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ABSTRACT 
 

Aims: This work is devoted to the development of a finite element algorithm for solving problem in 
forced vibrations of folded low shells. 
Methodology: The differential equations for harmonic analysis are obtained from the Lagrange 
variational principle. Description of the dynamic behavior is made by the structure discretization into 
a system of curvilinear iso-parametric finite elements used in modal analysis. The method is 
implemented by a calculation code on a square-plane folded shell model withnumber of crease 
edges in both directions k=l=3. 
Results: Displacement amplitudesare obtained by decomposition into vibration eigenforms. The 
maximum values of dynamic stresses are determined taking into account the shell's support 
conditions.The results of the harmonic analysis show thatimprovement in frequency characteristics 
and reduction of stresses in the folded shell depend on the constructive and internal damping of the 
structureand the increase in the number of fold edges k and l in both directions for 
examplebecause this contributes to decrease in the forced vibration amplitudes. 
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1. INTRODUCTION 
 

1.1 Study Background 
 

Low shells are important structural elements 
widely used in various engineering applications 
such as industrial building covers, cultural, 
sports, etc. In these applications the shell 
structures may encounter vibrations and as a 
result may fail due to material fatigue. In the last 
decades, a huge amount of research efforts has 
been devoted to vibration analysis and dynamic 
behaviors of the shells and a lager variety of 
shell theories and computational methods have 
been proposed and developed by researchers. 
 

1.2 Classical Approaches to Free and 
Forced Vibration Study of Low Shells 

 

A comprehensive review on these can be found 
in [1]. This work includes comprehensive results 
of free vibration frequencies and mode shapes of 
shells subjected to different boundary conditions 
as well as detailed analysis of various shell 
theories. For vibration analysis of thin shells, 
classical shell theory has been used by many 
researchers [2-8]. Forced vibration of low shell 
with classical boundary condition is also of 
concern for a long time. Based on first order 
shear deformation theory, Khan et al. [9] 
performed the vibration analysis of clamped-
clamped cylindrical shells using finite element 
method. Qu et al. [10] applied a domain 
decomposition technique to vibration problem of 
uniform and stepped cylindrical shells. Free and 
forced vibration of shell were examined under 
different boundary conditions and the forced 
response of shell was presented with different 
influence factors. Dai and Jiang [11] presented 
an analytical solution for forced vibration of a 
FGPM cylindrical shell and the effects of electric 
excitation, thermal load, mechanical load, and 
volume exponent on the static and dynamic 
behaviors were discussed. From the engineer's 
point of view, solving a vibration problem is the 
assessment of the damping properties of 
resonance pulsation Ω (or damping frequencyf) 
and modal damping η. The first approaches are 
analytical and rely in their entirety on various 
hypotheses to establish simplified differential 
equations. These can then easily be resolved 
using basic methods and allow the extraction of 
damping properties. However in real applications 
we face structures of various geometric and 
material configurations with varied limit 
conditions. The formulation of such problems 

leads to complex equations that are difficult to 
solve with analytical methods. The only possible 
approach remains digital. In the literature, there 
are finite element models of all kinds, based on 
very different hypotheses [12,13]. 
 

1.3 Study Objectives 
 

Some models are limited by the generated 
freedom degree number, others either by the 
geometric shape or the material configuration. 
This is the example of folded shell structures with 
a specified number of crease edges in both 
directions. However to our knowledge work 
related to the numerical study in forced vibrations 
of folded low shells is very little available in the 
technical literature. 
 

In this work we propose an finite element 
algorithm for forced vibration problem solving of 
folded low shells by superimposing mode method 
taking into account the damping and constructive 
parameters of such structures. 
 

2. MATERIALS AND METHODS 
 

Folded shell will be modelled with use of iso-
parametric curvilinear quadrangle elements from 
the second order to eight nodes, with variable 
characteristics (Fig. 1). 
 

The description of dynamic behaviour will be 
based on the lagrange variational principle [14]: 
 

�

��
�

�∋

��̇
� −

�∋

��
= �,             (1) 

 
Here ∋= Π − � is Lagrange's function, 
Π, �  - the potential and kinetic energy of 
deformation and vibration of the shell, 
q- the nodal displacement vector of the finite 
element model, 
F - excitation loads. 
 
Using the Lagrange’s variational principle (1) we 
get the governing differential equation for 
harmonic analysis of the shell in matrix form. The 
finite element formulation of discrete equation of 
the movement of the structure taking into 
account damping can be expressed in the 
following matrix form: 
 

[�] �
�²�

��²
� + [�] �

��

��
� + [�]{�} = {�},             (2) 

 

Or 
 

[�]{�̈} + [�]{�̇} + [�]{�} = {�}, 
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{q}-generalizednodal displacement vector; 
{ �̈} , {�̇}  - nodal acceleration vector and nodal 
velocity vector respectively; 
[�] ,[�], [�]- the rigidity matrix, damping matrix 
and masse matrix respectively; 
{�} - nodal excitation load vector. 
 

In practice damping matrix is approximated by 
following relationship: 
 

[�] = �[�] + �[�].            (3) 
 

Remember that the equation of free vibrations 
without damping is of the following form: 
 

(−��
�[�] + [�]){��}� = {0}         (3a) 

 

Knowing that for a conservative vibrational 
process all points of the structure move with the 
same frequency but with different phases, 
displacements can be expressed as follows: 
 

{�} = {�����}��Ω�            (4) 
 

��- displacement amplitude 
Ω - external load pulse, 
t – time, 
� - displacement phase. 
 

Forformulation of the problem in forced vibrations 
we will use complex notations. In this case 
expression (4) can be written in the following 
form: 
 

{�} = {��(���� + �����)}��Ω� = ({��} +
�{��})��Ω�                                                 (5) 

 

{��} = {������} - real part of the displacement 
vector, 
{��} = {������} -imaginary part of the 
displacement vector. 

As external excitation load is periodic vector of 
dynamic charges can be expressed by Fourier’s 
serie form: 
 

{�} = �� ∘��Ω����Ω� = {�∘(cosΨ)}��Ω� =

({��} + �{��})��Ω�,                 (6) 
 
��- loading amplitude, 
�  – loading phase, 
�� = {������ } - real part of the force vector, 
�� = {������ }- imaginary part of the force vector. 

 
By substituting (5) and (6) into (2) we get: 

 
�−Ω�[�] + Ω[�] + [�]�({��} + �{��})��Ω� =

({��} + �{��})��Ω�                                        (7) 
 
Or 
 

�[�] − Ω
�[�] + Ω[�]�({��} + �{��}) =

({��} + ���) .                                               (8) 
 
The problem (8) leads to the determination of the 
amplitude and load characteristics in forced 
vibrations and can be solved by the direct 
integration methods (central difference method, 
Wilson or Newmark method for example). 
However since these methods require 
considerable computational timewe have to use 
the superposition modemethod wich consist of 
decomposition the desired solution into 
eigenmodes to move on modal coordinates ��  by 
the following condition: 
 

{�} = ∑ {��}� ��
Θ
�� �  ,            (9) 

 
{��}�- vibration form of the k mode, 
Θ- considered mode number. 

 

 
 

Fig. 1. Eight node Iso-parametric curvilinear element 
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By substituting expression (9) into equation (2) 
we get: 
 

M ∑ {��}�
�
�� � �̈�  + C  ∑ {��}�

�
�� � �̇�  + K 

∑ {��}�
�
�� � �� = {F}                                  (10) 

 
By multiplying equation (10) by the mode{��}�

�  

we get: 
 

{��}�
�  M ∑ {��}�

�
�� � �̈�  + {��}�

�  C ∑ {��}�
�
�� � �̇� 

+{��}�
�K ∑ {��}�

�
�� � �� = {��}�

�  {F}              (11) 
 

As previously stated M and K are orthogonal 
matrices [15,12]. 
 

For example for M matrix we have: 
 

{��}�
�M{��}� = 0      ��  � ≠ �  

 

And forK matrix we have: 
 

{��}�
�K{��}� = 0     ��   � ≠ �         (12) 

 
The mode superposition method involves: 
 

{��}�
� C{��}� = 0     ��   � ≠ �         (13) 

 

Applying conditions (12) and (13) to equation 
(11) we get the terms where k=j: 
 

{��}�
�  M {��}��̈�  +  {��}�

�  C {��}��̇� + {��}�
�  

K{��}���= {��}�
�{F}.                                    (14) 

 
One can write also: 
 

{��}�
�M{��}� =  �����

� =1,                          (15) 

 

From where we have:��� = 1
� ��

� . 

 
Following [12] we have: 
 

�� = 2��� ����  ,   �� =  
�

��
��

�  ,        (16) 

 
��- relative damping value for the j mode, 

�� - eigenpulse for the j mode. 
 

So assuming the orthogonality of C taking into 
account (16) we get: 
 

{��}�
�C{��}� = 2��� ����(1 � ��⁄ )� = 2����.  

(17) 

By multiplying the equation (2.3a) by {��}�
� we 

get: 
 

{��}�
� K{��}� = ��

�{��}�
� M{��}�.        (18) 

 
Taking into account (15) equation (18) becomes: 
 

{��}�
� K{��}� = ��

�.          (19) 

 
By substituting expressions (15), (17) and (19) 
into equation (14)we get a system of Θ 
independent motion equations for modal 
coordinates: 
 

�̈� + 2�����̇� + ��
���= ��,         (20) 

 
Here �� is the modal coordinate; 

��  - load corresponding to the modal 

coordinate;�� = {��}�
� {�}. 

 
For conservative harmonic vibrations ��has the 

following form: 
 

�� =  �������            (21) 

 
���- Load amplitude in complex form 

Ω - external load pulsation. 
 
The initial conditions for ��(�) are obtained from 

equality (9) and the following conditions: 
 

���

��
=

���

��
=

���

��
=

���

��
=

���

��
= 0      (21a) 

 
For equation (2.20) it is necessary to write the 
modal coordinate �� in the same form as  ��in 

(21) i.e.: 
 

��= ������� ,           (22) 

 
Here���  amplitude of the modal coordinate j in 

complexform. 
 
So taking into account (21) and (22) equation 
(20) becomes: 
 

-� ��������  + 2����(�� ������� )  + ��
��������  = 

�������                        (23) 

 
By simplifying by ��Ω� we get the following 
equation: 
 

(-� � + �2� ���� + ��
�)��� =  ���′        (24) 

 
Whose solving gives us: 
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��� =  
���

�� �
��� ��� �(�� ��� �)

           (25) 

 
Knowing the modal coordinates can be 
determined the contribution of each mode in the 
solution: 

 
{��}= {��}����          (26) 

 
���� - contribution of the j mode (displacement 

vector in complex form), 
{��}� – eigenmode j. 

 
Having determined the values of �� taking into 

account (23-26) and using the equation (9), we 
find the movements {�}. 

 
Finally by suming up each of the modes, 
displacements can be determined in complex 
form: 
 

{��} = ∑ {��}�
�� �           (27) 

 

3. DETERMINATION OF THE DYNAMIC 
STRESS-STRAIN STATE 

 

After determining the displacement amplitude 
values following (27) the stress-strain oft he shell 
can be assessed.The behavior on the finite 
element average plane is described by the 
following relationship: 
 

{�} = �

���

���

���

�= [�� ]{�} =
�

���²
�

1 � 0
� 1 0

0 0
(���)

�

��

��

��

��

�   

. (28) 
 

here [�� ]- the shell elasticity matrix. 
 

Geometry of the shell average plane is given in 
global system of curvilinear coordinates 
(∝ �, ∝ �, �),� being the perpendicular coordinate to 
the shell average plane,∝ �,  ��� ∝ � coordinates 

in the other two 
directions.Either ��(��, ��) , ��(��, ��) , ��(��, ��) 
the components of the displacement vector on 
the shell average plane. The components of the 
elastic deformation tensor are given in the 
following form: 
 

⎩
⎪
⎨

⎪
⎧

ℇ�

ℇ�

ℇ�

ℇ�

ℇ�

ℇ�⎭
⎪
⎬

⎪
⎫

=

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

���

���

�

�
�

���

���
+ ���

�

�

���

���
+

���

���

����

���
�

−
�

�
�

�

�

�²��

���
� −

���

���
�

�

�
�

���

���
−

�²��

������
� ⎭

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

         (29) 

 
R- curvature radius of the hull. 
 
The dynamic stresses will be determined by 
taking into account (5), (28) and (29). The 
exposed mathematical model allows analysis of 
thestresse and deformation distribution for given 
vibration frequencies and forms. 
 

4. RESULTS AND DISCUSSION 
 
The object structure of the study is a square-plan 
folded shell with the mathematical model 
presented in Fig. 2. The crease edge number in 
both directions is k=l=3. 
 

Shell is discretized by a mesh consisting of 1600 
elements and 1640 nodes (Fig. 3). 
 
- Limit conditions. Two types of boundary 

conditions are considered: CCCC and SSSS 
conditions. 

- Initial conditions. They are given by: 
 

For t=0, 
���

��
=

���

��
=

���

��
=

���

��
=

���

��
= 0    (30) 

 

 
 

Fig. 2. Mathematical model of folded shell 
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Fig. 3. Folded shell mesh 
 

On the other hand, the hull is subjected to a 
harmonic frequency load Ω� = 14,1 ∙ 10����. The 
excitation load amplitude is �� = 0,12 ���. 
 
Fig. 4 shows the variations curves of the 
deflections �� according to the coordinate∝ �. 
 

Fig. 4(1) characterizes the distribution of �� 
deflections with CCCC boundary conditions, 
while Fig. 4(2) shows the distribution of 

deflections with SSSS-type boundary conditions. 
We see that the maximum values of ��  are 
observed at the first resonance. 
 
Fig. 5 reports the results of calculation of normal 

displacements in forced vibrations (Ω� =
Ω�

��
� ) 

according to internal damping,where Ω� is a 
frequency parameter, Ωthe frequency of forced 
vibrations, ��the resonance frequency. 

 

 
 

Fig. 4. Deflection variation curve�� according to coordinate ∝ � 
1- CCCC boundary conditions 
2- SSSS boundary conditions 

 

 
 

Fig. 5. Forced Vibration amplitudes with damping 
1- CCCC boundary conditions 
2- SSSS boundary conditions 
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The considered damping coefficient is � = 0,06, 
the excitation frequency is Ω� = 7,759 ∙ 10���� . 
Fig. 5(1) corresponds to the CCCC clamped 
shell, while Fig. 5(2) corresponds to the SSSS 
simply supported shell. On these curves it is 
observed that the maximum amplitude is reached 
on the resonance frequency and then its value 
decreases rapidly. It can also be seen that the 
amplitude values of the CCCC shell are higher 
than that of the SSSS shell, however we can see 
that the difference between these values is 
hardly considerable. 
 
Fig. 6 shows the frequency characteristics curves 
of the clamped shell with different values of the 
damping coefficients. 
 
It can be seen on these curves that when the 
damping coefficient value increases amplitude 
maximum value decreases. It should be noted 
that forced vibration amplitude gradually 

increases with increase in vibration frequency. 
When one reaches the resonance frequency one 
observes a sudden increase and then a gradual 
decrease in displacement amplitude. Knowledge 
of eigen frequencies prevents resonance 
appearing in a frequency range by increasing the 
mechanical rigidity of the system. This reduces 
the variable component of dynamic forces that is 
the main excitation source. 
 
In Fig. 7, acceleration variations in the central 
section of folded shell are reported. 
 
The maximum and minimum acceleration values 
for both shell types are 1,75 �/�� and −1,64 �/
��  for the CCCC shell, 1,25 �/��  and −1,15 �/
�� for the SSSS shell respectively.The maximum 
acceleration of the clamped is greater than that 
on simple support. This shows the influence of 
the support mode on forced vibration amplitude 
of the shell. 

 

 
 

Fig. 6. Curves of the frequency characteristics of forced vibrations 
1- Damping coefficient � = 0,06 
2- Damping coefficient � = 0,03 

 

 
a) 
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b) 
 

Fig. 7. Acceleration variation curves in the central section of the shell 
a- CCCC boundary conditions 
b- SSSS boundary conditions 

 
Table 1. Maximum and minimum acceleration 

values of the central section 
 

Shell type Acceleration, �/�� 
Мах Мin 

CCCC shell 1,75 -1,64 
SSSS shell 1.25 -1.15 

 
Fig. 8 shows vertical displacement curves in the 
central section for both shell types depending on 
the considered boundary conditions. 
 
The maximum and minimum displacements are 
0.23 m and -0.23 m respectively for the clamped 
shell, 0.140 m and -0.141 m for the simply 
supported shell. We can see that the maximum 
displacement in the central section of the 
clamped shell is greater than that of the shell on 
simple support. This also shows influence of the 
support mode on deflections in the central 
section of folded shell. 

Fig. 9 shows the stress distribution in the central 
section of the two shell types according to the 
considered boundary conditions. 
 
The maximum and minimum values of normal 
stresses in the central sections are 2,132 MPa 
and -0,0928 MPa respectively for clamped             
shell, 0.940 MPa and -0.023 MPa for the               
simply supported shell. It can be seen that               
the maximum value of the dynamic normal      
stress in the central section of the simply 
supported shell is greater than that of the 
clamped shell. The results of the harmonic 
analysis show that improvement in frequency 
characteristics and reduction of stresses in              
the folded shell depends on the constructive              
and internal damping of the structure by 
increasing, for example, the number of fold 
edges k and l in both directions as this 
contributes to the decrease in the forced 
vibration amplitude. 

 

 
a) 
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b) 

 

Fig. 8. Vertical displacements in folded shell central section 
a- CCCC shell 
b- SSSS shell 

 

Table 2. Vertical displacements in the central section 
 

Shell type Vertical displacements, m 
Мах Мin 

CCCC shell 0.23 -0.23 
SSSS shell 0.140 -0.141 

 

Table 3. Normal stresse in the central section 
 

Shell type σmax(MPa) σmin(MPa) 
CCCC shell 2,132 -0,0928 
SSSS shell 0,940 -0,023. 

 

     
 

Fig. 9. Distribution of the dynamic stresses in the central section of folded shell 
a- CCCC shell 
b- SSSS shell 

 

5. CONCLUSION 
 

In this work we can conclude that a mathematical 
model of dynamic behaviour and stress-strain 
state of folded low shells has been developed. 
Taking into account the constructive 
characteristics related to the number of fold 
edges and the size. The following main results 
are: 

- A finite element algorithm is developed for 
the forced vibration analysis of low folded 
shell. 

- Differential equations for harmonic analysis 
of shells are obtained based on the 
Lagrange variational principle. 

- Description of the dynamic behaviour of 
the low shells is made by structure 
discretization into a system of curvilinear 

a) 
b) 
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iso-parametric  finite elements used in 
modal analysis. 

- The displacement amplitudes are obtained 
by decomposition into vibration 
eigenforms. 

- The proposed mathematical model is 
developed by the superposition mode 
method taking into account damping and 
constructive parameters. 

- The maximum values of dynamic stresses 
are determined, taking into account the 
shell support conditions. 

 

These results can serve astheoretical basis for 
the analysis and numerical calculation of 
frequency characteristics and stress for this class 
of structures subject to dynamic loadings. 
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