

Uttar Pradesh Journal of Zoology

Volume 45, Issue 15, Page 35-48, 2024; Article no.UPJOZ.3697 ISSN: 0256-971X (P)

Checklist of Intertidal Organisms of Dana Pani Beach, Mumbai Suburban, Maharashtra, India

Ashwit S. Shetty ^{a*}, Rushikesh V. Devre ^a and Hitesh U. Shingadia ^a

^a Department of Zoology, SVKM's Mithibai College of Arts, Chauhan Institute of Science and Amrutben Jivanlal College of Commerce and Economics (Empowered Autonomous), Vile Parle -West Mumbai 400 056 Maharashtra, India.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: https://doi.org/10.56557/upjoz/2024/v45i154219

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://prh.mbimph.com/review-history/3697

Original Research Article

Received: 28/04/2024 Accepted: 02/07/2024 Published: 05/07/2024

ABSTRACT

Dana Pani Beach is located in Malad West, Mumbai Suburban, Maharashtra at 19°10'10.88"N Latitude and 72°47'18.20"E Longitude. There is very scanty research data available on this beach location. The study was conducted from March 2022 to June 2023. The beach is a tourist place and fishery activities are also carried out which had a heavy impact on the site due to constant anthropogenic interruption. This is a tentative checklist of intertidal flora and fauna to investigate the diversity vis-à-vis environmental and/or anthropogenic devastation caused to the habitat. The species identification was carried out by referencing through respective field guides The specimens were carried out using DSLR and smartphone camera. and different online repositories based on

*Corresponding author: Email: ashwit.shetty01@svkmmumbai.onmicrosoft.com;

Cite as: Shetty, Ashwit S., Rushikesh V. Devre, and Hitesh U. Shingadia. 2024. "Checklist of Intertidal Organisms of Dana Pani Beach, Mumbai Suburban, Maharashtra, India". UTTAR PRADESH JOURNAL OF ZOOLOGY 45 (15):35-48. https://doi.org/10.56557/upjoz/2024/v45i154219. marine faunal and flora. The Intertidal species with the ability to withstand such vagaries (littering the place with broken glasses of alcohol bottles, immersion of idols, and littering plastic bags) were found in abundance. Two marine algal populations in abundance were observed to be Ulva and Gracillaria. The mangrove community was dominated by *Avicennia marina* and *Sonneratia apetala*. Anthozoans and Polychaetes showed the lowest diversity when compared with other groups of organisms. The bird population was most abundant within the habitat. In order of abundance, the animal population was represented by 20% Aves = 17% Malacostraca = 17% Gastropods > 9% Teleostei > 5% Bivalvia > 4% Hydrozoa > 2% Anthozoans = 2% Hexanauplia = 2% Polychaetes > 1% Cephalopoda > 1% Hexapoda From the study, it can be concluded that the rocky shore is quite diverse in terms of gastropods, crabs, and green algae in comparison to the sandy shore and mudflat. In totality, 82 faunal and floral species were observed at the site. This checklist is the promising baseline for future studies on this site for the biodiversity of specific animal groups or intertidal ecology.

Keywords: Anthropogenic activities; dana pani beach; flora; fauna; intertidal region.

1. INTRODUCTION

Dani Pani Beach is situated in Malad West of Mumbai Suburban, Maharashtra. Geographically, it is situated at 19°10'10.88"N Latitude 72°47'18.20"E Longitude. The beach is located in the Madh Island area. This location is a busy place where people frequently visit for picnics, walking, cricket play and fishing. The location is adjacent to Aksa Beach. The beach is divided into three types of shores viz. rocky shore, sandy shore and a small area of mudflat.

Unlike any beach found in Mumbai Suburban, this beach is quite different in terms of the formation of rocky shores gradation. The beach is also utilized for bait fishing near the shoreline and also for boat fishing. Dana Pani is also part of film shooting locations. The study on this location is very scanty. The rocky shore boulders were dominated by Hooded oysters and crabs during the Grapsidae pre-monsoon season. This shows high biodiversity and but under high anthropogenic pressure due to the regular litter of food items, plastic items, broken bottles of alcohol. The bags of grains are thrown by the public where stray dogs feed on and birds like House crows and Black kite are also seen scavenging on grains. Like Bandra Bandstand's rocky shore, this beach was covered with patches of mangroves. Intertidal ecology not only connects to oceans but also the terrestrial world making us understand the ecological balance between the two systems. Studies on biodiversity were carried out along the Mumbai sites viz. Girgaon, Haji Ali, and Gorai Creek by Balasaheb et al. [1]. The sampling was carried out from July 2009 to January 2011. In this study, fifty-nine species were recorded belonging to the groups viz. molluscs, arthropods, coelenterates, and

echinoderms. Marine Drive showed the highest number of gastropods and clams. Along Gorai Creek. an abundance of Telescopium telescopium, Potamidus cingulatis, mudskipper, and fiddler crabs [1-3]. A comparative intertidal faunal biodiversity was carried out on the intertidal region of TIFR (Tata Institute of Fundamental Research), Bandstand (Bandra), and NCPA (National Centre for Performing Arts) from December 2006 to November 2007. In this study, fifty intertidal species were recorded from all three sites which comprise of 41 Gastropods, 5 Pelecypoda, 1 Crustacea, 1 Anthozoa, 1 Cephalopoda and 1 Ophiuroidea [4]. A study on intertidal diversity in South Mumbai (Girgaon Chowpatty and Haji Ali) were carried out during low tide from November 2019 to February 2020 [5]. In Girgaon Chowpatty sandy substratum, Gastropods were dominant (47.1%) followed by (29.4%)> Crustacea Cnidaria (5.9%)>Polychaeta (5.9%) > Bivalvia (5.9%) and Pisces (5.9%). Whereas in Haii Ali rocky substratum. Gastropods were the dominant faunal group (50%) followed by Crustaceans (13%)> Pisces (13%)> Calcara (6%) and Hydrozoa (6%). The lowest diversity was recorded from groups viz. Anthozoa, Tuberlaria, Bivalvia, and Polychaeta [5].

The present study focuses on the preliminary checklist of the site. Since there are no references regarding this site. This data would be a baseline for future biodiversity assessments of this particular site.

2. MATERIALS AND METHODS

Dani Pani Beach is situated in Malad West of Mumbai Suburban, Maharashtra. Geographically, it is situated at 19°10'10.88"N Latitude 72°47'18.20"E Longitude (Figs. 1& 2).

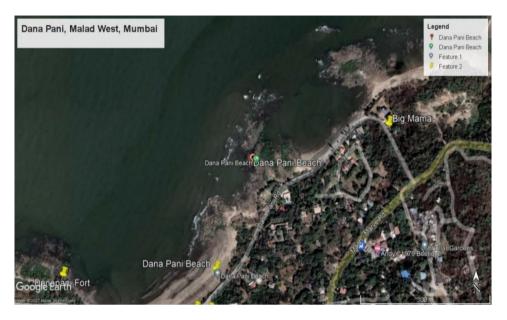


Fig. 1. Satellite photo of dana pani beach (Source: Google Earth Pro)

Fig. 2. Study location landscape photo

Seasonal investigation on the site during the low tide period from March 2022 to June 2023. Photographic documentation was done using a phone camera and a DSLR camera (Nikon D5300). Photos of flora and fauna and inanimate objects were documented with landscape photos of beaches to have insight into beach conditions.

Microscopic specimens were identified under a Light Binocular Microscope (LaboMed) was utilized. The microscopic species such as diatoms were observed in 40X magnification.

Identification of photos documented were cross-verified from websites such as

- WORMS
- (https://www.marinespecies.org/index.php) Fishbase
- (https://www.fishbase.in/search.php),
- Sealifebase (https://www.sealifebase.se/search.php),
- GBIF (https://www.gbif.org/) and previous ten years of research study on Mumbai shores.

The floral and faunal species were identified and cross-verified from reference papers and pictorial field guides. A book titled "Sea Shells of India An Illustrated Guide to Common Gastropods" by Deepak Apte was referred to identify gastropod species. The identification of the bivalves was based on reference books such as "Annotated Checklist of Indian Marine Molluscs (Cephalopoda, Bivalvia and Scaphopoda): Part-1." by Ramakrishna and A. Dey, and "Biology and ecology of edible marine bivalve molluscs" authored by Ramasamy Santhanam [6-9].

3. RESULTS AND DISCUSSION

Dani Pani Beach is situated at 19°10'10.88"N Latitude 72°47'18.20"E Longitude. The site is quite different from beaches like Juhu Koliwada and Haji Ali Dargah that is situated in Santacruz and Mahalaxmi. In Dani Pani, the rocky shore is hilly with small intertidal pools filled with small fishes, anemones, brachyuran crabs Nerite snails and Cerith snails. Whereas in Juhu Koliwada and Haji Ali Dargah, rocky shores are flat with a high number of small rock boulders whereas in Dani Pani the rock boulders are comparatively larger in size. The rocky shores of Dani Pani were dominated by 2 mangrove species viz. Avicennia marina and Rhizophora mucronata. Outside the rocky shore, the location is widespread with mangrove-associated species Thespesia populnea and Ipomoea pes-caprae. The occurrence of sponges is scarce as compared to other Mumbai beaches such as Juhu Koliwada, Haii Ali Dargah and Bandstand Promenade. The abundance of Avifauna (that includes aquatic and residential birds) within and around the beaches is very high due to the high amount of terrestrial and Mangrove trees found within the vicinity of the beaches. The rocky

boulders were widely spread by Saccostrea cuccullata (Hooded ovster). During low tide and sunliaht. Graspus hiah levels of and Metopograpsus were mostly observed due to their herbivorous diet [10]. Intertidal pools were usually filled with fishes which are juveniles of species such as Lutjanus argentimaculatus and Ellochelon vaigiensis. From Diogenidae (Lefthanded hermit crabs) family species such as Clibanarius infraspinatus were commonly found in rocky shores and also in mudflats. Clibanarius infraspinatus was found to be sheltered in various species of gastropod shells such as Gyrineum natator, Indothais blanfordi, Nassarius sp., Nerita oryzarum, Nerita chamaeleon. Nerita albicilla. Planaxis sulcatus, Telescopium telescopium, Trochus maculatus, Clypeomorus bifasciata, Euchelus asper. Sandy shores were mostly populated with Dotillidae species such as Dotilla myctiroides and Scopimera sp. A small mudflat portion is surrounded by Rocky boulders encrusted with hooded ovsters. Within the mudflat, there was present a puddle of water which was dominated by Boleophthalmus dussumieri (Dussumier's mudskipper) and brachyuran crabs such as Gelasimus hesperiae and Macrophthalmus sulcatus. In order of animal population abundance. the was represented by 20% Aves = 17% Malacostraca = 17% Gastropods > 9% Teleostei > 5% Bivalvia > 4% Hydrozoa > 2% Anthozoans = 2% Hexanauplia = 2% Polychaetes > 1% Cephalopoda > 1% Hexapoda. In total, 82 species of flora and fauna were observed during the research study (Table 1; Fig. 3 & Fig. 5).

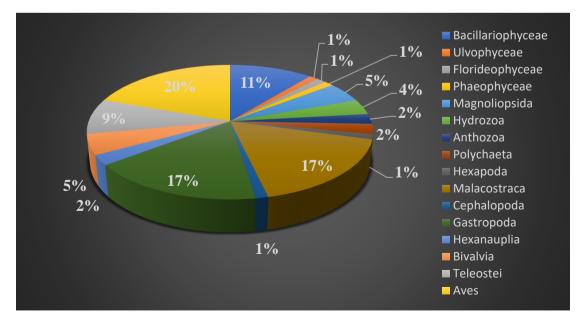


Fig. 3. Number of species from each class found in Dana Pani Beach

Sr No.	Family	Scientific Name	Common Name	Observation
1	Achnanthaceae	Achnanthes sp.	N/A	Rocky shore (tidal pool)
2	Biddulphiaceae	Biddulphia sp.	N/A	Rocky shore (tidal pool)
3	Catenulaceae	Amphora sp.	N/A	Rocky shore (tidal pool)
4	Entomoneidaceae	Entomoneis sp.	N/A	Rocky shore (tidal pool)
5	Fragilariaceae	Synedra sp	N/A	Rocky shore (Found associated to the green algae)
6	Licmophoraceae	Licmophora	N/A	Rocky shore (tidal pool)
7	Pinnulariaceae	Pinnularia sp.	N/A	Rocky shore (tidal pool)
8	Pleurosigmatacea e	Gyrosigma	N/A	Rocky shore (tidal pool)
9	Striatellaceae	Grammatophora sp.	N/A	(Found associated to algal surface)
10	Dictyotaceae	Padina sp.	Mermaid's fan seaweed	Rocky shore (inside tidal pool)
11	Gracilariaceae	Gracilaria sp.	Red algae	Rocky shore (inside the tidal pool)
12	Ulvaceae	Ulva sp.	Sea lettuce	Rocky shore (on the rock)
13	Acanthaceae	Avicennia marina var. acutissima Staph & Mold.	Grey mangrove	Mudflat & Rocky
14	Convolvulaceae	lpomoea pes-caprae (L.) R.Br.	Railroad vine, Goat's foot vine	Sandy shore
15	Lythraceae	Sonneratia apetala Banks	Mangrove apple	Mudflat and rocky
16	Malvaceae	<i>Thespesia populnea</i> (L.) Solans ex Correa	Indian tulip tree, Aden apple or Portia tree	Sandy shore
17	Porpitidae	Porpita porpita (Linnaeus, 1758)	Blue button	Sandy shore
18	Sertulariidae	<i>Dynamena crisioides</i> (Lamouroux, 1824)	Golden Fern Hydroid	Rocky shore (on the rock and inside the tidal pool)
19	Sertulariidae	<i>Idiellana pristis</i> (Lamouroux, 1816)	Saw-toothed Fern Hydroid	Rocky shore (on substratum)
20	Actiniidae	Anthopleura anjunae (Den Hartog & Vennam, 1993)	Anjuna anemone	Rocky shore (inside tidal pool)
21	Actiniidae	Anthopleura dixoniana (Haddon & Shackleton, 1893)	Banded Bead Anemone	Rocky shore (inside tidal pool)
22	Nereididae	Nereis sp.	Clam worm	Rocky shore
23	Onuphidae	Diopatra sp.	Decorator worm	Sandy shore
24	Gerridae	Halobates sp.	Sea skater	Rocky shore (inside tidal pool)

Table 1. Checklist of Intertidal flora and fauna

Sr No.	Family	Scientific Name	Common Name	Observation
25	Alpheidae	Alpheus sp.	Snapping shrimp	Rocky shore (inside tidal pool)
26	Balanidae	<i>Amphibalanus amphitrite</i> (Darwin, 1854)	Striped Barnacle	Rocky shore
27	Chthamalidae	Chthamalus sp.	Chthamalid Barnacles	Rocky shore
28	Diogenidae	<i>Clibanarius infraspinatus</i> (Hilgendorf, 1869)	Orange-striped Hermit Crab	Rocky shore (inside tidal pool) or Mudflat
29	Dotillidae	Dotilla myctiroides (H. Milne Edwards, 1852)	Asian Solider Crab	Sandy shore
30	Dotillidae	Scopimera sp.	Sand bubbler crab	Sandy shore
31	Grapsidae	<i>Grapsus albolineatus</i> (Latreille in Milbert, 1812)	Mottled Lightfoot Crab	Rocky shore (inside tidal pool and within crevices)
32	Grapsidae	Metopograpsus sp.	N/A	Rocky shore
33	Leucosiidae	Ryphila cancellus (Herbst, 1783)	Purse crab	Sandy shore
34	Macrophthalmidae	<i>Macrophthalmus sulcatu</i> s (H. Milne Edwards, 1852)	N/A	Mudflat
35	Matutidae	<i>Matuta victor</i> (Fabricius, 1781)	Common moon crab	Sandy shore
36	Ocypodidae	<i>Austruca annulipes</i> (H. Milne Edwards, 1837)	Ring-legged Fiddler Crab	Mudflat
37	Ocypodidae	<i>Gelasimus hesperiae</i> (Crane, 1975)	Western Calling Fiddler Crab	Mudflat
38	Palaemonoidea	Palaemon pacificus	Indian bait prawn	Rocky shore (inside tidal pool)
39	Portunidae	Charybdis sp.	Swimming crab	Rocky shore (inside tidal pool)
40	Xanthidae	Leptodius exaratus (Milne-Edwards, 1834)	N/A	Rocky shore
41	Loliginidae	Uroteuthis (Photololigo) duvaucelii (d'Orbigny [in Férussac & d'Orbigny], 1835)	Indian squid	Sandy shore
42	Cerithiidae	Clypeomorus bifasciata (G. B. Sowerby II, 1855)	Double-banded Creeper	Rocky shore
43	Chilodontaidae	<i>Euchelus asper</i> (Gmelin, 1791)	Toothed top shells	Rocky shore (inside the tidal pool)
44	Cymatiidae	<i>Gyrineum natator</i> (Röding, 1798)	Common Triton Snail	Rocky shore (inside tidal pool)
45	Melongenidae	Volegalea cochlidium (Linnaeus, 1758)	Spiral melongena	Rocky shore (inside tidal pool)
46	Muricidae	Indothais blanfordi . (Melvill, 1893)	Blandford's Whelk	Rocky shore (inside tidal pool)
47	Nassariidae	Nassarius sp.	Nassa Mud Snails	Rocky shore (inside tidal pool)
48	Neritidae	Nerita albicilla (Linnaeus, 1758)	Blotched Nerite	Rocky shore (inside tidal pool)
49	Neritidae	Nerita chamaeleon	Chamaeleon	Rocky shore (inside

Sr No.	Family	Scientific Name	Common Name	Observation
	-	(Linnaeus, 1758)	Nerite	tidal pool)
50	Neritidae	Nerita oryzarum	N/A	Rocky shore (inside
		(Récluz, 1841)		tidal pool) or
				Mudflat
51	Olividae	Agaronia gibbosa	Gibbous Olive	Rocky and Sandy
		(Born, 1778)		shore
52	Planaxidae	Planaxis sulcatus	Tropical	Rocky shore (inside
		(Born, 1778)	Periwinkle	tidal pool)
53	Potamididae	Pirenella cingulata	Girdled horn shell	Rocky shore or
		(Gmelin, 1791)		Mudflat
54	Potamididae	Telescopium	Mud Creeper	Rocky shore or
		telescopium (Linnaeus,	inda ereepei	Mudflat
		1758)		
55	Trochidae	Trochus maculatus	Red-spotted	Rocky shore
00	riconidae	(Linnaeus, 1758)	topshell	
56	Donacidae	Donax scortum	N/A	Rocky shore and
00	Donaolado	(Linnaeus, 1758)	14/7	sandy shore
57	Ostreidae	Saccostrea cuccullata	Hooded Oyster	Rocky shore firmly
01	Oblicidde	(Born, 1778)		attached to rock
		(Bolli, 1778)		boulders)
58	Veneridae	Dosinia sp.	Saltwater clams	Sandy shore
	Veneridae	Gafrarium divaricatum	Forked Venus	Rocky shore
59	Venenuae	(Gmelin, 1791)	clams	NUCKY SHULE
60	Blenniidae	Istiblennius sp.	Rockskippers	Rocky shore (within
	Dieminuae	isubiennus sp.	Поскакіррета	the tidal pool)
61	Gobiidae	Bathygobius sp.	Frill-goby	Rocky shore (within
01	Gubiluae	Balliygobius sp.	тпі-дору	the tidal pool)
62	Gobiidae	Boleophthalmus	Dussumier's	Mudflat
02	Gubiluae	dussumieri	Mudskipper	muunat
		(Valenciennes, 1837)	мицакирре	
63	Lutjanidae	Lutjanus	Mangrove red	Rocky shore (within
00	Luganidae	argentimaculatus	snapper	the tidal pool)
		(Forsskål, 1775)	Shapper	
64	Mugilidae	Ellochelon vaigiensis	Squaretail mullet	Rocky shore (within
04	Mugilluae	(Quoy & Gaimard,	Oqualetali mullet	the tidal pool)
		(Quoy & Caimaid, 1825)		
65	Mugilidae	Mugilogobius sp.	N/A	Rocky shore (within
05	wugilluae	mugnogobius sp.		the tidal pool)
66	Ophichthidae	Pisodonophis sp.	N/A	Rocky shore (within
00	Ophichthidae	Fisodonophis sp.		the tidal pool)
67	Accipitridae	Milvus migrans	Black kite	Sandy shore
07	Accipitituae	(Boddaert, 1783)	DIACK KILE	Sanuy Shore
68	Alcedinidae	Alcedo atthis	Common	Rocky shore
00	Alceultiluae	(Linnaeus, 1758)	Kingfisher	Rucky Shule
69	Ardeidae	Ardae cinerea	<u> </u>	Rocky shore and
09	Aldeldae		Grey Heron	
70	Ardaidaa	(Linnaeus, 1758)		Mudflat
	Ardeidae	Casmerodius albus	Great White Egret	Rocky shore and
71	Ardoidee	(Linnaeus, 1758)	Little earch	Mudflat
	Ardeidae	Egretta garzetta	Little egret	Rocky shore and
70		(Linnaeus, 1766)		Mudflat
72	Ardeidae	Egretta gularis (Bosc,	Western Reef-	Rocky shore and
		1792)	egret (Bosc,	Mudflat
			1792)	D I I I
73	Ardeidae	Egretta intermedia	Intermediate	Rocky shore and
		(Wagler, 1829)	Egret	Mudflat

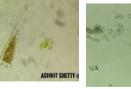
Sr No.	Family	Scientific Name	Common Name	Observation
74	Charadriidae	Charadrius mongolus	Lesser Sand	Rocky shore and
		(Pallas, 1776)	plover	Sandy shore
75	Corvidae	Corvus splendens	House Crow	Rocky shore and
		(Vieillot, 1817)		Sandy shore
76	Corvidae	Corvus macrorhynchos	Large-billed Crow	Rocky shore and
		Wagler, 1827		Sandy shore
77	Columbidae	Columba livia Gmelin,	Rock Pigeon	Rocky shore
		JF, 1789		
78	Hirundinidae	Hirundo smithii	Wire-tailed	Rocky shore
		(Leach, 1818)	Swallow	
79	Muscicapidae	Copsychus saularis	Oriental Magpie-	Rocky shore
		(Linnaeus, 1758)	Robin	
80	Passeridae	Passer domesticus	House Sparrow	Rocky shore
		(Linnaeus, 1758)		
81	Pycnonotidae	Pycnonotus cafer	Red-vented	Rocky shore
		(Linnaeus, 1766)	Bulbul	
82	Pycnonotidae	Pycnonotus jocosus	Red-whiskered	Rocky shore
		(Linnaeus, 1758)	Bulbul	



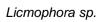
Fig. 4. Intertidal site polluted with idols

Achnanthes sp.

Biddhulphia sp.



Amphora sp.



ASHWIT SHETT

Entomoneis

Pinnularia sp.

Gyrosigma sp.

Macrophthalmus sulcatus

Matuta victor

Austruca annulipes

Gelasimus hesperiae

Palaemon pacificus

Leptodius exaratus

Uroteuthis (Photololigo)

duvaucelii

Clypeomorus bifasciata

Euchelus asper

Gyrineum natator

Indothais blanfordi

Nassarius sp.

Agaronia gibbosa

Planaxis sulcatus

Nerita oryzarum

Pirenella cingulata

Saccostrea cuccullata

Telescopium telescopium

Dosinia sp.

Trochus maculatus

Donax scortum

44

Gafrarium divaricatum

Istiblennius sp.

Bathygobius sp.

Boleophthalmus dussumieri

Lutjanus argentimaculatus

Ellochelon vaigiensis

ASHWIT SHETTY @

Mugilogobius sp.

Pisodonophis sp.

Milvus migrans

Egretta garzetta

Corvus splendens and Corvus macrorhynchos

Passer domesticus

Columba livia

Fig. 5. Images documented of flora and fauna from the study site - Dana Pani Beach

In terms of species composition of Crustacean, the Grapsidae is abundant as compared to other crustacean families. In a study conducted by Pawar from June 2013 to May 2015, Grapsidae showed 2nd highest species distribution which was about 16.13% after Portunidae which was about 29.03% in three substations creeks of Uran viz. Sheva creek, Peerwadi coast and Dharamtar creek [11]. In this study, the maximum species diversity of brachyuran crabs was recorded during pre-monsoon and monsoon seasons [11]. In a study conducted by Balasaheb et al. from July 2009 to January 2011 on intertidal biodiversity in Girgaon, Marine Drive, Haji Ali and Gorai Creek. In that study, *Leptodius exarat*us is a common Xanthidae crustacean in Gorai Creek. Portunidae crabs such as *Charybdis japonica* are common in Marine Drive, Haji Ali Dargah and Gorai Creek. Grapsidae species were plentiful in human-made structures of stone and cracks in wooden elements of a bridge. The fiddler or dhobi crabs of three species viz. Uca annulipes (accepted scientific nomenclature: Austruca annulipes), U. vocans (accepted scientific nomenclature: Gelasimus vocans), and U. dussumieri (accepted scientific nomenclature: Tubuca dussumieri) were found abundantly in marshy places in mangrove swamps of Gorai creek [1]. From Family Balanidae, Balanus amphitrite (accepted scientific nomenclature: Amphibalanus amphitrite) is common in Marine Drive and Balanus variegatus (accepted scientific nomenclature: Amphibalanus variegatus) is common in Girgaon Chowpatty and Haji Ali Dargah. From Family Alpheidae, 2 species viz. Alpheus euphrosyne and A. heterochaelis are common in Marine Drive and Haji Ali Dargah. Portunidae crabs such as Charybdis japonica are common in Marine Drive, Haji Ali Dargah and Gorai Creek [1]. A study conducted by Mangale and Kulkarni on Fiddler Crabs biodiversity in the Mumbai region showed that Uca annulipes (accepted scientific nomenclature: Austruca annulipes) were abundant in all study sites viz. Madh Marve Jetty, Malad shore, Sewri shore, Vashi and Nerul shore and Panvel and Karanja Creek [12].

The site showed a lot of species abundance from Neritidae as compared to other Gastropod families. In a study conducted by Salvankar and Jadhav from November 2018 to October 2019 on mollusc (Gastropod and Bivalve) diversity from Vasai-Virar Beaches. Beaches included Suruchi Beach, Bhuigaon Beach, Kalamb Beach, Rajodi Beach and Arnala Beach. In this study, four Neritidae species viz. Nerita albicilla, N. balteata, N. costata and N. oryzarum are found in all beaches of Vasai-Virar [13].

The avifauna constitute 20% of species on the beaches which consist of aquatic and residential birds in the study site. Because around the vicinity of the beaches are the terrestrial trees and mangrove trees in and around Dana Pani. The most abundant family observed were the Ardeidae on this beach during the study period. A similar survey on Avifauna was conducted by Chauhan et al., from March 2004 to July 2005 in Gorai Creek. It showed that individuals from families such as Ardeidae, Cuculidae. Muscicapidae, Passeridae, Sturnidae and Corvidae were dominant throughout the study period. This might be due to the availability of food, shelter and less exposure to humans [14].

In terms of microorganisms, various diatoms were observed from genus Achnanthes,

Biddulphia. Entomoneis. Svnedra. Pinnularia. Grammatophora, and Licmophora. Out of this genus, Pinnularia was most commonly observed. The most prevalent phytoplankton species in aquatic settings are diatoms. Diatoms are less studied than other types of algae, particularly in India, due to a variety of factors including a lack literature, a time-consuming separation of eve-straining straining technique. and study/observation since they are visualized under oil immersion [15]. In a study conducted on the seasonal abundance of microalgae along Mumbai's rocky shores of Aksa and Bandra, from September 2010-April 2011. The study showed a higher species richness of microalgae in tidal pools in both Bandra and Aksa during the postmonsoon period but Aksa beach showed a more homogenous microalgal population and it might be due to more nutrients in water bodies. Also, during pre-monsoon analysis, both sites showed that species were evenly distributed. In both places the diatoms viz. Nitzschia spp., Navicula spp. and Thalassiosira were most commonly in both places [16].

The beach is quite a busy site due to picnics; cricket play and fishing. However, due to this high level of Anthropogenic activities biodiversity lives in under the pressure of contamination of the ecosystem. The tidal pool showed murkiness due to litter of plastic bottles, plastic bags and idols made up of Plaster of Paris (PoP). This litter object takes many years to degrade in the environment causing detrimental effects on the ecosystem. The littering caused bv anthropogenic effects may not only limit itself to the beach but also beyond the shores in the ocean waters affecting the marine life living within that ecosystem. Because of the plastic objects, the issues such as microplastic will take rise leading to detrimental effects on fauna and flora life in the ocean ecosystem. Dani Pani Beach is also a fishing site for boat fishing and individual bait fishing for fish consumption. If such an anthropogenic pressure that is affecting marine life is not mediated, it can lead to detrimental effects on fish that are consumed. Since the area is a fishing site. There was no siting of by-catch rep near shore. The nearby places from the study sites such as Marve Beach and Gorai Creek showed the presence of sea snakes due to by-catch [17].

4. CONCLUSION

The study shows that the beach shows an abundance of Avifauna, Brachyuran and

Gastropods. The place is under high anthropogenic pressure due to the litter of the packets, bottles and idols (Fig. 4). Due to these intertidal pools water becomes murky. This preliminary survey would be the baseline for future research on this site.

5. RECOMMENDATIONS

- Monthly or Quarterly clean-up would be recommended to be organized by a non-profit organization.
- Annual report on physiochemical parameters of the beach and to take effective measures on the environmental related to sedimentary and aquatic issues of the beach.
- To create awareness about the beach ecology aspects.
- A marine walk to be organized for schools and colleges to educate about the habitat and its benefits to the fishery communities.

FUTURE SCOPE

- Since there were 82 species of total fauna and flora recorded from Dana Pani Beach. With a holistic approach, a seasonal study can be performed to evaluate biodiversity data of the flora and fauna of the beach.
- The seasonal study of biodiversity will give an outlook on season-wise variation in a population of different flora and fauna within the study site.

CONFERENCE DISCLAIMER

Some part of this manuscript was previously presented and published in the conference: An International Conference on Coastal and Marine Conservation CMC-2024 dated from 1st and 2nd March, 2024 in Mumbai, India. Web Link of the proceeding: https://mithibai.ac.in/wp-content/ uploads/2024/02/CMC2024-CONFERENCEbrochure..pdf

DISCLAIMER (ARTIFICIAL INTELLIGENCE)

Author(s) hereby declares that NO generative AI technologies such as Large Language Models (ChatGPT, COPILOT, etc) and text-to-image generators have been used during writing or editing of manuscripts.

ACKNOWLEDGEMENT

The authors are thankful to SVKM's Management for the constant support. Also

grateful to the Department of Zoology for providing laboratory facilities for the research work. I am thankful to Mr. Shaunak Modi and Mr. Gaurav Patil from Marine Life of Mumbai (MLOM); Dr. Venkatesh Hegde from the Department of Zoology and Dr. Bindu Gopalakrishnan from the Department of Botany of SVKMs Mithibai College for helping in the identification of flora and fauna.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Balasaheb K, Atul B, Ashok J, Rahul K. Present Status of Intertidal Biodiversity in and around Mumbai (West Coast of India). Transylvanian Review of Systematical and Ecological Research. 2017;19(1):61–70. Available:https://doi.org/10.1515/trser-2017-0006
- Gomez-Sapiens MM, Soto-Montoya E, Hinojosa-Huerta O. Shorebird abundance and species diversity in natural intertidal and non-tidal anthropogenic wetlands of the Colorado River Delta, Mexico. Ecological engineering. 2013;59:74-83.
- 3. Naderloo R, Türkay M, Sari A. Intertidal habitats and decapod (Crustacea) diversity of Qeshm Island, a biodiversity hotspot within the Persian Gulf. Marine biodiversity. 2013;43:445-62.
- Datta SN, Chakraborty SK, Jaiswar AK, Ziauddin G. A comparative study on intertidal faunal biodiversity of selected beaches of Mumbai coast. Journal of Environmental Biology. 2010;31: 981–986.
- Fatema H, Srigayatridevi N, Sarvesh D, Gopalan M. Short Term Biodiversity Study of Shore Dwelling Organisms of South Mumbai Coast. Journal of Scientific Research. 2021;65(6):162–168. Available:https://doi.org/10.37398/JSR.202 1.650628
- 6. Apte D, Deodhar S. Sea shells of India BNHS-India. 2014;41-51.
- Ramakrishna DA. Annotated Checklist of Indian Marine Molluscs (Cephalopoda, Bivalvia and Scaphopoda): Part-1. Records of Zoological Survey of India (Occasional) Paper. 2010;(320): 1-357.
- 8. Santhanam R. Biology and ecology of edible marine bivalve molluscs. Apple Academic Press; 2018.

- Sardar S, Ghosh D, Ghosh PK, Bhattacharjee K, Pal K. First report on the use of gastropod shells by hermit crabs from the eastern coast. The Pharma Innovation. 2009;8(3):22–30.
- Kennish R, Williams G. Feeding preferences of the herbivorous crab Grapsus albolineatus: the differential influence of algal nutrient content and morphology. Marine Ecology Progress Series. 1997;147:87–95. Available:https://doi.org/10.3354/meps147 087
- 11. Pawar PR. Biodiversity of brachyuran crabs (Crustacea: Decapoda) from Uran, Navi Mumbai, west coast of India. Advances in Environmental Biology. 2017; 11(2):103–112.
- 12. Mangale VY, Kulkarni BG. Biodiversity of Fiddler Crabs in Mumbai region. Trends in Life Sciences. 2013;2(4):19–21.
- Salvankar PR, Jadhav RN. Survey of Molluscs Diversity in Vasai-Virar Beaches, Palghar District, Maharashtra, India. Uttar

Pradesh Journal of Zoology. 2021;42(13):117–126.

- 14. Chauhan RR, Shingadia HU, Sakthivel V. Survey of Avifauna of Borivali Mangroves along the Coast of Mumbai. Nature Environment and Pollution Technology. 2008;7(2):229–233.
- Rana D, Bhandari D. Isolation and characterisation of diatoms from waterbodies of Mumbai. Indian Journal of Current Research and Review. 2016;8(7): 13–21.
- Kumar J, Deshmukh G, Dwivedi A, SS, GB, S, Singh SK. Seasonal and spatial variation of microalgal abundance and concentration in intertidal rocky pools along Mumbai coast. India Journal of Geo-Sciences. 2015;44(3): 421–427.
- Chauhan R, Shingadia HU. Preliminary Survey of Herpetofauna of Borivali Mangroves – a Coastal Belt in the Suburbs of Mumbai. Life Sciences Leaflets. 2011;59–65.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of the publisher and/or the editor(s). This publisher and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: https://prh.mbimph.com/review-history/3697