
Introduction
Epilepsy is considered one of the most common 
neurological disorders affecting by 1% of the world 
population, which abnormally and spontaneously resulted 
from excessive electrical discharge in the cerebral cortex.1 
For epilepsy patients who are not able to control the 
seizure completely, it strikes suddenly in an unanticipated 
way that shows one of the most disabling aspects of the 
illness. Except for the risk of critical injury, there is often 
a feeling of helplessness that strongly affects the regular 
daily life of a patient. Hence, if a robust method is capable 
of predicting the seizure onset accurately, the quality of 
life for epilepsy patients and therapeutic possibilities can 
be significantly improved.2

Detection of a preictal period considered as an overall 

basis for predicting epileptic seizures. Significant changes 
in EEG dynamics are reported to be between a few 
minutes to several hours before the seizure onset that 
remains an open question in epilepsy research.3-7 With 
the emergence of high-capacity storage, the epileptic 
seizure centers were able to store complete data for pre-
operative monitoring. The purpose of these centers was 
to test and compare the methods presented on a data set. 
Most of the seizure prediction results indicate relatively 
poor performance of univariate measures when they 
were applied to the long-term database, whereas better 
results were obtained based on multivariate (bivariate) 
measures.1,2,8,9 The multivariate measurement of time 
series involves the simultaneous recording of more than 
one observation over time to evaluate the relationship 
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between different components of a system.10 Based on 
the hypothesis suggested that seizures generated by 
unusual synchronization of neurons, many researchers 
are tried to predict the seizure onset by characterizing 
the interaction of different brain areas.11 They have used 
bivariate measures in order to predict seizures, such 
as nonlinear interdependence, phase synchronization, 
and cross-correlation.12,13 Nevertheless, combining the 
univariate and bivariate nonlinear measures may improve 
the performance to predict partial seizures in patients 
with focal neocortical and hippocampal epilepsy.14

Lack of a widely accepted methodology to evaluate 
and compare seizure prediction algorithms considered 
one of the main seizure prediction challenges. Although 
the “seizure prediction characteristic” approach has been 
introduced to evaluate seizure prediction performance, 
this method is suitable for offline evaluations.15 In this 
approach, a time interval after an alarm, the seizure 
prediction horizon (SPH) (Figure 1), is required to 
administer therapeutic intervention or seizure warning 
devices effectively. Drugs or other treatment strategies 
can be applied, or the patient behaves cautiously within 
this time interval. Second, we expect that the seizure 
should occur after the prediction horizon. However, due 
to the random features of EEG, seizure onset usually does 
not occur immediately after the SPH. A new time interval 
seizure occurrence period (SOP) has been introduced 
to account for the impossibility of a perfect prediction 
and to allow a temporal uncertainty in the occurrence of 
prediction seizures. Accurate prediction defined by the 
occurrence of a seizure within the SOP.5,6 Furthermore, 
the SOP and SPH must also be seriously considered. On 
the one hand, the SPH should be high enough to provide 
the patient with adequate time to prepare or prevent 
the occurrence of the seizure after warning alarm. On 
the other, the SOP should be low enough to reduce the 
waiting time in order to decrease the patient’s stress.9,16

In this paper, the interaction of different brain regions in 
specific frequency bands has been quantized using long-
term intracranial EEG data, through synchronous phase 
index as a bivariate measure, and then an adaptive Neuro-
fuzzy model was used for classification and prediction. 
A similar method, “seizure prediction characteristic,” 
has been used to evaluate the output of the model, as 
in this study, the classifier is trained based on the two-
time indices SOP and SPH, which subsequently used in 

the evaluation approach. Various SOP and SPH values 
evaluated the output of the model. Optimum SOP and 
SPH determined by a set of predetermined rules using the 
Mamdani fuzzy inference system. 

Materials and Methods
Data and Preprocessing
We evaluated our seizure prediction method on the 
publicly EEG database at the Epilepsy Center of the 
University Hospital of Freiburg, Germany (http://
epilepsy.uni-freiburg.de/freiburg-seizure-prediction-
project/eeg-database) which contains Invasive long-term 
EEG data, recorded using a Neurofile NT digital-video 
EEG system with 128 channels, a sampling rate of 256 Hz, 
and a 16-bit analog-to-digital converter. Their clinical 
characteristics have summarized in Table 1. In the source 
dataset, a confirmed neurologist has selected only six 
channels of EEG dataset in which three electrodes (1-3) 
chosen over focal areas, and three electrodes (4-6) chosen 
over nonfocal areas. The EEG recordings for each patient 
contain separate ictal and interictal datasets, the former 
including epileptic seizures and at least 50 minutes preictal 
samples for each seizure, and latter includes almost 24 
hours of EEG recording without seizure activity. 

In this paper, a sliding window with a 20% overlap, which 
consists of 4096 samples (equals 16 seconds), was used to 
windowing of EEG. Then, in the preprocessing stage, a 
low-pass filter of the FIR type with a cutoff frequency of 
70 Hz and an order of 18 was used to eliminate the high 
signal frequencies.

Decomposition of EEG Frequency Bands
It is necessary to calculate the instantaneous phase of 
signals in order to get the phase differences of the pair 
channels of signals. Phase information can be computed by 
various methods, such as Fourier transform and Wavelet 
transforms, these methods have a trade-off between the 
frequency resolution and the temporal resolution.17 The 
Hilbert transform is a well-known method for calculating 
the instantaneous phase of any signal. It has assumed that 
the signal contains only one frequency, but this method 
cannot directly apply to a complex signal, i.e., EEG 
containing multiple frequencies at any time.18 Therefore, 
the past application of the Hilbert transforms restricted 
to the single-frequency signal.19 A new method called 
the Hilbert-Huang transform (HHT) was introduced to 
solve this problem based on the combination of empirical 
mode decomposition (EMD) and Hilbert transform.21 
Decomposition of EEG to frequency bands based on 
HHT will compose in 3 steps18,20,21:
1.	 Decompose the signal into several intrinsic mode 

functions (IMF) using EMD. In practice, it can 
show that this decomposition process is complete, 
adaptive, and local. Figure 2 shows IMFs for single-
channel EEG signals. First, the IMF has the highest 
frequency contents, and the last IMF has the lowest Figure 1. The Illustration of SOP and SPH Intervals.
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Figure 2. Decomposition of the 16-second (equal to window time) normalized filtered EEG of fifth channel recorded from patient number 1 into 11 
components (IMFs) using EMD algorithm.

Table 1. Patient characteristics (SP=simple partial, CP=complex partial, GTC=generalized tonic-clonic, H=hippocampal, NC=neocortical)

Patient No. Sex Age Seizure type Seizure origin #Seizures Interictal (H)

1 f 15 SP, CP NC 5 24

3 m 14 SP, CP NC 5 24

4 f 26 SP, CP,GTC H 5 24

5 f 16 SP, CP, GTC NC 5 24

9 m 44 CP, GTC NC 5 24

10 m 47 SP, CP, GTC H 5 24

11 f 10 SP, CP, GTC NC 4 24

12 f 42 SP, CP, GTC H 4 25

14 f 41 CP, GTC H & NC 4 24

15 m 31 SP, CP, GTC H & NC 4 24

16 f 50 SP, CP, GTC H 5 24

18 f 25 SP, CP NC 5 25

20 m 33 SP, CP, GTC NC 5 26

21 m 13 SP, CP NC 5 24

frequency contents of the signal. 
2.	 Apply the Hilbert transform to each IMF to compute 

the instantaneous frequency at each sample time. 
As shown in Figure 2, the EEG signal has 11 IMFs. 
Hence, there are 11 frequency components in each 
sample time.

3.	 For locating delta (0.5-4 Hz), theta (4-8 Hz), alpha 
(8-13), beta (13-30), and gamma (30-70) frequency 
bands, in each sample, calculates the sum of IMF 
whose frequency assigned to one of the frequency 
bands. Figure 3 shows the normalized filtered EEG 
signal of the one channel and its frequency bands 
calculated by HHT. 

Phase Synchronization Calculation
To describe the interactions of different brain regions, the 
mean phase coherence has used as a measure of phase 
synchronization in the proposed method. It characterizes 

the variations of the phase difference between two 
separate oscillating systems.9,11 The relative phase of such 
two systems is computed as follows: 

𝜑𝜑𝑛𝑛,𝑚𝑚1,2 (t) = |n𝜙𝜙1(t) − m𝜙𝜙2(t)|   

 

                                                                                               (1)

Where m and n are integers and state that the frequency 
lock occurs at specific phases of the two oscillating 
systems, ϕ1 (t) and ϕ2 (t) denoting the instantaneous phase 
of the oscillators computed by the Hilbert transform.22 
Then, Mean phase coherence of two recording channels 1 
and 2 based on the relative phase with a ratio of n: m = 1: 
1 and a sampling rate of 1

t∆
, is defined as:

R1,2 = |1N∑ 𝑒𝑒−𝑗𝑗𝜑𝜑1,11,2(𝑗𝑗∆𝑡𝑡)
N−1

j=0
| 

 

                                                     (2)

For every possible combination of different EEG 
recording channels i and j, the mean phase coherence value 
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related to every pair of frequency bands f was computed 
for each consecutive window. As in this research, there 
are 6 channels and five frequency bands, so 75 different 
values Rf

i,j were extracted from each window.

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 =

[
 
 
 
 𝑅𝑅1,2

δ , 𝑅𝑅1,2
ϑ , 𝑅𝑅1,2

α , 𝑅𝑅1,2
β , 𝑅𝑅1,2

γ

𝑅𝑅1,3
δ , 𝑅𝑅1,3

ϑ , 𝑅𝑅1,3
α , 𝑅𝑅1,3

β , 𝑅𝑅1,3
γ

⋮
𝑅𝑅5,6
δ , 𝑅𝑅5,6

ϑ , 𝑅𝑅5,6
α , 𝑅𝑅5,6

β , 𝑅𝑅5,6
γ ]

 
 
 
 

15×5

 

 

                           (3)

Selecting the Optimal Features
Researchers claimed that considerable dynamic changes 
in the interaction between brain areas always appeared 
in some specific brain regions before the occurrence of 
the seizure.9 It indicates that among the 75 values in (3), 
they should properly select in order to predict epileptic 
seizures accurately; otherwise, the calculations become 
more complex, and the possibility of the false alarms 
increases significantly. So, the number of features should 
be as low as possible to enhance the performance of 
seizure prediction. To this end, the magnitude of the 
relationship between ictal and interictal samples measured 
by Spearman correlation coefficient test, then the indices 
that had the least correlation (the correlation coefficient is 
almost zero) selected as optimal features.23

Classification and Online Prediction of Epileptic 
Seizures
Most seizure prediction methods are offline approaches, 
but as for long-term data using offline approaches lead 
to higher computational cost. In this paper, we take 
advantage of evolving neuro-fuzzy model (ENFM) for 
seizure prediction based on recursive fuzzy clustering 
developing by Soleimani et al.24 The Gath-Geva (GG) 
clustering as the basis for the recursive fuzzy clustering 
has been utilized in ENFM, since GG algorithm has some 
advantages over other fuzzy clusterings (e.g., k-means 
algorithm, Gustafson Kessel clustering) in terms of 
creating clusters in different shapes and sizes.25,26 The 
ENFM structure is analogous to Takagi-Sugeno fuzzy 
models, and it is capable of adapting by changes in 
system behavior by adding new neurons (fuzzy rules) 
or merging similar existing neurons. Contrary to simple 
GG algorithm, cluster parameters (e.g., cluster center and 
covariance matrices) of ENFM are updated using adaptive 
equations. For more details, refer to Soleimani et al.24

The basis of the prediction is that the interval from 
the time before seizure onset continuously alerted to 
the patient. The length of this interval is equal to the 
prediction time (P). The block diagram in Figure 4 shows 
the algorithm. Every consecutive window is labeled based 

Figure 3. The 16-second normalized filtered EEG signal of fifth channel recorded from patient number 1 and its frequency bands, delta, theta, alpha, beta and 
gamma, calculated by HHT method. It is clear that slow changes and low frequency of the main signal can observe in the delta band.

Figure 4. After feature extraction, the ENFM predicts seizure occurrence period (SOP) pmin (SPH) minutes ahead. The model trained at the nth window based 
on feature F[n-pmax] and class label C[n-pmax].

http://journals.sbmu.ac.ir/Neuroscience
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on the occurrence of a seizure pmax minutes later (1 for 
“seizure,” and 0 for “no seizure”), yielding a sequence 
F[n] of features related to the nth temporal window with 
corresponding labels C[n]. Since in online training ENFM, 
the duration of preictal and interictal is unknown, every 
such 16s windows are labeled 0 (C[n] = 0), representing of 
the interictal period, unless the seizure to have occurred 
in a specific window. In this case, concerning the two-
time characteristics specified in the evaluation method of 
this paper, windows for as long as pmax – pmin (SOP) to pmin 
(SPH) before seizure onset are labeled +1 (C[n] = 1) (see 
Figure 5). Thus, there is a pmax (SOP + SPH) delay between 
the training data and the test input sample, so that the 
ENFM trained at the nth window based on the input F 
[n - pmax] and the output C [n - pmax]. 

Adaptation of model to evaluation method in order 
to increase seizure prediction accuracy considered as a 
reason for defining this class labeling approach. As shown 
in Figure 5, for every alarm that rises in the color window 
(pmax – pmin ), the seizure onset will occur within the SOP 
span following SPH interval, while alarms that take place 
outside the color window are all considered as the false 
positive prediction. Therefore, the model is expected to 
train for each SOP and SPH properly.

Post-processing
The number of false predictions should be controlled, of 
which too many cannot be accepted, e.g., for a seizure 
warning device due to the loss of patients’ confidence. 
Here a simple algorithm is proposed to minimize false 
prediction. Although raw ENFM output is between 0 
and +1, it is possible to set an absolute value of 0 or +1 
for each output sample. We achieved this requirement by 
moving average filter with a length window of 10 minutes. 
In this algorithm, the proposed model detects the SOP 
after the SPH for every 10 minutes. If the mean value of 
each window to consecutively increased four-times, then 
the alarm would rise, and it will stay on until the mean 
value to consecutively decreased two-times afterward. 
This algorithm, which is useful in online processes, makes 
output sensitive to the slope of amplitudes changes instead 
of amplitudes itself.

Model Evaluation 
The performance of seizure prediction is possible by 
statistical criteria such as sensitivity and specificity, 
whereas specificity has defined in the form of false-
positive rate (FPR) (4), (5):

Sensitivity =  TP
TP + FN 

 

                                                                                               (4)

FPR =  FP
TN+FP  

 
                                                                           (5)

Given the predetermined SOP and SPH intervals, we 
can divide the output model into one of the following four 

Figure 5. Labeling the ENFM output in the online process when the seizure 
starts.

categories:
1.	 If C[n] = 1and at least one seizure occur within the 

SOP duration after the SPH interval, then it is the 
true positive result.

2.	 If C[n] = 1 and any seizure do not occur within the 
SOP duration after the SPH interval, then it is a false-
positive result.

3.	 If C[n] = 0 and any seizure do not occur within the 
SOP duration after the SPH interval, then it is a true 
negative result.

4.	 If C[n] = 1 and at least one seizure occur within the 
SOP duration after the SPH interval, then it is a false 
negative result.

Optimal SOP and SPH Selection
As learning of the ENFM based on SOP and SPH length, 
these two intervals should be properly selected. Two terms 
are critical in determining these values. First, a proper 
assessment of seizure prediction performance is vital 
for seizure prediction system in clinics. A good clinical 
application requires an algorithm with high sensitivity 
but low FPR.27 Second, considering that an increase in 
SPH can be more beneficial for the patients if they allow 
themselves to retreat from public or potentially dangerous 
situations or even to take action against seizures while 
decreasing SOP would reduce the patients’ stress, and it 
leads to minimizing physiological disadvantages caused 
by potential side effects of drugs or long term electric 
stimulation of focal brain structures.

Mamdani fuzzy inference system, which is a nonlinear 
mapping that derives its output based on fuzzy reasoning, 
was applied to achieve unique SOP and SPH values 
among different intervals.28 Firstly, according to two 
terms that have mentioned in this paper, predefined rules 
are specified as follow:
1.	 If SOP is low and SPH is high, and Sensitivity is high, 

and FPR is low, then the result will be Excellent.
2.	 If SOP is low and SPH is low, and Sensitivity is high, 

and FPR is low, then the result will be Good.
3.	 If SOP is high and SPH is high, and Sensitivity is 

high, and FPR is low, then the result will be Good.
4.	 If SOP is high and SPH is low, and Sensitivity is high, 

and FPR is low, then the result will be Acceptable.

http://journals.sbmu.ac.ir/Neuroscience
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5.	 If Sensitivity is low or FPR is high, then the result will 
be Poor.

According to Figure 6, Gaussian function has been used 
as membership function of four input variables x = {x1, x2, 
x3, x4}, Sensitivity (x1), FPR (x2), SOP (x3) and SPH (x4). 
Each of the input variables consists of 2 Gaussian fuzzy 
sets, low (L) and high (H) corresponding membership 
functions μL (x) and μH (x) as defined:

𝜇𝜇𝐿𝐿𝑗𝑗(𝑥𝑥𝑗𝑗) = 𝑒𝑒𝑒𝑒𝑒𝑒 [− ((𝑥𝑥𝑗𝑗−𝑐𝑐𝑗𝑗
𝐿𝐿)

𝛿𝛿𝑗𝑗
𝐿𝐿 )

2
]    𝑓𝑓𝑓𝑓𝑓𝑓  𝑗𝑗 = 1,2,3,4  

 

                   (6)

𝜇𝜇𝐻𝐻𝑗𝑗(𝑥𝑥𝑗𝑗) = 𝑒𝑒𝑒𝑒𝑒𝑒 [− ((𝑥𝑥𝑗𝑗−𝑐𝑐𝑗𝑗
𝐻𝐻)

𝛿𝛿𝑗𝑗
𝐻𝐻 )

2
]    𝑓𝑓𝑓𝑓𝑓𝑓  𝑗𝑗 = 1,2,3,4                  (7)

Where 𝑐𝑐1
𝐿𝐿 = 0; 𝛿𝛿1

𝐿𝐿 = 30; 𝑐𝑐1
𝐻𝐻 = 100; 𝛿𝛿1

𝐻𝐻 = 25;  𝑐𝑐2
𝐿𝐿 = 0; 𝛿𝛿2

𝐿𝐿 
= 0.13; 𝑐𝑐2

𝐻𝐻 = 1; 𝛿𝛿2
𝐻𝐻 0.3; 𝑐𝑐3,4

𝐿𝐿 = 5; 𝛿𝛿3,4
𝐿𝐿 = 7; 𝑐𝑐3,4

𝐻𝐻 = 30; 𝛿𝛿3,4
𝐻𝐻 = 7;   

 
According to Figure 7, four triangular functions have 

used as the output variable membership function (Result). 
Since the output of the fuzzy system belongs only to one 
of the four categories (Excellent, Good, Acceptable, Poor), 
no overlap considered between membership functions. 
The output range of the result variable defined from 0 to 
40. Thus, the Poor, Acceptable, Good, Excellent groups 

ranged from 0 up to 10, 10 up to 20, 20 up to 30, and 30 
up to 40, respectively.

The fuzzy inputs applied to the antecedents of the fuzzy 
rules. Firing strength of each rule has been calculated 
through the min operator as a t-norm operation for 
evaluating conjunction of the 1-4 rules, similarly, the 
max operator as a t-conorm operation for evaluating 
the disjunction of the fifth rule. The implementation 
of the inference rules is done using the compositional 
rule of inference. Then, the final output is calculated by 
defuzzification using Centre of Gravity (CoG) method by 
aggregation of the five individual output fuzzy sets.29

In this study, considering the patient needs an early 
epileptic seizure of 3 to 5 minutes, we set the minimum 
SPH interval of 5 minutes.6,30,31 When the seizure prediction 
method works well, a much smaller SOP may be eligible 
(for example, for a seizure warning device).6 Therefore, 
the minimum SOP period set to 5 minutes. However, an 
SOP for half an hour is also reasonable if the treatment 
effect lasts for this period, in which maximum SOP set 
to 30 minutes. For example, this has usually expected for 
antiepileptic drugs.6 Unlike Aarabi et al, Baghdadi et al, 
Arthurs et al and Zhang et al, SPH interval as extended 
as found in this study would definitely leave enough 

Figure 7. The designed membership functions of the output variable of the fuzzy inference system.

Figure 6. The designed membership functions of the four input variables of the fuzzy inference system

http://journals.sbmu.ac.ir/Neuroscience
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time for possible strategies to prevent the irreparable 
consequences of seizure, for example, a patient is driving 
on a highway or swimming in the pool, consequently, 
requires more time to leave such situations.14,21,30,32 Thus, 
we set maximum SPH to 30 minutes, which seems an 
adequate time for the patient to behave more efficiently.

Results
The small number of seizures for every patient brings 
about an inappropriate on-line training ENFM as the 
dataset contains at most five seizures for each patient, so 
only patients having 4 or 5 seizures were considered for 
evaluation (14 patients selected for evaluation in total).

In order to test the concept of on-line training, the 
ictal dataset set to a long-term interictal dataset (i.e., the 
duration of preictal is at least 50 minutes per seizure). Since 
in online training, the ENFM trained by past samples and 
tested by the present sample, it is impossible to divide the 
entire data, such as offline training, into in-sample data 
and out-of-sample data, so by overtime, the ENFM results 
in high sensitivity but low FPR. For having an accurate 
evaluation, half of the total dataset for each patient (10-
hour interictal samples with preictal samples of the first 
3 or 4 seizures) is considered only for on-line training, 
but remaining dataset (14 hours interictal samples with 
preictal samples of the last seizure) is accounted for 
evaluation as it undergoes on-line training.

As shown in Figure 8, the model trained with SOP=5 
and SPH=20 minutes. The last seizure predicted without 
a false negative alarm, along with the good FPR. The first 
three positive alarms are complete nonsense in interictal 
duration and defined as a pure false positive alarm. In 
this particular subject, the preictal period is equal to 95 
minutes before the seizure onset. As can be seen, the 
fourth positive alarm is shown about half an hour before 
the seizure. Even though there was no such seizure within 
5 minutes for the next 20 minutes, this alarm considered 
a false-positive prediction, although the next two positive 
alarms considered as a true positive prediction, the rest 

of the positive alarms due to a warning after the seizure 
defined as false positive predictions.

In order to achieve best SOP and SPH for each patient, 
the values of sensitivity and FPR calculated for different 
SOPs, and SPHs ranged from 5 up to 30 minutes with 
step 5 minutes, yet the results of two patients obtained 
with SOP and SPH ranged from 10 up to 60 minutes 
with step by 10 minutes. Then, the values of sensitivity 
and FPR in addition to their corresponded SOP and SPH 
gave as inputs to the fuzzy inference system. According to 
fuzzy group results, whose scores are between 0 up to 40, 
the SOP and the SPH with the highest score selected as 
optimal intervals. 

The optimum SOP and optimum SPH for each patient, 
along with sensitivity and FPR, have been summarized in 
Table 2. On average, the SOP by 7 minutes and the SPH 
by 27 minutes obtained for the entire group of patients, 
with sensitivity by 100% and FPR by 0.13 per hour. The 
Excellent fuzzy system output for most patients indicates 
that the fuzzy system inputs adapted to desired conditions, 
such as low SOP, high SPH, high sensitivity, and low FPR. 
However, the fuzzy system output of four patients (5, 9, 
16, 20) is lower than the Excellent result. The reason is 
that the SPH interval does not match with our expected 
indicator, while other parameters are following the terms.

 The prediction time that defined as an interval between 
the first true positive alarm and seizure onset has also 
reported for every patient in Table 2. As we expected, all 
prediction times varied between  and  periods. 
Another interesting point is that all optimal SPHs are 
relatively equal to prediction times. As on average, the 
best SPH had almost the same value of prediction time 
with 27 minutes and 30 minutes, respectively.

Discussion and Conclusion
In this study, a new patient-specific model has presented 
for the prediction of epileptic seizures from the online 
analysis of EEG. The interaction of different brain regions 
obtained through the phase synchronization of the EEG 

Figure 8. The outcome of the proposed model for patient number 18 (SOP=5, SPH=20, Sensitivity=100%, FPR=0.11 per hour). Each output sample represents 
10 minutes
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channels pairs in the specific frequency domains. We 
used the mean phase coherence indicator to distinguish 
between preictal and interictal periods. Best features 
were extracted by Spearman correlation coefficient test to 
minimize the complexity of the calculation. A recursive 
extension of the GG clustering algorithm as a basis for 
online tuning and development of the Neuro-fuzzy model 
was adaptively applied to predict epileptic seizures. It is 
noticeable that in the proposed approach, few seizures 
for each patient make it difficult to assess the seizure 
prediction i.e., a dataset containing up to 5 seizures 
per patient. Soleimani et al suggested that in order to 
compensate for the unbalanced classes, the method of 
surrogate data is used to generate new preictal samples 
by perturbing the available data points.25 The surrogate 
data method leads to perturbing the phase of the Fourier 
transform of the real data points. As a result, the preictal 
period cannot properly identify by the mean phase 
coherence indicator. Here we overcome this problem by 
defining two intervals, SOP and SPH, that were used to 
train the Neuro-fuzzy model without adding the number 
of artificial samples generated to the actual data.

We also proposed a novel evaluation method to select 
optimal SOP and SPH intervals based on predetermined 
rules that were wisely adjusted based on the patient’s safety. 
The results showed that for the mean SOP by 7 minutes 
and mean SPH by 27 minutes, the sensitivity and the FPR 
were equal to 100% and 0.13 per hour, respectively. This 
optimization algorithm can also be used to compare other 
research results. Such a comparison can be made through 
the rules of the Mamdani fuzzy inference system of this 
paper, considering the selected SOP, SPH, sensitivity, and 
false prediction rate of other studies. 

In Table 3, the performance of the proposed approach 
compared with some of the recent achievements in seizure 
prediction that evaluated with the seizure prediction 
characteristic method. The values of SOP, SPH, sensitivity, 
and FPR reported in studies have been given as inputs to 
the fuzzy inference system. Generally, the range of input 
variables, SOP and SPH, is considered to be five up to 30 
minutes, whereas we observe that some values of SOP and 
SPH are out of this range. Thus, we extended the range of 
input variables from 0 up to 60 minutes without changing 
the pattern of membership functions for testing those 
values in which SOP and SPH are outside the range. The 
score of the proposed approach was superior to others 
due to the defined rules of the Mamdani fuzzy inference 
system. The reason for this superiority is because of the 
major differences in the choice of SOP and SPH intervals. 
For example, sensitivity by 92.90% and FPR by 0.09 per 
hour are the perfect result for Aarabi et al.14 However, the 
evaluation of this method does not justify by 10 seconds 
of SPH and 50 minutes of SOP. Since in the event of a 
seizure warning, the patient is at an insufficient time 
to prepare for seizure, and the patient’s anxiety is more 
than usual when the SOP is too large. According to the 
results of Hang et al, the length of selected SOP and SPH 
is far better than the selected SOP and SPH of this study, 
whereas the sensitivity and the FPR are lower and higher 
than the sensitivity and FPR of this study, respectively. 
Consequently, the lower score attributed to the method 
of Hang et al.33

In the context of present neuroscience knowledge, the 
length of the preictal period is unclear and varies from 
seizure to next seizure.3 This variation may affect the 
results when a constant SOP and SPH considered for the 

Table 2. Prediction results of 14 patients using the proposed algorithm

Patient No. Best (min) SOP, Best (min) SPH, Sensitivity FPR Prediction Time (min) Fuzzy (Score)

1 10 30 100% 0.12 39 Excellent (33.83)

3 5 30 100% 0.08 30 Excellent (34.38)

4 10 30 100% 0.16 38 Excellent (33.15)

5 5 10 100% 0.1 13 Good (24.8)

9 5 5 100% 0.22 8 Good (22.33)

10 5 25 100% 0.12 29 Excellent (33.83)

11 10 60 100% 0.12 66 Excellent (34.06)

12 5 25 100% 0.19 26 Excellent (32.19)

14 5 20 100% 0.09 22 Excellent (31.93)

15 10 60 100% 0.15 65 Excellent (33.6)

16 5 15 100% 0.15 18 Good (26.26)

18 5 20 100% 0.11 21 Excellent (31.78)

20 5 15 100% 0.16 17 Good (26.17)

21 10 30 100% 0.09 32 Excellent (34.10)

Average ≈7 ≈27 100% ≈0.13 ≈30
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Table 3. Comparison of our approach with other approaches evaluated on Freiburg EEG database

Authors Year Measure SOP SPH Sensitivity FPR Fuzzy Group (score)

Winterhalderet 2006 Phase synchronization 30 min 10 min 60% 0.15 Acceptable (11.5)

Shao-Hang Hung 2010 Wavelet - correlation dimension 18 s 60 min 86.96% 0.25 Good (28.13)

Shufang Li 2013 Spike rate 50 min 10 s 72.70% 0.1 Acceptable (13.6)

Yang Zheng 2013 Phase synchronization 30 min 10 min 85% 0.15 Acceptable (14.5)

Yanli Zheng 2014 Higuchi fractal dimension 30 min 2 min 86.95% 0.2 Acceptable(14)

Ardalan Aarabi 2017 Nonlinear features 50 min 10 s 92.90% 0.09 Acceptable (14.9)

Our approach 2019 Phase synchronization 7 min 27 min 100% 0.13 Excellent (33.76)

whole EEG. In summary, future work will be devoted 
to designing an adaptive SOP and SPH optimization 
algorithm to improve the performance of this epileptic 
seizure prediction model. Overall, this approach can use 
for home care applications for which a seizure warning 
system can be designed that predicts a safe time zone and 
warning time zone with high accuracy.
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