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ABSTRACT 
 
Remote Sensing is an excellent tool in monitoring, mapping and interpreting areas, associated with 
hydrocarbon micro-seepage. An important technique in remote sensing known as the Soil Adjusted 
Vegetation Index (SAVI), adopted in many studies is often used to minimize the effect of brightness 
reflectance in the Normalized Difference Vegetation Index (NDVI), related with soil in areas of 
spare vegetation cover, and mostly in areas of arid and semi–arid regions. The study aim at 
analyzing the effect of hydrocarbon micro – seepage on soil and sediments in Ugwueme, Southern 
Eastern Nigeria, with SAVI image classification method. To achieve this aim, three cloud free 
Landsat images, of Landsat 7 TM 1996 and ETM+ 2006 and Landsat 8 OLI 2016 were utilized to 
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produce different SAVI image classification maps for the study.  The SAVI image classification 
analysis for the study showed three classes viz Low class cover, Moderate class cover and high 
class cover.  The category of high SAVI density classification was observed to increase progressive 
from 31.95% in 1996 to 34.92% in 2006 and then to 36.77% in 2016. Moderately SAVI density 
classification reduced from 40.53% in 1996 to 38.77% in 2006 and then to 36.96% in 2016 while 
Low SAVI density classification decrease progressive from 27.51% in 1996 to 26.31% in 2006 and 
then increased to 28.26% in 2016. The SAVI model is categorized into three classes viz increase, 
decrease and unchanged. The un – changed category increased from 12.32km2 (15.06%) in 1996 
to 17.17 km

2 
(20.96%) in 2006 and then decelerate to 13.50 km

2
 (16.51%) in 2016.  The decrease 

category changed from 39.89km
2
 (48.78%) in 1996 to 40.45 km

2 
(49.45%) in 2006 and to 51.52 

km2 (63.0%) in 2016 while the increase category changed from 29.57km2 (36.16%) in 1996 to 
24.18 km

2 
(29.58%) in 2006 and to 16.75 km

2
 (20.49%) in 2016. Image differencing, cross 

tabulation and overlay operations were some of the techniques performed in the study, to ascertain 
the effect of hydrocarbon micro - seepage.  The Markov chain analysis was adopted to model and 
predict the effect of the hydrocarbon micro - seepage for the study for 2030.  The study expound 
that the SAVI is an effective technique in remote sensing to identify, map and model the effect of 
hydrocarbon micro - seepage on soil and sediment particularly in areas characterized with low 
vegetation cover and bare soil cover. 
 

 
Keywords: Hydrocarbon micro – seepage; remote sensing; SAVI; soil; sediment; Ugwueme. 
 

1. INTRODUCTION 
 
Underlying earth’s reservoir are often saturated 
with hydrocarbon oil and gas. These reservoir 
permits the concealed oil and gas to escape, 
hence producing an oxidation – reduction which 
occur in situ or in nearly vertical direction, 
thereby emerging as micro - seepage at the 
earth’s surface, and thus produce anomalies in 
overlying sediments and soils [1]. Hydrocarbon 
micro - seepage often contaminate the earth’s 
surface soil and sediment, thereby influencing 
their stability, such that the form oxidation zone 
in the altered areas, hence the produce changes 
in their electrical and magnetic properties [2,3,4]. 
Hydrocarbon micro - seepage has a devastating 
effect on the soil and sediment.  The effect is 
such that it produces a large range of changes 
within the soil environment, which depends on 
the type of soil; and the duration, which it 
influences the soil.  The effect of hydrocarbon 
micro - seepage on the soil, also results in 
unusually high concentrations of ethane, propane 
and methane, thereby leading to mineral 
alterations as well as temperature, radiometric 
and geo – botanical anomalies [5]. Long term 
effect of hydrocarbon micro-seepage alters the 
mineral composition of soil and sediment, hence 
it produces a change in their chemical and 
physical properties, with evidence such as 
changes in color, hardness, electric, magnetic 
and radioactive properties of the soil and 
sediment minerals [5].  The impact of micro - 
seepage on overlying soil and sediment takes 
their constituents hydrophobic, but if the soil and 

sediment are properly managed, its effect will be 
minimal [6].  Anoliefo and Vwioko [7] opined that 
the presence of micro - seepage on the 
environment produces unsatisfactory 
atmosphere for plant growth, mainly due to their 
inability to aerate the soil.  Noomen [8] stated 
that stress associated with plants arise owed to 
changes in the soil environment, hence micro - 
seepage often displace the soil air, resulting in 
oxygen shortage in the soil.  The oxygen 
concentration in the soil may decrease further 
due to methanotrophic bacteria, which oxidize 
the methane which is present in natural oil and 
gas generating high concentration of carbon 
dioxide and water [9].  White [10] is of the view, 
that the soil structure viz pH, mineralogy and 
organic matter content may change, if they get in 
contact with hydrocarbon micro-seepage.  
Schumacher [4] quoted that hydrocarbon micro - 
seepage gas such as methane, ethane and 
carbon dioxide collect in the soil, often displace 
the normal soil atmosphere, which results in a 
decrease in the soil oxygen. These concentration 
of oxygen in the soil is noted to decrease further, 
as a result of methano – trophic bacteria, which 
oxidize methane, and in the process generate 
carbon dioxide and water [9]. 

 
Long term exposure of hydrocarbon micro - 
seepage on the soil and in the environment at 
large can produce a locally anomalous redox 
zones which aid the development of a diverse 
array of chemical and mineralogical changes 
[11]. Bacterial oxidation of micro - seepage can 
directly or indirectly generate changes in the pH 
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of the environment, which will influence the 
mineral stability and chemical reactivity of the soil 
[12]. According to the Petroleum Safety Authority 
[13], hydrocarbon micro - seepage promotes long 
term health issues, mainly due to high 
concentrations of toxic compounds [12]. If its 
effect is uncovered at an early stage, substantial 
volumes of explosive oil and gas in the soil, may 
generate into dangerous situation which involves 
costly remediation works [14]. The United States 
National Transportation Safety Board (NTSB) 
has highlight that millions of dollars is lost and 
several casualties reported, owing to the effect of 
oil and gas leaks on the soil [15,16]. Schumacher 
[17] quoted that the presence of hydrocarbon 
micro - seepage in the soil, often deplete soil 
oxygen and then produce stress to growing 
vegetation. White [10] stated that micro - 
seepages may influence vegetation in several 
ways.  When they penetrate into plant system, it 
alter their metabolism and hence produce stress, 
which maybe visualize with signs such as 
stunted growth, yellowish leaves and poor yields 
[18]. Further impact of hydrocarbon micro - 
seepage on vegetation due to the soil, depends 
on varying factors, such as the type of soil to the 
life cycle development stage of the vegetation. 
Pysek and Pysek [19] equally noted that different 
vegetation types have varying sensitivity when 
they come in contact with seepages. National 
hydrocarbon seepage generate differs negative 
consequences on the environment and the 
society at large.  The upwelling of tar and oil or 
“heavy hydrocarbon” consists mainly of 
greenhouse CO2 and CH4 and which give rise to 
local pollution of soil and water.  Serrano et al 
[20] air his view that when hydrocarbon micro - 
seepage evolve at the earth’s surface and into 
the soil, they persist in the soil, causing major 
deterioration to the soil physical properties as 
well as changes in microbes populations. Oil and 
gas seepage impacted soil may also cause 
alterations in the mineralogy of soil as well as in 
microbiological, biogeochemical and geo – 
botanical anomalies, which may be visible in the 
soil surface expression [4]. Several researchers 
have investigated on the use of spectroscopy in 
their study, to identify the impact of hydrocarbon 
micro - seepage on the soil [21,22,23,24]. The 
study of these researchers showed that there is 
an overall decrease in the reflectance properties 
of oil and gas impacted soil within the VIS – NIR 
(about 400 – 800 nm) wavelength regions and 
with conclusion that hydrocarbon micro-seepage 
have an absorption features in the 3.4µm, 2.35 
µm, 1.75µm and 1.35µm wavelength region      
[24]. 

Schumacher [25] opined that the traditional 
methods for studying hydrocarbon micro - 
seepage is tedious, time consuming, destructive 
and expensive. Hence, remote sensing is an 
effective tool, which have been proven to be 
much more valid for interpreting and studying 
micro - seepage as the techniques offer a fast, 
non – destructive and less expensive method as 
compared to the traditional methods.  Optical 
remote sensing have been utilized for exploring 
onshore hydrocarbon reservoirs, for the detection 
of hydrocarbons oil and gas seepage [22,26,23]. 
Ziring et al [27] opined that remote sensing is a 
new method for exploring oil and gas seepage 
detection.  The Soil Adjusted vegetation Index 
(SAVI) is a remote sensing technique which is 
used to minimize the effect of brightness 
reflection in the Normalized Difference 
Vegetation Index (NDVI) that is caused by the 
soil [28]. The NDVI is a numerical indicator which 
utilize the visible and near – infrared bands of the 
electromagnetic spectrum, adopted to analyze 
remote sensing measurements and then assess 
if the target observed contains live green 
vegetation or not. The SAVI is an effective index, 
which is useful in areas with spare vegetation 
cover, such as arid and semi – arid regions.  It is 
defined as follows: 
 

SAVI =
(1+ �) (��� – �)

��� + � + �
  

 

Where: NIR is the near infrared reflectance; R is 
the red reflectance and L = 0.5, is an adjustment 
factor effective to minimize the backscatter effect 
of sol background reflectance through the 
canopy [29,30]. Spencer and Spry [31] opined 
that SAVI was proposed with the sole aim to 
minimize the effects of soil background on the 
quantification of greenness by a way to 
incorporate a soil adjustment factor (L) in the 
basic NDVI. Gibson et al [32] was also of the 
view that the (L) factor is determined by the 
relative percentage of vegetation and to state the 
nature of the soil (L = 0 for very high vegetation 
cover, L = 1 for very low vegetation cover and L 
= 0.5 for intermediate cover). SAVI is also 
viewed as an exponent, given to the red – band 
value in the denominator as well as multiplier (L 
= 1) of the associate first term. 
 

This study depends on the soil adjustment 
vegetation index (SAVI) as a remote sensing 
technique to assess and interpret the effect of 
hydrocarbon micro-seepage on soil and 
sediment in Ugwueme, South Eastern Nigeria 
with dates of 1996, 2006 and 2016 for both 
image classification and the SAVI. 
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2. MATERIALS AND METHODS 
 

2.1 The Study Area: Location and 
Accessibility 

 

Ugwueme is situated on a hilly terrain, between 
Latitude 60 0 00 N and 60 07 00 N and 
Longitude 70 24 00 E and 70 30 00 E of 
geographical co – ordinates.  The region is fairly 
populated and according to the latest population 
census conducted by the National Population 
Commission [33], the town has an estimated 
population of about 13,000 people.  Ugwueme 
has accessible network of un – tarred and laterite 
graded road, which is often links farmlands, 
schools, worship places and markets.  The study 
area is also linked to other parts of Eastern 
Nigeria, through the Ugwueme – Amadi road as 
well as the Enugu – Porthacourt dual express 
road [34].  Geologically, Ugwueme is underlain 
by iron stone beds with other sedimentary facies, 
which has attracted several tourists and other 

visitors to the area [35].  Many landforms exist in 
the area, and of which the major ones are the 
Cross River plain, Enugu Cuesta and Niger – 
Imo lowlands [36].  The Enugu – Awgu Cuesta is 
an asymmetrical ridge characterized with a long 
and dipping topography along the Western side 
of the scarp slope [36].  The Awgu Escarpment 
(cuesta) exist from a height ranging from 305m 
(1000ft) – 600m (2000ft) above the sea level.  
The lithology of Ugwueme is made up mostly of 
shale which is overlain by sandstone. Within the 
study area, the lowest area above sea level is 
46m while the highest area is 600m [35]. Within 
the area, the soil type, called the Red Earth is 
conformed to the geological structure of the 
eastern part of Nigeria [37]. The Red Earth soil is 
characterized as shallows and stony lithosols, 
located on the topography of the cuesta [37]. Fig. 
1 shows the political map of Ugwueme, while Fig. 
2 present the soil map which is digitized from the 
soil map of Nigeria. 

 

 
 

Fig. 1. Political map of Ugwueme 



 
Fig. 2. Soil map of Ugwueme (digitized from the soil map of Nigeria)

 

2.2 Data Acquisition and Software
 
2.2.1 Primary data 
 
Three cloud free imageries were derived freely at 
path 188 row 55 and 56 of Landsat 5 Thematic 
Mapper (TM) on 19

th
 December 1996; Landsat 7 

Enhanced Thematic Mapper plus (ETM
December 2006 and Landsat 8 Operational Land 
Imager (OLI) on 25

th
 January 2016 in a spatial 

resolution of 30m by 30m from the [38] website 
with Earth Explorer USGS.gov.  The imageri
were radio-metrically corrected with the United 
States Geological Service and then projected to 
Universal Transverse Mercator (UTM) zone 32 
north of coordinate system available on the 
World Geodetic System (WGS) 1984 ellipsoid.

 
2.2.2 Secondary data 

 
These data include the administrative, land use 
and topographic maps of Enugu urban. 
Google Earth was also utilized to acquire the 
higher resolution images of the study area to aid 
accurate interpretation and classification of the 
satellite imageries and for accuracy assessment 
and modelling of the Landsat images used. 
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Soil map of Ugwueme (digitized from the soil map of Nigeria)

Data Acquisition and Software 

Three cloud free imageries were derived freely at 
path 188 row 55 and 56 of Landsat 5 Thematic 

December 1996; Landsat 7 
ETM+) on 17

th
 

December 2006 and Landsat 8 Operational Land 
January 2016 in a spatial 

resolution of 30m by 30m from the [38] website 
with Earth Explorer USGS.gov.  The imageries 

metrically corrected with the United 
States Geological Service and then projected to 
Universal Transverse Mercator (UTM) zone 32 
north of coordinate system available on the 
World Geodetic System (WGS) 1984 ellipsoid. 

These data include the administrative, land use 
pographic maps of Enugu urban. The 

Google Earth was also utilized to acquire the 
higher resolution images of the study area to aid 
accurate interpretation and classification of the 

nd for accuracy assessment 
ng of the Landsat images used. The 

administrative map of the study, was utilized for 
creating the study area shape file, used
the Landsat images. This had an advantage, as 
the data sizes is reduced and the co
storage space decreased. 
 

2.3 Software Used 
 
The software adopted for the study are majorly, 
the ArcGIS 10.5, ERDAS Imagine 14.0 and the 
Idrisi Selva. The ERDAS Imagine software was 
utilized for layer stacking and to generate the 
false color composite (FCC), image co 
registration, image sub – 
classification. The ArcGIS software was adopted 
for addition of the images, attributes to data, for 
mosaicking of the respective scenes of Landsat 
imageries, to perform image overlay, as well as 
to determine the soil adjusted vegetative index 
(SAVI). The Idrisi Selva was used for the 
prediction analysis. 
 

2.4 Remote Sensing Processes
 
Landsat Thematic Mapper (TM) and Enhanced 
Thematic Mapper plus (ETM+) sensors often 
capture solar energy, which reflects and then 

 
 
 
 

; Article no.IJPSS.61263 
 
 

 

Soil map of Ugwueme (digitized from the soil map of Nigeria) 

administrative map of the study, was utilized for 
creating the study area shape file, used to subset 

This had an advantage, as 
the data sizes is reduced and the computer 

The software adopted for the study are majorly, 
ine 14.0 and the 

The ERDAS Imagine software was 
utilized for layer stacking and to generate the 

te (FCC), image co – 
 setting and 

The ArcGIS software was adopted 
for addition of the images, attributes to data, for 
mosaicking of the respective scenes of Landsat 
imageries, to perform image overlay, as well as 

usted vegetative index 
The Idrisi Selva was used for the 

Remote Sensing Processes 

) and Enhanced 
Thematic Mapper plus (ETM+) sensors often 

ects and then 



 
 
 
 

Enoh et al.; IJPSS, 32(13): 13-33, 2020; Article no.IJPSS.61263 
 
 

 
18 

 

convert the data to radiance, after which it 
rescale the data to a digital number (DN), which 
is 8 bit and ranges with values from 0 and 255. 
DNs can also be converted to ToA reflectance, 
manually with a two steps process. The first step 
involves converting the DNs to radiance with bias 
and gain values, which is specific to a given 
individual scene. The second step involves the 
conversion of radiance to ToA reflectance. 
Landsat 8 OLI sensor is more sensitive than the 
TM and ETM+, hence the data can be rescaled 
to 16 – bits DNs which ranges between 0 and 
65536. 

 
2.5 Pre – processing 
 
In this study, the images of Landsat 7 TM, 7 
ETM+ and 8 OLI were imported and then 
introduced into the ERDAS Imagine software, 
from the GEOTIFF formats.  It was then stacked 
into layers (bands) which was converted to IMG 
format. The scenes are then clipped from which 
the area of interest (AOI) is achieved and then 
geo – registered to obtain the (UTM Zone 32N) 
coordinate system.  Overlay and image 
differencing operations are observed to ascertain 
for change analysis through differencing of the 
respective images pairs. Cross tab was also 
performed to determine the unique combinations 
of value in two qualitative images. SAVI values is 

then achieved in the images using ArcGIS 10.5 
software. 
 

2.6 Determination of the Soil Adjusted 
Vegetation Index (SAVI) 

 

Here, the raster calculator in ArcGIS 10.4 
software was used.  The soil adjusted vegetation 
index (SAVI) method highlight areas where the 
vegetative cover is low and where soil surface is 
bare.  The index was automatically extracted 
from the satellite imagery. For Landsat sensor 
TM and ETM+ adopted, the following relations 
were utilized for SAVI (Alhammadi et al 2008). 
 
SAVI = (Float (band 4 – band 3) / (band 4 + band 
3 +0.5))*Float (1.5) 
 

For Landsat sensor OLI, the following relations 
were observed. 
 

SAVI = (Float (band 5 – band 4) / (band 5 + band 
4 +0.5))*Float (1.5) 
 

Where b4 and b3 denotes the reflectance value 
of the fourth (the near – infrared band) and third 
bands (the red band) of the pre – processed 
images.  L is the adjustment factor (value = 0.5) 
 

Fig. 3 depict the methodology flow diagram for 
the study. 

 

 
 

Fig. 3. Methodology flow diagram for the study 
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Table 1. Image density classification scheme (modified after [39]) 
 

Code Image density classification  
1 Low SAVI 
2 Moderate SAVI 
3 High SAVI 

 

2.7 Image Classification 
 
Image classification involves a process, whereby 
an image is categorized into few number of 
individual classes, which is dependence on the 
reflectance values. The major aim, by which an 
image is classified, is to delineate information 
associated with the landscape from the remote 
sensing satellite data. In this study, the maximum 
likelihood classification is the classification 
scheme, adopted by which supervised 
classification was performed to categorized the 
satellite data into 3 classes viz Low SAVI, 
moderate SAVI and high SAVI. False color 
composite (FCC) maps were produced with the 
ArcGIS 10.5 software for all the time series study 
images. The classification process started with 
obtaining the training samples for the SAVI 
classes, then the trained samples were 
evaluated using statistical analysis. Signature file 
were created using the trained samples, and 
then the classification analysis observed.  The 
classified maps were finally superimposed to 
produce the final output classified SAVI maps for 
the study. 
 
2.7.1 Development of image classification 

scheme 
 
The overall objective of performing image 
classification is to position all image pixels within 
an image and to prepare the classification 
scheme. Sequel to the prior knowledge             
obtained about the study area couple with 
reconnaissance survey and knowledge gained 
from previous research, a general classification 
scheme is developed and modified after [39]. For 
the study, the image density classification 
scheme is shown in Table 1 and identified with 
codes 1, 2 and 3 which represent low, moderate 
and high SAVI image density classification 
classes. 
 

2.8 Change Rate Analysis 
 
To determine the change area for the study, the 
SAVI 1996 image was subtracted from the SAVI 
2006 image. Likewise, the SAVI 2006 image was 
also subtracted from the SAVI 2016 image and 

finally, the SAVI 1996 image is also subtracted 
from the SAVI 2016 image.  The arithmetic for 
the change area is calculated as follows: DSAVI 
= SAVI (2006) – SAVI (1996); DSAVI = SAVI 
(2016) – SAVI (2006) DSAVI = SAVI (2016) – 
SAVI (1996). 
 

3. RESULTS AND INTERPRETATION 
 
The result show that hydrocarbon micro - 
seepage has a considerable effect on the soil 
and sediment within the study area.  Considering 
the result for the maximum value, the SAVI 
increased from – 0.580 in 1996 to – 0.230 in 
2006 and then decreases to – 0.564 in 2016.  
Similarly, the minimum value of the SAVI 
increases from 0.130 in 1996 to 1.490 in                 
2006 and then decreases to – 0.105 in 2016. Fig. 
7 depict the statistics of the SAVI images                 
over the study periods.  Changes associated with 
the SAVI values in the study, is due to the 
influence of the various anthropogenic          
activities. 
 
The output SAVI maps for the study is depict in 
Figs. 4 – 6 with the descriptive statistics shown in 
Fig. 7. 
 

3.1 Savi Image Classification 
 
Table 2 depict the SAVI density classes for the 
study. The results shows that the values were 
designated into low, moderate and high areas, to 
show the effect of hydrocarbon micro - seepage 
on soil, for the three epoch study years. Figs. 8 – 
10 shows that SAVI density classification cover 
class for the study, with the descriptive statistics 
shown in Fig. 11. Within the study, the category 
of high SAVI density classification was observed 
to increase progressively from 26.13km (31.95%) 
in 1996 to 28.56 km (34.92%) in 2006 and then 
to 30.07 km (36.77%) in 2016. The moderate 
SAVI density reduce from 33.15km (40.53%) in 
1996 to 31.70 km (36.77%) in 2006 and then to 
28.59 km (34.96%) in 2016 while the category of 
low SAVI density decrease from 22.50km 
(27.51%) in 1996 to 21.51 km (26.31%) in        
2006 and then increase to 23.11 km (28.26%) in 
2016. 

 



Fig. 4. SAVI map for Landsat 

 
Fig. 5. 
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Fig. 4. SAVI map for Landsat TM (1996) 
 

 

. 5. SAVI map for Landsat ETM+ (2006) 
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Fig. 6. SAVI map for Landsat 

 

 
Fig. 7. Descriptive statistics for SAVI values

 
Table

 
Classes Cover 1996 

Area (Km
2
) (%)

Low 22.4991 27.51
Moderate 33.1488 40.53
High 26.1324 31.95
Total 81.7803 100
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Fig. 6. SAVI map for Landsat OLI (2016) 

 

Descriptive statistics for SAVI values 

Table 2. SAVI density classification 

 2006 2016
(%) Area (Km

2
) (%) Area (Km

2
)

27.51 21.5154 26.31 23.1147 
40.53 31.7034 38.77 28.5930 
31.95 28.5615 34.92 30.0726 
100 81.7803 100 81.7803 
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2016 
) (%) 

28.26 
34.96 
36.77 
100 



Fig. 8. SAVI density classification cover class

 
Fig. 9. SAVI density classification cover class map 
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classification cover class Map for Landsat TM (1996)
 

 

Fig. 9. SAVI density classification cover class map for Landsat ETM+ (2006)
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(1996) 

+ (2006) 



 
Fig. 10. SAVI density classification cover class density 

 

 
Fig. 11. Descriptive statistics for SAVI 

 

3.2 Overlay Operation and Magnitude of 
SAVI Changes 

 
Overlay operation involves considering two or 
more different thematic maps, which are of the 
same study area and overlying them to form a 
composite new layer [4]. In this study, the 
different classified maps were overlaid, to 
generate a visual presentation of the areal extent 
of changes, which have occurred within the 
period of the study for the SAVI. Here, the 
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Fig. 10. SAVI density classification cover class density Map for Landsat OLI 

 

Descriptive statistics for SAVI classification 

Overlay Operation and Magnitude of 

Overlay operation involves considering two or 
more different thematic maps, which are of the 
same study area and overlying them to form a 
composite new layer [4]. In this study, the 
different classified maps were overlaid, to 

of the areal extent 
of changes, which have occurred within the 
period of the study for the SAVI. Here, the 

overlay operations was observed to ascertain the 
amount of changes determined. The SAVI model 
was categorized into three classes viz increase, 
decrease and unchanged for the Landsat 
imageries change which occurred between 
(Landsat TM 1996 and Landsat 
(Landsat ETM + 2006 and Landsat
and (Landsat TM 1996 and Landsat 
2016) respectively. Table 3 depicts a complete 
table for the magnitude of SAVI changes for the 
study. 
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OLI (2016) 

overlay operations was observed to ascertain the 
amount of changes determined. The SAVI model 
was categorized into three classes viz increase, 

ase and unchanged for the Landsat 
imageries change which occurred between 

1996 and Landsat ETM+ 2006); 
+ 2006 and Landsat OLI 2016) 

1996 and Landsat OLI           
2016) respectively. Table 3 depicts a complete 

for the magnitude of SAVI changes for the 
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Table 3. Magnitude of SAVI changes 
 

S/N SAVI 
Categories 

Change btw 
(1996 – 2006) 

Change btw 
(2006 – 2016) 

Change btw 
(1996 – 2016) 

Area (km
2
) (%) Area (km

2
) (%) Area (km

2
) (%) 

1 Un – changed 12.3201 15.06 17.1405 20.96 13.5045 16.51 
2 Decreased 39.8925 48.78 40.4514 49.46 51.5205 63.00 
3 Increased 29.5677 36.16 24.1884 29.58 16.7553 20.49 
 Total 81.7803 100 81.7803 100 81.7803 100 

 

 
 

Fig. 12. Magnitude of SAVI Changes map for Landsat TM/OLI (1996/2006) 
 

Figs. 12 – 14 depicts the output maps of the 
magnitude of SAVI changes, during the study. 
Here, the generated change are produced by 
combining the multi – temporal imagery of 
Landsat SAVI. Fig. 12 shows the output map for 
the changes which have occurred in the study 
between (1996 – 2006), while Figs. 13 and 14 
highlight the respective output maps for the 
changes, which occurs between (2006 – 2016) 
and (1996 – 2016) respectively. By visualizing 
the SAVI maps, it is of the view that most areas 
have light brown colors, hence depicting no 
change category, since each of the pixel exhibit 
the same value in each band. Areas with the red 
and green color highlight “decrease and increase 
category” of SAVI respectively. 
 

3.3 Image Differencing for Savi Change 
Detection 

 

Image differencing is an important technique 
when studying change detection [4]. The method 

is observed by subtracting the respective digital 
number (DN) value of one pixel for a given band 
from another DN value, both are of the same 
pixel for the same band of another date.  Image 
differencing can be positive or negative. A 
positive image differencing shows an increase in 
the value of class size, while a decrease in class 
size shows a negative value. An image 
difference with value “zero” highlight a constant 
figure in the class size. In this study, two different 
classified images (1996 and 2006); (2006 and 
2016) and (1996 and 2016) were compared, in 
order to identify areas, which is distinctly  
different in the brightness values. The new image 
formed represent change produced, by 
considering the differences between the 
respective images. Table 4 depict the descriptive 
of the image differences while Figs. 16 – 18 
shows the output maps for the respective               
image differencing for the study for classified 
images (1996/2006); (2006/2016) and 
(1996/2016). 



 
Fig. 13. Magnitude of SAVI Changes map map Landsat 

 

Fig. 14. Magnitude of SAVI Changes map 
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Fig. 13. Magnitude of SAVI Changes map map Landsat ETM+/OLI (2006/2016)

 
 

Fig. 14. Magnitude of SAVI Changes map for Landsat TM/OLI (1996/2016)
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(2006/2016) 

(1996/2016) 



 
Fig. 15. Descriptive statistics for the

 
Table 4. 

 
 Image Differences 

(1996/2006) 
Values Area (km

2
) 

- 2 0.6624 
- 1 12.8412 
0 134.91 
1 16.02 
2 0.7344 

 

Fig. 16. Image Difference between map 
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Descriptive statistics for the magnitude of the SAVI change 

4. Descriptive of the Image Differences 

Image Differences 
(2006/2016) 

Image Differences 
(1996/2016) 

Area (km
2
) Area (km

2
) 

0.5624 0.7613 
11.5613 13.3467 
127.53 131.57 
15.12 14.11 
0.6513 0.6713 

 
 

Image Difference between map Landsat TM/OLI (1996/2006) 
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Image Differences 
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Fig. 17. Image Difference between map Landsat ETM+/OLI (2006/2016) 
 

 
 

Fig. 18. Image Difference between map for Landsat TM/OLI (1996/2016) 
 

3.4 Transition Probability Matrix 
 
Transition Probability Matrix highlight the fact that 
the probability of one classification class will 

change to the other category. This matrix is 
prepared by multiplying each column in the 
transition probability matrix. For a 3 by 3 matrix 
table, the rows denotes older classification class 
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while the column is the newer categories. In the 
study, the transition probability matrix is prepared 
between different image classifications for 1996 
against 2006; 2006 against 2016 and 1996 
against 2016. A chi – square and degree of 
freedom statistics is adopted and a significance 
of the Cramer’s V is tested. Kappa measure of 
association is adopted as 2 images with exactly 
the same number of categories is adopted. The 
overall Kappa analysis for each respective maps 
are 0.2469, 0.7757 and 0.7235. Tables 5-7 
expound the transition probability matrix for 1996 
(column) against 2006 (rows); transition 
probability matrix for 2006 (column) against 2016 
(rows) and the transition probability matrix for 
1996 (column) against 2016 (rows). 

3.4.1 Transition probability matrix of 1996 
(columns) against 2006 (rows) 

 
Here, the row categories represent SAVI classes 
in 1996 while the column shows the 2006 
classes. Following from Table 5, the Low SAVI 
has 16958 probability of remaining Low SAVI 
and 6391 of a change to the moderate SAVI in 
2006. This shows a change (reduction) with 
probability of change, which is higher than its 
stability. Moderate SAVI exhibit the highest class 
with 19571 probability of remaining moderate 
SAVI in 2006. High SAVI also exhibit probability 
which is as high 20335 value in order to        
remain as high SAVI in 2006, hence signifying 
stability. 

 

Table 5. Transition matrix table 1996 (columns) against 2006 (rows) 
 

 1 2 3 Total 
1 16,958 6,391 93,212 116,561 
2 7,511 19,571 8,144 35,226 
3 530 10,870 20,335 31,735 
Total 24,999 36,832 121,691 183,522 

 

Chi Square = 275723.93750 
df = 12 
P-Level = 0.0000 
Cramer's V = 0.7077 
Overall Kappa = 0.2469 

 

Table 6. Transition matrix table 2006 (columns) against 2016 (rows) 
 

 1 2 3 Total 
1 19,473 6,012 198 25,683 
2 4,100 20,135 7,535 31,770 
3 24,002 9,079 92,988 126,069 
Total 47,575 35,226 100,721 183,522 

 

Chi Square = 314147.40625 
df = 9 
P-Level = 0.0000 
Cramer's V = 0.7554 
Overall Kappa = 0.7757 

 
Table 7. Transition matrix table 1996 (columns) against 2016 (rows) 

 

 1 2 3 Total 
1 6,141 18,267 7,362 31,770 
2 817 11,659 20,938 33,414 
3 737 6,906 110,695 118,338 
Total 7,695 36,832 138,995 183,522 

 

Chi Square = 277594.50000 
df = 12 
P-Level = 0.0000 
Cramer's V = 0.7101 
Overall Kappa = 0.7235 



3.4.2 Transition probability matrix of 2006 
(columns) against 2006 (rows)

 
In Table 6, the row categories highlight the SAVI 
classes in 2006 while the column depicts the 
2016 classes. Thus, the Low SAVI has 19,473 
probability of remaining Low SAVI and 6012 of a 
 

Table 8. Transition matrix table between 1996/2006; 2006/2016 and 1996/2016
 

Tabulation between 1996/2006 

Category Km
2
 Legend

1 18.3015000 3 
2 15.2622000 1 
3 5.7519000 2 
4 0.5013000 3 
5 6.7599000 1 
6 17.6139000 2 
7 7.3296000 3 
8 0.0009000 0 
9 0.4761000 1 
10 9.7830000 2 

 

Fig. 19. Transition matrix map for Landsat 
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Transition probability matrix of 2006 
(columns) against 2006 (rows) 

In Table 6, the row categories highlight the SAVI 
classes in 2006 while the column depicts the 
2016 classes. Thus, the Low SAVI has 19,473 
probability of remaining Low SAVI and 6012 of a 

change to the moderate SAVI in 2016. This 
indicate a change, which reduces with probability 
of change, which is higher than its stability. 
Moderate SAVI express the highest class with 
20,135 probability of remaining moderate
2016. High SAVI shows 92,988 to remain high 
SAVI in 2016, whereby it implies stability.

Transition matrix table between 1996/2006; 2006/2016 and 1996/2016

Tabulation between 
2006/2016 

Tabulation between 
1996/2016 

Legend Category Km
2
 Legend Category Km

3 0.0000000 0 0 16.2360000 1
1 17.5257000 1 1 6.2154000 2
1 5.4108000 2 1 0.6624000 3
1 0.1782000 3 1 18.8451000 15
2 3.6900000 1 2 5.5269000 1
2 18.1215000 2 2 16.4403000 2
2 6.7815000 3 2 6.6258000 3
3 0.2997000 1 3 0.0009000 0
3 8.1711000 2 3 0.7344000 1
3 21.6018000 3 3 10.4931000 2

 
 

Transition matrix map for Landsat TM/ETM+ (1996/2006) 

 
 
 
 

; Article no.IJPSS.61263 
 
 

change to the moderate SAVI in 2016. This 
indicate a change, which reduces with probability 
of change, which is higher than its stability. 
Moderate SAVI express the highest class with 
20,135 probability of remaining moderate SAVI in 

92,988 to remain high 
SAVI in 2016, whereby it implies stability. 

Transition matrix table between 1996/2006; 2006/2016 and 1996/2016 

Tabulation between 

Km
2
 Legend 

1 1 
2 1 
3 1 
15 1 
1 2 
2 2 
3 2 
0 3 
1 3 
2 3 
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3.4.3 Transition probability matrix of 1996 
(columns) against 2016 (rows) 

 
Here, the row categories show that the SAVI 
classes in 1996 with the column categories 
showing the 2016 classes. From Table 7, we see 
that the Low SAVI has 6,141 probability of 
remaining Low SAVI and 18,267 of a change to 
the moderate SAVI in 2016. This indicate an 
increase in the change with probability of 
change, which is higher than its stability. 

Moderate SAVI exhibit a class with 11,659 
probability of remaining moderate SAVI in 2016. 
High SAVI express probability with high 110,695 
value in order to remain as high SAVI in 2016, 
hence signifying stability. 
 
Table 8 shows the overall transition matrix table 
from 1996 – 2016 for the study. 
 
Figs. 19 – 21 shows the transition matrix output 
maps for the study. 

 

 
 

Fig. 20. Transition matrix map for Landsat ETM+/OLI (2006/2016) 
 

 
 

Fig. 21. Transition matrix map for Landsat TM/OLI (1996/2016) 



Table 
 

SAVI Classes 
Area (Km

Low 25.7607
Moderate 14.173
High 43.7926

 

 
Fig. 22. Descriptive statistics for SAVI density classification for 2030

 

4. THE SOIL ADJUSTED VEGETATION 
INDEX (SAVI) MODELLING AND 
PREDICTION FOR 2030 

 
The Markov Chain Analysis is an excellent tool 
for modelling land use changes.  A Markovian 
process is express as one, by which the future 
state of a particular system is modeled mainly on 
immediately preceding state. Markovian chain 
analysis highlight land use and classification 
changes from one state to another based for 
project future change.  This is obtained by 
preparing a transition probability matrix of 
respective land use change from a particular 
period of time to another, which highlight the 
state of occurring changes. The transition 
probability might be accurate, with basis on per 
category analysis, but no knowledge about the 
spatial distribution of the occurrences taking 
place within each of the land use category. 
Owing to this, the Cellular Autom
used, so as to include the spatial character to the 
model.  The CA – Markov utilizes the output 
which is derived from the Markov Chain Analysis, 
most particularly the Transition Area file, so as to 
apply a contiguity filter.  The CA often devel
spatial explicit weighting which is heavy in areas 
that proximate to existing like land classification 
classes.  Table 9 shows the overall projected 
SAVI classification results for the 2030. Here, the 
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 9. Projected SAVI analysis for 2030 

2030 
Area (Km

2
) Percentage (%)

25.7607 30.77
14.173 16.93
43.7926 52.30

Descriptive statistics for SAVI density classification for 2030

THE SOIL ADJUSTED VEGETATION 
INDEX (SAVI) MODELLING AND 

The Markov Chain Analysis is an excellent tool 
for modelling land use changes.  A Markovian 
process is express as one, by which the future 
state of a particular system is modeled mainly on 
immediately preceding state. Markovian chain 

d use and classification 
changes from one state to another based for 
project future change.  This is obtained by 
preparing a transition probability matrix of 
respective land use change from a particular 
period of time to another, which highlight the 

of occurring changes. The transition 
probability might be accurate, with basis on per 
category analysis, but no knowledge about the 
spatial distribution of the occurrences taking 
place within each of the land use category. 
Owing to this, the Cellular Automata (CA) is 
used, so as to include the spatial character to the 

Markov utilizes the output 
which is derived from the Markov Chain Analysis, 
most particularly the Transition Area file, so as to 
apply a contiguity filter.  The CA often develop a 
spatial explicit weighting which is heavy in areas 
that proximate to existing like land classification 
classes.  Table 9 shows the overall projected 
SAVI classification results for the 2030. Here, the 

SAVI classification for low, moderate and high 
class values are 25.76 km2, 14.17 
km

2
 respectively representing 30.77%, 16.93% 

and 52.30%. When compared to the SAVI 
analysis for 2016, we see that the category of 
low SAVI increase in 2030, decrease in the 
moderate category and increase again i
high SAVI category class. 

 
Fig. 22 show the descriptive statistics SAVI 
output maps for the study for 2030.

 
5. CONCLUSION 
 
Remote Sensing have proven to be an excellent 
tool in mapping and modelling areas, associated 
with hydrocarbon micro – seepage
Landsat satellite imageries were utilized to 
monitor the influence of hydrocarbon micro 
seepage, by producing different SAVI 
classification maps. The findings of the study 
shows that the high SAVI density classification 
increased progressively from 31.95% to 34.92% 
and to 36.77% in 1996, 2006 and 2016 
respectively. The category of moderately SAVI 
density classification reduced from 40.53% in 
1996 to 38.77% in 2006 and then to 36.96% in 
2016 while the category of low SAVI density was 
found to decrease progressive from 27.51% in 
1996 to 26.31% in 2006 and then increased to 
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Percentage (%) 
30.77 
16.93 
52.30 

 

Descriptive statistics for SAVI density classification for 2030 

SAVI classification for low, moderate and high 
, 14.17 km2 and 43.79 

respectively representing 30.77%, 16.93% 
and 52.30%. When compared to the SAVI 
analysis for 2016, we see that the category of 
low SAVI increase in 2030, decrease in the 
moderate category and increase again in the 

Fig. 22 show the descriptive statistics SAVI 
output maps for the study for 2030. 

Remote Sensing have proven to be an excellent 
tool in mapping and modelling areas, associated 

seepage. In the study, 
Landsat satellite imageries were utilized to 
monitor the influence of hydrocarbon micro - 
seepage, by producing different SAVI 
classification maps. The findings of the study 
shows that the high SAVI density classification 

ively from 31.95% to 34.92% 
and to 36.77% in 1996, 2006 and 2016 
respectively. The category of moderately SAVI 
density classification reduced from 40.53% in 
1996 to 38.77% in 2006 and then to 36.96% in 
2016 while the category of low SAVI density was 

to decrease progressive from 27.51% in 
1996 to 26.31% in 2006 and then increased to 
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28.26% in 2016. The SAVI model is categorized 
into increase, decrease and unchanged classes, 
with the un – changed category increasing from 
12.32km

2
 (15.06%) in 1996 to 17.17 km

2 

(20.96%) in 2006 and then decelerate to 13.50 
km

2
 (16.51%) in 2016. The decrease category 

changed from 39.89km
2
 (48.78%) in 1996 to 

40.45 km2 (49.45%) in 2006 and to 51.52 km2 
(63.0%) in 2016 while the increase category 
changed from 29.57km2 (36.16%) in 1996 to 
24.18 km

2 
(29.58%) in 2006 and to 16.75 km

2
 

(20.49%) in 2016.  Image differencing, cross 
tabulation and overlay operations were various 
techniques performed in the study, to ascertain 
the effect of hydrocarbon micro - seepage.  The 
Markov chain analysis is a technique which was 
used to predict the effect of the hydrocarbon 
micro - seepage in the study for 2030.The study 
shows that SAVI is an excellent remote sensing 
techniques for mapping areas influenced by 
hydrocarbon micro – seepage. 
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