that TBP might
be a contributing factor to AD due to its own entanglements
(Reid et al., 2004). Evidence implicating TBP in the molecular
mechanism of several neurodegenerative diseases has emerged

in the past few years. TBP may contribute to these diseases
through a loss of normal function (likely to be catastrophic
to a cell) which affects neurodegenerative diseases, such as
AD and Huntington’s disease (van Roon-Mom et al., 2005;
Bech et al., 2010).

The transcription cycle of RNA polymerase II is regulated
by a group of cyclin dependent kinases (CDK). CDK7 related
to TFIIH, a transcription initiation factor, is not only an
effector of RNA polymerase II phosphorylation and other targets
in the transcription mechanism, but also a CDK activated
kinase involved in transcription, and also plays a key role in
regulating eukaryotic cell division (Sansó and Fisher, 2013;
Fisher, 2019). There is growing evidence that CDK regulates
the transcriptional cycle of RNA polymerase II. Specific
CDKs are considered as important molecular mechanisms in
the transcription cycle, and describe that recently emerged
transcriptional CDK can serve as promising drug targets in
cancer (Fisher, 2017; Parua and Fisher, 2020). Moreover, some
studies show that neuronal activity of CDK7 in hippocampus
is related to aging and AD (Zhu et al., 2000). CDK7 is
also required for activity-Dependent expression of Neuronal
genes, synaptic plasticity at long-term, and memory at long-
term (He et al., 2017). It can be hypothesized that CDK7 is a
promising drug target for AD.

FIGURE 8

Selection of key miRNAs. (A) AD conversion curves of hsa-miR-186-5p. (B) ROC analyses for the 365, 1,095, and 1,825 time points were
performed using the ROC function of the R package proc (version 1.17.0.1). (C) The intersection of predicted miRNAs and abnormal miRNAs in
blood. (D) hsa-miR-425-5p. (E) They are, respectively, the complementary base sequence matching of hsa-miR-186-5p and target gene GRM5,
and the complementary base sequence matching of hsa-miR-425-5p and target gene GRIA1.
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TABLE 4 Fifteen drugs targeting key genes screened from DrugBank database.

genes Drug name and ID Status Type

TBP Quercetin (DB04216) Experimental, investigational

TBP Chloroquine (DB00608) Approved, investigational, vet_approved Inhibitor

TBP Revusiran (DB16309) Investigational Regulator

CDK7 Phosphonothreonine (DB02482) Experimental

CDK7 Alvocidib (DB03496) Experimental, investigational

CDK7 SNS-032 (DB05969) Investigational

CDK7 Seliciclib (DB06195) Investigational

CDK7 Trilaciclib (DB15442) Approved, investigational Inhibitor

GRIA1 Isoflurane (DB00753) Approved, vet_approved Antagonist

GRIA1 Methoxyflurane (DB01028) Approved, investigational, vet_approved Antagonist

GRIA1 Desflurane (DB01189) Approved Antagonist

GRIA1 Sevoflurane (DB01236) Approved, vet_approved Antagonist

GRM5 Imipramine (DB00458) Approved Inhibitor

GRM5 Disopyramide (DB00280) Approved Inhibitor

GRM5 Dalfampridine (DB06637) Approved Antagonist

FIGURE 9

Protein-to-protein correlation graph (GSE5281 data set). (A–C) Respectively, the correlation map of GRIA1 and TBP, CDK7, MAPT. (D–F)
Respectively, the correlation map of GRM5 and TBP, CDK7, MAPT. (G) The flow-process diagram.

Frontiers in Aging Neuroscience 14 frontiersin.org

https://doi.org/10.3389/fnagi.2022.1069606
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-1069606 December 6, 2022 Time: 16:26 # 15

Zhang et al. 10.3389/fnagi.2022.1069606

FIGURE 10

Boxplots of hub mRNA and correlation with clinical information. (A–D) Based on the difference boxplot of TBP, GRIA1, GRM5, and CDK7
between the normal group and AD group (GSE5281 data set). (E–H) The correlation between GRIA1, GRM5, and clinical information MMSE, NFT,
respectively.

Although GRM5 (coding for metabotropic glutamate
receptor 5, mGluR5) is a promising target for treating cognitive
deficits in schizophrenia and AD, its association with cognitive
and brain phenotypes within this disorder has received little
attention. Early researchers found that the common genetic
variation of GRM5 in schizophrenic patients would affect
cognitive function, hippocampal volume and hippocampal
mGluR5 protein level compared with the healthy control group,
among them, the metabotropic glutamate receptor subtype 5
(mGluR5) is encoded by GRM5 gene, which is an attractive
new drug target for the treatment of schizophrenia (Matosin
et al., 2018). MGluR5 is a postsynaptic G-protein coupled
glutamate receptor, which is closely related to several key
cellular processes destroyed in schizophrenia. In preclinical
models of schizophrenia, positive mGluR5 modulators have
shown encouraging therapeutic potential, especially in the
treatment of cognitive dysfunctions (Matosin et al., 2017).
Early in the course of AD inhibition, some have attempted to
do so by downregulating cholinergic receptors and glutamate
receptors, which, as the disease progresses, play key roles in
inflammation and oxidative stress, thereby participating in
the neurodegenerative process. Accumulating evidence suggests
that perturbation of the excitatory amino acid L-glutamate
(L-Glu) in systems may underlie the pathogenesis of hypoxia
ischemia, epilepsy, and chronic neurodegenerative diseases (e.g.,
Huntington’s disease and AD) (Hynd et al., 2004; Schaeffer
and Gattaz, 2008). It is reported that glutamate excitatory

neurotransmission is an important process in learning and
memory, which is seriously damaged in AD, possibly due to
β Amyloid peptides (1–42) increase in relation to oxidative
stress. The researchers also found that some glutamate receptors
are overactivated in AD. This sustained mild activation may
lead to neuronal damage and impaired synaptic plasticity
(learning). More and more evidence shows that glutamate
mediated neurotoxicity is involved in the pathogenesis of
AD, and this metabolic glutamate receptor (GRM5), whose
signal transduction will activate the second messenger system
of calcium phosphatidyl inositol, will also participate in the
regulation of neural network activity and synaptic plasticity,
which makes us speculate that GRM5 may be a very promising
target for exploring treatment and improving AD disease
(Danysz and Parsons, 2003; Doraiswamy, 2003; Tanović and
Alfaro, 2006; Świetlik et al., 2022).

GluA1 (also known as GluRA or GluR1) is a glutamate
receptor subunit of AMPA encoded by the GRIA1 gene, there
is genome-wide association between GRIA1 and schizophrenia
(Barkus et al., 2014; Ang et al., 2018). Hippocampal proteomics
study has pointed out that proteins involved in neuronal
excitability and synaptic plasticity (e.g., GRIA1, GRM3, and
SYN1) were altered in both “normal” aging and AD (Neuner
et al., 2017). Similarly, a bioinformatics study identified
464 differentially expressed genes that were modulated by
silent transcription factor (REST) between AD patients and
controls. REST is strongly associated with glutamatergic
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FIGURE 11

GSEA software was used to assess miRNA and TBP in similar biological pathways with target genes. (A,B) Grouped according to gene expression
profiles and phenotypes, and evaluated related pathways and molecular mechanisms to validate the regulate of the hsa-miR-425-5p and TBP to
the target gene GRIA1. (C,D) Validated regulate of hsa-miR-186 and TBP to the target gene GRM5, and indicate that they are on the relevant
biological pathway. (E,F) They are GRIA1 and GRM5, respectively, and their corresponding miRNA-related biological pathways.

synapses and long-term potentiation, and among them, GRIA1
shows a significant difference in its tendency to change
with REST (Xu et al., 2021). From this, we speculate
GRIA1 also may be regulated by other transcription factors,
thereby affecting the progression of AD disease. From
RNA-Seq Expression Data from GTEx (53 Tissues, 570
Donors), the highest median expression of GRM5 and
GRIA1 all in Brain—Cerebellum (Supplementary Data 5,
Figure B).

A microRNA (miRNA) is a short non-coding RNA with
regulatory functions in a variety of biological processes,
which has been implicated in many cellular processes

including cell proliferation, apoptosis, gene expression,
cellular differentiation, and development (Krol et al., 2010).
Many studies have shown that miRNA often binds to target
mRNA through complementary sequences and induces
translational inhibition or target degradation as a negative
regulation of mRNA expression (Towler et al., 2015). We
tried to use the ENCORI platform to predict the miRNAs that
regulate GRM5 and GRIA1, respectively, and then intersected
with 82 up-regulated DEmiRNAs in the blood samples of
the previous experiment to determine the hub miRNAs with
significant differences. Respectively, hsa-miR-186-5p and
hsa-miR-425-5p were identified to be potentially involved in
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FIGURE 12

Least absolute shrinkage and selection operator (LASSO) regression algorithm and model prognostic evaluation. (A,B) The model based on the
GSE5281 dataset with four AD-related genes was determined by Lasso-Cox algorithm. (C) Heatmap of risk score distribution and prognostic 4
gene signatures in the GSE5281 database. (D,E) ROC curve and corresponding AUC value of two databases. (D) Database for model building
GSE5281. (E) Database for validation GSE122063.

the regulation of GRM5 and GRIA1. Among them, As shown
in Figures 8A,B,D, from the AD transformation state diagram
and ROC curve, we identified two significantly up-regulated
miRNAs, hsa-miR-186-5p and hsa-miR-425-5p may with
good prognostic values. Recent studies have found that hsa-
miR-425-5p and hsa-miR-186-5p can be used as therapeutic
targets for other diseases. For example, hsa-miR-425-5p may
promote tumor occurrence and metastasis by activating
CTNND1 related pathway (Liu et al., 2020), hsa-miR-186-
5p regulates TGFβ signaling pathway through expression
suppression of SMAD7 and SMAD6 genes in colorectal cancer
(Bayat et al., 2021). In our study, GRM5 and GRIA1 were

found to be significantly downregulated at mRNA level and
regulated by the up-regulated hsa-miR-186-5p and hsa-miR-
425-5p, respectively (Figures 4D,E). It has been reported
that negatively regulated miRNA-mRNA pairs contribute to
the improvement of AD and provide new reliable targets
for the treatment of AD (Fu et al., 2019; Qian et al., 2019;
Chen et al., 2021).

Anomalous aggregation of microtubule associated
tau protein (MAPT) is a prominent pathological feature
in various neurodegenerative diseases including AD
(Zhou and Wang, 2017; Strang et al., 2019). From in Figure 9,
we can observe that the correlation coefficients of GRM5 and
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GRIA1 with MAPT were 0.69 and 0.18, respectively, with
P < 0.05. A reliable index of AD-related cognitive state at a
particular time point is the MiniMental State Examination
(MMSE) (Clark et al., 1999). Furthermore, dementia-NFT of
the senile type has been termed tangle-only dementia, NFT-
predominant form of SD and limbic NFT dementia (Hyman,
1997). Therefore, MMSE and NFT were chosen as our main
markers to quantify AD progression (Schmitt et al., 2000;
Yamada, 2003). Since NFT scores increase and MMSE scores
decrease with AD severity, genes upregulated with AD could
only correlate positively with NFT or negatively with MMSE,
whereas genes downregulated with AD could only positively
correlate with MMES or negatively correlated with NTF scores.
In our study (Figure 10), the significantly down-regulated gene
GRM5 was positively correlated with MMSE with a correlation
coefficient of 0.58 and negatively correlated with NFT with a
correlation coefficient of −0.4, GRIA1 and MMSE were also
positively correlated with a correlation coefficient of 0.52 and
negatively correlated with NFT with a correlation coefficient of
−0.5. At the same time, their p< 0.05. As shown in Figures 9A–
F, we also can find that the transcription factors TBP and CDK7
are well correlated with their downstream regulated genes. For
the transcription factors TBP and CDK7, and the differential
expression changes of their regulated target genes GRM5 and
GRIA1. It can be seen from Figures 5, 6 that the expression of
CDK7 and GRIA1 in AD group is two times lower than that
in normal group in two databases. The expression of TBP and
GRM5 also decreased significantly compared with the normal
group. Grouped according to gene expression profiles and
phenotypes, related pathways and molecular mechanisms were
evaluated by using GSEA software to validate the regulate of
hsa-miR-425-5p, hsa-miR-186, and TBP to target genes GRIA1
and GRM5, respectively (Figure 11).

We also performed regression analysis using Lasso-Cox to
construct and validate a prognostic signature associated with
the four key genes, which had significant predictive value for
AD patients and achieved high AUC values close to 90% in
both databases (Figure 12). In addition, we screened 15 drugs
targeting key genes from the DrugBank database, most of
which are used to relieve pain, systemic anesthetics, inhibit
signaling, inhibit cyclin-dependent kinases, inhibit multiple
enzyme targets (including CDK7) and change the growth phase
of treated cells, treat depression, it is used in potassium channel
blockers, ameliorates multiple sclerosis (MS), and so on. We can
try to study these drugs, and maybe they may help us to alleviate
and treat AD (Supplementary Data 7). In conclusion, based
on the bioinformatics analysis in this study, we propose GRM5
and GRIA1 as novel potential prognostic markers of AD and
suggest miRNAs and transcription factors that may be related to
AD and regulate GRM5 and GRIA1. We hope our findings will
inform future research to improve outcomes for patients and try
to mitigate and treat AD.

Conclusion

Our research identified a miRNA/TF-gene network that is
potentially relevant for AD. The four hub genes (including
TBP, CDK7 GRIA1, and GRM5) were markedly downregulated,
which may have a critical influence on the pathophysiological
mechanism of AD. Two potential target miRNAs (hsa-
miR-425-5p and hsa-miR-186-5p) were furthermore forecast.
The significantly down-regulated transcription factors TBP
and CDK7 may be involved in the transcription of GRM5
and GRIA1, thereby affecting their expression and thus
the progression of AD. TBP accumulating in the AD
brain, localizing to neurofibrillary tangle structures, may
be a contributing factor in AD. CDK7 is necessary for
Activity-Dependent Neuronal Gene Expression, Long-Term
Synaptic Plasticity, and Long-Term Memory, some studies have
demonstrated that CDK7 neuronal activity in the hippocampus
is linked to aging and AD. The downregulation of both TBP
and CDK7 makes GRM5 and GRIA1 possible to cause neuronal
damage and impaired synaptic plasticity in the pathogenesis
of AD. As the metabotropic glutamate receptor encoded
by GRM5 gene and the AMPA glutamate receptor subunit
encoded by GRIA1 participate in the perturbed glutamatergic
neurotransmission. Meanwhile, up-regulated hsa-miR-425-5p
and hsa-miR-186-5p inhibited the transcription of GRIA1 and
GRM5 by binding to them. These findings may contribute to
the early diagnostic strategies, treatment targets and prognostic
markers of AD disease.
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