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Abstract: Rotor-stator cavities are often found in turbomachinery; they supply cold air that is bled
from the compressor to the turbine blades. The pressure of the outlet of a rotor-stator cavity is
axisymmetric under normal circumstances. However, its pressure would be non-axisymmetric in
the event of blade fracture. The impact of blade fracture on a rotor-stator cavity with centrifugal
superposed flow is studied in this paper. The Euler number E, the rotational Reynolds number Reϕ,
and the low-pressure zone range θ are investigated and, for the first time, with the non-axisymmetrical
boundary conditions employing numerical simulation. The results of the numerical calculations
show that after turbine blade fracture, the velocity is more affected in the downstream region at a
high radius, especially when the Reϕ is large. As for the distribution of the mass flow rate, there may
be a critical θc at which the other blades are least affected. The θc would increase as the Reϕ or the
E increase, and the θc ∼= 0.2 when Cw = 10, 137, Reϕ = 5.12× 105, and 0.2 ≤ E ≤ 0.4. In addition,
the thrust coefficient increases as the E or the θ increases, and the increase in the thrust coefficient
does not exceed 4% when the E = 0.2 and the θ = 0.1 in this paper. However, the moment coefficient
on the rotating shaft is almost independent of the E and the θ. An increase in the Reϕ will reduce the
effect of turbine blade fracture on the thrust and moment coefficients, when the Reϕ is small.

Keywords: rotor-stator system; non-axisymmetric boundary conditions; numerical simulation;
turbine blade fracture

1. Introduction

By raising turbine-entry temperatures, some axial turbomachines may reach an effi-
ciency of approximately 80% with well-designed impellers. While part of the temperature
increase may be attributed to the discovery of new materials, the majority would be at-
tributed to advancements in cooling technologies. For this purpose, a small amount of
the air collected from the compressor is utilized to cool the nozzle guide vanes, turbine
blades, and disks. This type of flow may be found in almost all turbomachinery cavi-
ties positioned between the rotating impeller and the stationary disk, which is called the
rotor-stator system.

Concerns about the design of turbines are divided into two categories: blade de-
sign and rotor-stator cavity design. The design of a rotor-stator cavity is critical, since
it is directly connected to numerous practical concerns, such as swirl ratio, axial thrust,
and moment coefficients. To fulfill industrial expectations, the causes of axial thrust and
disk frictional loss are explored.

The core swirl ratio β (the ratio of the fluid’s angular velocity to that of the disk at
half the axial gap width) is used to demonstrate the fluid’s dominating tangential motion.
The pressure distribution along the rotor may be approximated using the core swirl ratio.
The axial thrust operating on the disks may be calculated using the pressure distribution.
In addition, the moment coefficient is affected by the tangential velocity profile. Thus,
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it can be seen that the core swirl ratio is one of the most important parameters in the design
of a turbine.

In the case of an enclosed rotor-stator cavity, the core swirl ratio depends exclusively
on geometry. Daily and Nece [1] classify the flow regimes into four categories according to
core swirl ratio, and turbulent flow regimes (regimes III and IV) are more likely to occur in
turbines. Will [2] summarizes some of the usual β values reported in the literature and uses
β = 1/

(
1 +
√

1 + 5G
)

to forecast the effect of G on β for enclosed rotor-stator cavities.
As for the impact of superposed flow on rotor-stator cavity, Owen [3] provides a flow

model to determine the core swirl ratio by solving the Ekman equations for flow regime IV.
In his configuration, the flow direction is usually radially outward. The Ekman equations
are linearized, simplified versions of the equations of motion. Finally, the functional relation
for the core swirl ratio in laminar flow is derived by ignoring the outer cylindrical wall in
the motion equation. Owen [3] used the integral technique to solve the nonlinear equations
of motion for the disk boundary layer in a turbulent flow. The overall decelerating effect of
an outer (stationary) shroud on core rotation may be seen in both measured and calculated
data. Will [2] introduced a correction for the stator’s friction factor in order to reflect such
effects in the flow model. Please see the review literature [2–4] for further information.

When evaluating the above works from a safety perspective, these efforts that can
minimize the likelihood of failure might be referred to as “active safety designs.” Despite
significant attempts to protect the blade from high strain, the service experience of aero
engines suggests that turbine blade fracture is a common problem [5,6]. As a result,
substantial attention is devoted to secondary failure induced by initial turbine blade
fracture, with an emphasis on failure development. Then, to avoid and manage the spread
of failure, many designs were developed that are examples of “passive safety designs.”
This article focuses on the influence of turbine blade fracture on the engine, which is a
concern of “passive safety designs.”

The outlet boundary of the rotor-stator cavity is axisymmetric in the case of common
conditions (that is, the backpressure of the cavity is uniform). However, when turbine
blades fracture in actual work, the channel inside the broken blades is exposed to the
low-pressure mainstream, which results in discrepant pressure at the outlet of the rotor-
stator cavity. Because of the discrepant pressure, a large volume of cold air will rush to the
broken blades, reducing the cold air acquired by the normal blades, assuming that the total
volume of cold air is constant. A normal blade may potentially fail, due to overlimiting
the thermal stress, because the amount of cold air obtained by the normal blade is less
than the needed quantity. A continuing development is that the distribution of cold air
will become increasingly uneven, and eventually cause a cascade of turbine blades to
break [7]. In addition, the probability of turbine blade fracture exceeds 10−7 times per flight
hour [8], which is above the probability of hazardous occurrences [9] required by FAA AC
33.75. Therefore, the influence of blade fracture on gas turbines must be demonstrated.
In previous publications, the impact of blade fracture on turbines has been investigated [8].
This paper focuses on the influence of the non-axisymmetric boundary caused by turbine
blade fracture on a simple rotor-stator cavity.

The axisymmetric boundary and the axisymmetric configuration were used in previous
studies of the rotor-stator cavity. Few papers focused on the flow with non-axisymmetric
boundary conditions in a rotor-stator system. Below is a synopsis of the relevant research.

Bein et al. [10,11] explored a lubricating oil sealing problem in a narrow rotor-stator
cavity. At the outlet of the cavity, there is a high-pressure zone and a low-pressure zone, and
a certain pressure lubricating oil is provided at the disk center. The problem has the follow-
ing characteristics: first, the rotational Reynolds number is very small, Res = Ωs2/ν� 1;
second, the Euler number is sufficiently large, E = (p2 − p1)/0.5ρΩ2b2 � Res

−1; third,
the gap is narrow, G � 1. Based on these assumptions and characteristics, the velocity and
pressure can be obtained by solving the simplified NS equation.

Another type of problem is gas ingress. There has been abundant research on this
problem [12,13]. This paper only refers to one significant theoretical model for analyzing
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this issue: the orifice model. The orifice model was proposed by Owen [14]. It is based
on two assumptions: (1) that the flow is from a large reservoir through a small nozzle;
and (2) that there is a discontinuous flow across an imaginary surface of the actuator disk.
For an axial clearance seal, the orifice model is built on an imaginary “orifice ring.” Through
the tiny regions δAe and δAi, which add up to the clearance area Ac of the seal, egress
and ingress occurs across the separate regions of the orifice ring at the same time. For the
inviscid equations, mass and energy are considered to be continuous inside the separate
stream tubes for egress and ingress, but there is a pressure discontinuity across the orifice
ring. The principal “orifice assumptions” are that (r2 − r1)/r1 � 1 and V2

r,1 � V2
r,2 for

egress, and vice versa for ingress. When the pressure distribution inside and outside the
orifice ring is known, the velocity distribution of ingress and egress can be solved via the
orifice model.

For the rotor-stator cavity studied in this paper, the Reϕ � 1 and the inertial force term
cannot be ignored, so the model of Bein et al. [10] cannot be used. Additionally, because
the radial velocity difference between different radii in the cavity is so small, the orifice
model cannot be utilized. This paper investigates the effect of turbine blade fracture on the
rotor-stator cavity, employing numerical simulation in terms of swirl ratio, mass flow rate
distribution, thrust, and moment coefficients.

2. Computational Setup

A typical diagram of a rotor-stator system is shown in paper [15], where the radius
of the nozzles is lower than that of the receiver holes and the cold air flow is radially
outward. Generally, when a turbine blade fractures, structures such as the mortise are
intact. Therefore, this can lead to a low outlet pressure zone in the rotor-stator system.
To investigate the effect of turbine blade fracture on a rotor-stator system in isolation,
a simple disk cavity model, as shown in the Figure 1, was selected for this paper.
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Figure 1. Computational model used in this paper.
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When turbine blades fracture, the backpressure of the outlet in the rotor-stator cavity
is no longer axisymmetric, assuming that the backpressure profile of the outlet is a stepped
distribution, as shown in Figure 1, P(θ). The high-pressure zone has a pressure of P2,
and the low-pressure zone has a pressure of P1. The low-pressure zone covers the area
where the turbine blades are fractured and the high-pressure zone covers the area where
the blades are intact. The upstream area is located in the counter-rotating direction of the
low-pressure zone, while the downstream area is located in the cis-rotating direction of the
low-pressure zone. The upstream border and the downstream border are the interfaces
between the high- and low-pressure zones, where the former is located at ϕ = π (shown
as the green line in Figure 1) and the latter is located at ϕ = π+ θ (shown as the red
line in Figure 1). The middle of the low-pressure zone means the position in the middle
of the low-pressure zone, located at ϕ = π+ θ/2 (shown as the yellow line in Figure 1).
A sector calculation domain cannot be adopted because the boundary conditions are
not axisymmetric. The calculation uses a simple 360◦domain without a peripheral wall,
as shown in Figure 1. The flow enters radially at a low radius and exits at a high radius,
and the coordinate is fixed at the rotor’s center. The direction of rotation is pointing to the
stator and is perpendicular to the rotor. The gap between the rotor and the stator is 9 mm,
and the radius of the rotor and stator is 250 mm.

Poncet et al. [16–18] found that when the flow rate is modest, the flow structure in a
rotor-stator cavity with radial outflow is similar to that of a closed rotor-stator cavity, while
the flow structure becomes Stewartson type when the flow rate is large. Combined with
the research of Owen et al. [3,19], the turbulence parameter λT affects the flow structure
in the cavity without pre-swirl. A Stewartson-type structure is found at a low radius
and a Batchelor-type structure is found at a high radius in the case of radial outflow.
The Stewartson region at a low radius will expand as the λT increases, while the Batchelor
region will shrink until the Stewartson region is filled throughout the entire cavity. There-
fore, the λT is a vital parameter in the case of an intact turbine (in axisymmetric boundary
conditions). We also wanted to know what role it plays in the case of a non-intact turbine
(in non-axisymmetric boundary conditions). Therefore, the λT covers the typical working
condition of a rotor-stator cavity [3,20] in this paper. Bein et al. [10,11] employed the Euler
number, E, to describe the axisymmetry of boundary conditions relative to centrifugal effect.
This paper also adopts the E, assuming that the pressure at the mortise (outlet of the cavity)
equals the mainstream pressure after the turbine blades fracture. The backflow margin of
the film hole is roughly 15% to 20% under design conditions [21]; therefore, the pressure
ratio between the high-pressure zone and the low-pressure zone is about 1 ≤ P2/P1 ≤ 1.3
(assuming that the total pressure relative to the turbine rotor is equal to the static pressure).
Considering the range of the rotational Reynolds number, the Euler number is 0 ≤ E ≤ 0.4
in this paper.

Another important parameter is the range of low-pressure, denoted as θ, which
describes the number of broken blades. Modern gas turbines typically have 60–70 turbine
blades, so a single turbine blade accounts for approximately 0.1 rad. A single turbine
blade fracture results in a low-pressure zone range of 0.1 rad, and a succession of N blade
fractures results in a low-pressure zone range of 0.1 * N rad, using 0 ≤ θ ≤ 0.4 in this
paper. The cases and parameters involved in this paper are shown in Table 1. When the E
or the θ is zero, the turbine blades are intact and the boundary conditions are axisymmetric
(corresponding to cases I, J, K, L in Table 1).
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Table 1. The range of parameters.

Case G Cw Θ Reϕ λT E

A 0.036 13,107 0.1 2.39× 105 0.65 0.2
B 0.036 13,107 0.1 5.12× 105 0.35 0.2
C 0.036 13,107 0.1 1.02× 106 0.20 0.2
D 0.036 13,107 0.1 2.39× 106 0.10 0.2
E 0.036 13,107 0.1 5.12× 105 0.35 0.4
F 0.036 13,107 0.1 5.12× 105 0.35 0.04
G 0.036 13,107 0.2 5.12× 105 0.35 0.2
H 0.036 13,107 0.4 5.12× 105 0.35 0.2
I 0.036 13,107 0 2.39× 105 0.65 0
J 0.036 13,107 0 5.12× 105 0.35 0
K 0.036 13,107 0 1.02× 106 0.20 0
L 0.036 13,107 0 2.39× 106 0.10 0

The grid used in this paper was meshed by rotating and copying a 2D planar grid
to eliminate the effects of a non-axisymmetric grid on calculation (meshed by ICEM19.1).
The local grid is shown in Figure 2. Grid setting refers to [22], with 200 radial grids,
140 axial grids, 360 tangential grids, a 0.001 mm thickness of the first layer in the wall
boundary layer, and a 1.1 growth rate. The total number of grids surpasses ten million,
and Y+ < 1 in almost all the disks in the above cases.
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The working medium was air with constant density, viscosity, and heat capacity,
calculated by commercial software, CFX19.1. A nonslip adiabatic wall condition was
defined for all walls. According to the operating conditions in the pre-swirl system,
the wall was set to be stationary or rotating, and the rotational speed was set for rotor.
The turbulence model of SST and a high-order discrete scheme were employed in this
article, according to Poncet et al. [22] and Da [23]. To ignore the effect of heat transfer on
the flow, the air was set as an isothermal fluid. Computational convergence was accepted
when the residual of the continuity equation converged to RMS < 10−6.

3. Results and Discussion
3.1. Swirl Ratio

To calculate the axial thrust, it was first necessary to calculate the distribution of the
pressure across the disk surface. The distribution of pressure was, in turn, highly dependent
on the flow structure in the cavity. Based on previous studies [1], the flow structures were
classified by different distributions of the swirl ratio in the axial direction. Therefore,
the effect of turbine blade fracture on the swirl ratio was analyzed initially, as set out below.

The distribution of the β in the radial direction for different circumferential positions
is shown in Figure 3. As can be seen from that figure, β at φ = 0 when blade fracture is
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exactly the same as when the blades are intact. This means that the position away from the
low-pressure zone was not affected by turbine blade fracture in terms of the β. Furthermore,
in the low-radius region (r∗ < r∗c ∼= 0.7), the β values at different circumferential positions
were equal, implying that the effects of turbine blade fracture did not propagate to the
low-radius position. In the high-radius region (r∗ > r∗c ∼= 0.7), on the other hand, the β
was affected to a greater extent. Specifically, in the upstream half of the low-pressure zone
(φ < π + θ/2), there was a larger β when blades fractured, while in the downstream half of
the low-pressure zone (φ > π + θ/2), the β was smaller. Clearly, r∗c decreases as the degree
of boundary asymmetry increases (i.e., the E or the θ increases). It is also worth noting that
the β values at the upstream and downstream borders of the low-pressure zone (φ = π and
φ = π + θ) were almost equal in magnitude and opposite in sign, with the absolute value of
the β at the downstream border (φ = π + θ) being somewhat larger. The reason for the rapid
zeroing of the β near the outlet is due to the stepped outlet pressure. Figure 4 shows the
velocity vector and contour of the β when the Reϕ = 5.12× 105, E = 0.2, θ = 0.1 at z/s = 0.5,
from which it can be seen that the β is roughly symmetrically distributed. However,
at locations very close to the outlet (r/b = 1), the small amount of fluid near the upstream
and downstream borders is squeezed by the fluid at the lower-radius locations, causing it
to be unable to flow out from the outlet of the low-pressure zone and only be able to flow
radially at a lower velocity. As a result, the β tends to zero at these extreme locations and,
again, these locations are more likely to experience backflow.

Aerospace 2022, 9, x FOR PEER REVIEW 6 of 25 
 

 

exactly the same as when the blades are intact. This means that the position away from 
the low-pressure zone was not affected by turbine blade fracture in terms of the β. Fur-
thermore, in the low-radius region (ݎ∗ < ∗ݎ ≅ 0.7), the β values at different circumferential 
positions were equal, implying that the effects of turbine blade fracture did not propagate 
to the low-radius position. In the high-radius region (ݎ∗ > ∗ݎ ≅ 0.7), on the other hand, 
the β was affected to a greater extent. Specifically, in the upstream half of the low-pressure 
zone (ϕ < π + θ/2), there was a larger β when blades fractured, while in the downstream 
half of the low-pressure zone (ϕ > π + θ/2), the β was smaller. Clearly, ݎ∗ decreases as the 
degree of boundary asymmetry increases (i.e., the E or the θ increases). It is also worth 
noting that the β values at the upstream and downstream borders of the low-pressure 
zone (ϕ = π and ϕ = π + θ) were almost equal in magnitude and opposite in sign, with the 
absolute value of the β at the downstream border (ϕ = π + θ) being somewhat larger. The 
reason for the rapid zeroing of the β near the outlet is due to the stepped outlet pressure. 
Figure 4 shows the velocity vector and contour of the β when the ܴ݁ఝ = 5.12 × 10ହ, E = 
0.2, θ = 0.1 at z/s = 0.5, from which it can be seen that the β is roughly symmetrically dis-
tributed. However, at locations very close to the outlet (r/b = 1), the small amount of fluid 
near the upstream and downstream borders is squeezed by the fluid at the lower-radius 
locations, causing it to be unable to flow out from the outlet of the low-pressure zone and 
only be able to flow radially at a lower velocity. As a result, the β tends to zero at these 
extreme locations and, again, these locations are more likely to experience backflow. 

0.2 0.4 0.6 0.8 1.0

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

 

V ϕ
/Ω

 r

r/b

 Ε=0.2, θ=0.1-ϕ=0
 Ε=0.2, θ=0.1-ϕ=π
 Ε=0.2, θ=0.1-ϕ=π+θ/2
 Ε=0.2, θ=0.1-ϕ=π+θ
 Ε=0, θ=0

 
Figure 3. The β in different circumferential positions when the ܴ݁ఝ = 5.12 × 10ହ at z/s = 0.5. 

 

Figure 4. Velocity vector and contour of the β when the ܴ݁ఝ = 5.12 × 10ହ, E = 0.2, θ = 0.1 at z/s = 
0.5. 

Figure 3. The β in different circumferential positions when the Reϕ = 5.12× 105 at z/s = 0.5.

Aerospace 2022, 9, x FOR PEER REVIEW 6 of 25 
 

 

exactly the same as when the blades are intact. This means that the position away from 
the low-pressure zone was not affected by turbine blade fracture in terms of the β. Fur-
thermore, in the low-radius region (ݎ∗ < ∗ݎ ≅ 0.7), the β values at different circumferential 
positions were equal, implying that the effects of turbine blade fracture did not propagate 
to the low-radius position. In the high-radius region (ݎ∗ > ∗ݎ ≅ 0.7), on the other hand, 
the β was affected to a greater extent. Specifically, in the upstream half of the low-pressure 
zone (ϕ < π + θ/2), there was a larger β when blades fractured, while in the downstream 
half of the low-pressure zone (ϕ > π + θ/2), the β was smaller. Clearly, ݎ∗ decreases as the 
degree of boundary asymmetry increases (i.e., the E or the θ increases). It is also worth 
noting that the β values at the upstream and downstream borders of the low-pressure 
zone (ϕ = π and ϕ = π + θ) were almost equal in magnitude and opposite in sign, with the 
absolute value of the β at the downstream border (ϕ = π + θ) being somewhat larger. The 
reason for the rapid zeroing of the β near the outlet is due to the stepped outlet pressure. 
Figure 4 shows the velocity vector and contour of the β when the ܴ݁ఝ = 5.12 × 10ହ, E = 
0.2, θ = 0.1 at z/s = 0.5, from which it can be seen that the β is roughly symmetrically dis-
tributed. However, at locations very close to the outlet (r/b = 1), the small amount of fluid 
near the upstream and downstream borders is squeezed by the fluid at the lower-radius 
locations, causing it to be unable to flow out from the outlet of the low-pressure zone and 
only be able to flow radially at a lower velocity. As a result, the β tends to zero at these 
extreme locations and, again, these locations are more likely to experience backflow. 

0.2 0.4 0.6 0.8 1.0

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

 

V ϕ
/Ω

 r

r/b

 Ε=0.2, θ=0.1-ϕ=0
 Ε=0.2, θ=0.1-ϕ=π
 Ε=0.2, θ=0.1-ϕ=π+θ/2
 Ε=0.2, θ=0.1-ϕ=π+θ
 Ε=0, θ=0

 
Figure 3. The β in different circumferential positions when the ܴ݁ఝ = 5.12 × 10ହ at z/s = 0.5. 

 

Figure 4. Velocity vector and contour of the β when the ܴ݁ఝ = 5.12 × 10ହ, E = 0.2, θ = 0.1 at z/s = 
0.5. 
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Figure 5 shows the distribution of the β in the circumferential direction for different
radii. From preliminary calculations, it can be concluded that the rate of change of the β
relative to that of an unfractured blade hardly varies with the radius after turbine blade
fractures. Furthermore, as the Reϕ increases (from case A/I to D/L), the downstream area
of the low-pressure zone is progressively more affected than the upstream area.
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the centrifugal forces, which are still gradually increasing, slowly plateau. As a conse-
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Another point of interest is that as the Reϕ increases, the rate of change of the β
decreases (see Figures 6 and 7). For example: at r/b = 0.92, the maximum β increases by
180%, 102%, 62%, and 50% when Reϕ = 2.39× 105, 5.12× 105, 1.02× 106, and 2.39× 106,
respectively. This is because the influence of centrifugal forces becomes greater as the Reϕ

increases and the circumferential imbalance is gradually suppressed by the centrifugal
forces, so that the variations in the β decrease. However, as the Reϕ continues to increase,
the centrifugal forces, which are still gradually increasing, slowly plateau. As a consequence,
the rate of change in the β gradually tends to a constant.
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The distribution of the β in the circumferential direction for different Euler numbers
and different θ numbers is shown in Figures 8 and 9, respectively. The dashed vertical lines
in the figures represent the position of the downstream border of the low-pressure zone at
different θ numbers. It can be seen from the two figures that the effect of the E and the θ on
the β after turbine blade fracture is similar. As the E or the θ increases, the fluctuation of the
β increases, especially at high-radius locations. The standard deviation of the β at r/b = 0.44,
0.68, and 0.92 is 0.00381, 0.00576, and 0.01612, respectively, when E = 0.4 (case E in Figure 8).
It is worth noting that the change in the maximum and minimum values of E 6= 0 or θ 6= 0,
relative to that of E = 0 or θ = 0, was not very different, and is slightly larger downstream,
which was probably due to the coriolis force of the counter-rotational direction. It is known
that when the rotor is stationary, the β will be distributed symmetrically by the middle
of the low-pressure zone. However, when the rotor has a rotational speed, the fluid near
the upstream and downstream borders is subjected to a reversing tangential coriolis force.
As a result, the negative β at downstream borders is smaller, while the positive β at
upstream borders is somewhat reduced. Another interesting point in Figure 9 is that at
high radii (r/b = 0.92), the peaks of both negative and positive β appearing around the
upstream and downstream borders are shifted towards the middle of the low-pressure
zone as the θ increases, compared to a symmetrical case.
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3.2. Radial Velocity and Mass Flow Rate Distribution
3.2.1. Radial Velocity

When the turbine blades are not fractured, the flow in the rotor-stator cavity is ax-
isymmetric, and therefore the amount of cold air obtained by each turbine blade is equal.
However, when the turbine blade fractures and fails, the flow in the rotor-stator cavity is no
longer symmetrical, resulting in an uneven velocity as well as a mass flow rate distribution.
This leads to problems with uneven cooling of the turbine disk and the turbine blades. This
section will focus on the distribution of radial velocity and mass flow rate after a turbine
blade fracture.

The distribution of the dimensionless radial velocity in the circumferential direction
for different rotational Reynolds numbers is shown in Figure 10. It is clear that as the Reϕ

increases, the maximum value at the high-radius position (r/b = 0.92) gradually shifts from
the middle of the low-pressure zone towards the downstream border. At the same time,
the radial velocity distribution becomes more asymmetric and steep, indicating that radial
velocity is more sensitive to turbine blade fracture when the Reϕ is high. This is also evident
from the tangential velocity distribution.
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standard deviation of the radial velocity at r/b = 0.44, 0.68, and 0.92 is 0.00447, 0.02628, and 
0.14153, respectively. One phenomenon is worth noting in Figure 11. An increase in the E 
has little effect on the distribution pattern of the radial velocities, which are essentially 
symmetrically distributed. For r/b = 0.92 and E = 0.04, 0.2, and 0.4, the skewness (which 
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Figure 10. Dimensionless radial velocity for Cw = 10, 137, E = 0.2, θ = 0.1 at z/s = 0.5.

Figures 11 and 12 show the distribution of the dimensionless radial velocity in the
circumferential direction for different E and θ numbers. As can be seen from the figures,
the E and the θ have a similar effect on the radial velocity distribution. The upstream areas
are more affected at the low-radius locations, while the downstream areas are more affected
at the high-radius locations. In addition, the high-radius position is more affected than the
low-radius position. The standard deviation of the radial velocity at high-radius locations
is about one order of magnitude larger than that at low radii. For E = 0.4, the standard
deviation of the radial velocity at r/b = 0.44, 0.68, and 0.92 is 0.00447, 0.02628, and 0.14153,
respectively. One phenomenon is worth noting in Figure 11. An increase in the E has little
effect on the distribution pattern of the radial velocities, which are essentially symmetrically
distributed. For r/b = 0.92 and E = 0.04, 0.2, and 0.4, the skewness (which can be used to
measure the asymmetry of the distribution) is 5.39, 5.70, and 5.84, respectively, while the
kurtosis (which can be used to measure the steepness of the distribution) is 32.07, 35.63,
and 37.34, respectively.
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mainly due to the different magnitudes of the radial coriolis force on the upstream and 
downstream areas. When θ ≠ 0 (turbine blade fracture), the tangential velocities on either 
side of the low-pressure zone are in opposite directions, and the fluid in the upstream 
areas is subject to a smaller radial inward coriolis force, while the fluid in the downstream 
areas is subject to a larger force, so the radial velocity in the downstream areas is smaller 
and more prone to backflow. This phenomenon is more pronounced at a larger θ, where 
the difference in tangential velocity between the two sides of the low-pressure zone is 
greater, and therefore the effect of the coriolis force is more pronounced. This means that 
when a turbine blade fractures, the downstream area at the high-radius location is more 
affected, in terms of radial velocity. 

Figure 11. Dimensionless radial velocity for Cw = 10, 137, Reϕ = 5.12× 105, θ = 0.1 at z/s = 0.5.

As the θ increases, the distribution of radial velocities becomes increasingly asymmetri-
cal, with the downstream gradually taking the lead in the emergence of recirculation zones
(as shown in Figure 12). In addition, the minimum values in the downstream areas decrease
by a larger amount relative to θ = 0 than those in the upstream areas. (This phenomenon
becomes more pronounced as the θ increases, as θ = 0.4 and r/b = 0.92). This is mainly due
to the different magnitudes of the radial coriolis force on the upstream and downstream
areas. When θ 6= 0 (turbine blade fracture), the tangential velocities on either side of the
low-pressure zone are in opposite directions, and the fluid in the upstream areas is subject
to a smaller radial inward coriolis force, while the fluid in the downstream areas is subject
to a larger force, so the radial velocity in the downstream areas is smaller and more prone
to backflow. This phenomenon is more pronounced at a larger θ, where the difference in
tangential velocity between the two sides of the low-pressure zone is greater, and therefore
the effect of the coriolis force is more pronounced. This means that when a turbine blade
fractures, the downstream area at the high-radius location is more affected, in terms of
radial velocity.



Aerospace 2022, 9, 106 13 of 25Aerospace 2022, 9, x FOR PEER REVIEW 13 of 25 
 

 

1.24

1.26

1.28

1.30

1.32

1.20

1.35

1.50

1.65

1.80

0

1

2

3

4

 

r/b=0.44

3.14
3.24

3.34

3.54

V r
/(m

/ρ
2π

 rs
)

 

r/b=0.68

.

 θ=0
 θ=0.1 
 θ=0.2 
 θ=0.4 

 

r/b=0.92

ϕ
0 π/2 π 3π/2 2π

 
Figure 12. Dimensionless radial velocity for ܥ௪ = 10,137, ܴ݁ఝ = 5.12 × 10ହ, ܧ = 0.2 at z/s = 0.5. 

3.2.2. Mass Flow Rate 
Figure 13 shows the distribution of the mass flow rate in the circumferential direction 

at different ܴ݁ఝ values with the vertical coordinates indicating the ratio of the actual mass 
flow rate to the average mass flow rate. It can be seen from the figure that as the ܴ݁ఝ 
increases, backflow gradually appears in the area near the upstream and downstream bor-
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zone upstream, eventually leading to a large inverse pressure at the upstream border (as 
shown in Figure 14, the pressure coefficient is defined by Equation (4)). Therefore, this 
pressure is more likely to produce backflow upstream.  

In addition, as the ܴ݁ఝ increases, the radial inward coriolis force on the downstream 
region gradually increases (i.e., the tangential velocity relative to the rotor increases, as 
does the rotational speed, as shown in Figure 5), so backflow also begins to occur. From 
the above analysis, it is clear that when a particular blade fractures (θ = 0.1), the flow rate 
of its upstream blade will be reduced or even experience gas intrusion, and the blade is 

Figure 12. Dimensionless radial velocity for Cw = 10, 137, Reϕ = 5.12× 105, E = 0.2 at z/s = 0.5.

3.2.2. Mass Flow Rate

Figure 13 shows the distribution of the mass flow rate in the circumferential direction
at different Reϕ values with the vertical coordinates indicating the ratio of the actual mass
flow rate to the average mass flow rate. It can be seen from the figure that as the Reϕ

increases, backflow gradually appears in the area near the upstream and downstream
borders, and the outflow in the low-pressure area also increases significantly due to mass
flow rate conservation. At Reϕ = 2.39× 106, the maximum mass flow rate is 27 times larger
than the average value. Meanwhile, as the Reϕ increases, the location of the maximum
mass flow rate gradually moves from the middle of the low-pressure zone towards the
downstream border. Another point of interest is that at the current condition (θ = 0.1),
the mass flow rate at the upstream border is always smaller than that at the downstream
border, regardless of how the Reϕ varies. (This phenomenon is of course more pronounced
when the Reϕ is larger). This is because the fluid at the low-pressure zone is subject to a
higher counter-rotating tangential coriolis force, due to the higher radial velocity than that
at other areas, which pushes the low-pressure fluid in the low-pressure zone upstream,
eventually leading to a large inverse pressure at the upstream border (as shown in Figure 14,
the pressure coefficient is defined by Equation (4)). Therefore, this pressure is more likely
to produce backflow upstream.
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In addition, as the Reϕ increases, the radial inward coriolis force on the downstream
region gradually increases (i.e., the tangential velocity relative to the rotor increases,
as does the rotational speed, as shown in Figure 5), so backflow also begins to occur.
From the above analysis, it is clear that when a particular blade fractures (θ = 0.1),
the flow rate of its upstream blade will be reduced or even experience gas intrusion,
and the blade is therefore more likely to fracture; continuing to increase the Reϕ will also
affect the downstream blade.

Figure 15 shows the distribution of the mass flow rate in the circumferential direction
for different Euler numbers. As in the analysis above, the variation in the E does not
affect the distribution pattern of the mass flow rate; the mass flow rate remains maximum
in the middle of the low-pressure zone and minimum at the upstream and downstream
borders. As the E increases, the maximum and minimum values increase and decrease,
respectively, and the mass flow rate at the upstream border is always smaller than that at
the downstream border. The reasons for this are analyzed above.
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Figure 16 shows the distribution of the mass flow rate in the circumferential direction
for different θ values It is clear from the figure that the maximum values of the mass flow
rate occur in the middle of the low-pressure zone when Reϕ = 5.12× 105, regardless of
the variation of the θ, and that the maximum values are almost equal. When the θ is small
(θ = 0.1), backflow occurs at both the upstream and downstream borders, and the mass
flow rate at the upstream border is smaller than that at the downstream border; as the θ
increases (θ = 0.2), the backflow zone disappears and the mass flow rate at the upstream
and downstream borders is almost equal; upon continuing to increase the θ (θ = 0.4),
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the backflow zone reappears, but the mass flow rate at the downstream border is smaller
than that at the upstream border. It seems that when θ = θc (θc = 0.2, when Cw = 10, 137,
Reϕ = 5.12× 105, and E = 0.2), the backflow zone disappears and the mass flow rate of the
upstream and downstream border are equal; when θ > θc, the backflow zone gradually
appears first at the downstream border; and when θ < θc, the backflow zone gradually
appears first at the upstream border.

Aerospace 2022, 9, x FOR PEER REVIEW 16 of 25 
 

 

-4

-2

0

2

4

6

. 2.97 3.30 3.63

-3.6

-1.8

0.0

 =0

 =0.1 

 =0.2 

 =0.4 

 

 

m
/m

a
ve



3.24
3.34

3.54

0    

.

 

Figure 16. Distribution of mass flow rate for 𝐶𝑤 = 10,137, 𝑅𝑒𝜑 = 5.12 × 105, 𝐸 = 0.2 at r/b = 1. 

From the above analysis, it is clear that the 𝜃𝑐 will increase as the 𝑅𝑒𝜑 and the E 

increase. Figure 17 shows the distribution of the mass flow rate in the circumferential di-

rection for different θ when 𝐶𝑤 = 10,137, 𝑅𝑒𝜑 = 5.12 × 105, and E = 0.4. The figure shows 

that for 𝜃 = 0.2, the flow rate at the upstream border is still smaller than that at down-

stream border, so the value of the 𝜃𝑐 should be slightly greater than 0.2. 

-5.6

-2.8

0.0

2.8

5.6

8.4

. 2.88 3.20 3.52

-5.8

-2.9

0.0

m
/m

av
e



 

 

 

 

0    

.

 

Figure 17. Distribution of mass flow rate for 𝐶𝑤 = 10,137, 𝑅𝑒𝜑 = 5.12 × 105, 𝐸 = 0.4 at r/b = 1. 

  

Figure 16. Distribution of mass flow rate for Cw = 10, 137, Reϕ = 5.12× 105, E = 0.2 at r/b = 1.

The reason for this phenomenon is that when the θ is small, the tangential velocity is
small, the radial coriolis forces have little influence, and the pressure dominates, while the
inverse pressure gradient near the upstream border is larger (see Figure 14), so the mass
flow rate near the upstream border is smaller. As the θ increases, the radial coriolis force
gradually increases, but the radial inward coriolis force near the downstream border is
larger than at the upstream border, superimposed on the influence of pressure, until θ = θc,
when the upstream and downstream borders are subject to the same radial combined
force. In this case, the mass flow rate of upstream and downstream borders is equal. Upon
continuing to increase the θ, the effect of the coriolis force is greater, while the Euler number
remains the same (the effect of pressure remains the same), so the downstream border
is subject to a greater radial inward force, resulting in a smaller mass flow rate at the
downstream border than at the upstream border. For the cooling of turbine blades, it is
vital to find the θc. If a blade fractures at a point where θ = θc, then the distribution of cold
air will be as balanced as possible, thus potentially avoiding the serious consequences of
gas intrusion and ensuring the safety of the engine.

From the above analysis, it is clear that the θc will increase as the Reϕ and the E increase.
Figure 17 shows the distribution of the mass flow rate in the circumferential direction for
different θ when Cw = 10, 137, Reϕ = 5.12× 105, and E = 0.4. The figure shows that for
θ = 0.2, the flow rate at the upstream border is still smaller than that at downstream border,
so the value of the θc should be slightly greater than 0.2.
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3.3. Pressure and Thrust
3.3.1. Pressure Coefficient

The axial thrust of a gas turbine is critical to the performance and safety of the engine.
However, to the authors’ knowledge, there are no studies to date on the change in turbine
disk axial thrust after turbine blade fracture. This section investigates the distribution of
pressure and then analyses the variation of axial thrust. In previous studies, Will et al. [2]
used Equation (1) to evaluate the pressure distribution along the radius of the disk in a
rotor-stator cavity with through-flow for an incompressible, steady flow.

∂p
∂r

= ρβCqr
2Ω2r +

ρQ2

4π2s2r3 (1)

Based on Equation (1), the pressure along the radius of the disk can be calculated with
Equation (2) by Hu et al. [24].

p(r) = pb +
∫ r

b
ρβCqr

2Ω2rdr +
ρQ2

8π2s2

(
1
b2 −

1
r2

)
(2)

Dimensionless pressure is defined as follows:

P∗ =
p

ρΩ2b2
(3)

The pressure coefficient is defined as:

Cp = P∗
( r

b
= 1

)
− P∗

( r
b

)
(4)

Figure 18 shows the pressure coefficient distribution for the different circumferential
positions of cases B, D, F, and H, numbered a, b, c and d, respectively. As can be seen from
Figure 18a, the pressure coefficients obtained by Equation (2) are in very good agreement
with the SST model, indicating that the SST model is suitable for this problem. Throughout
these four plots, it can be seen that the pressure coefficients at the low-radius locations are
almost unaffected, in line with the previous analysis. In contrast, at high radii, the pressure



Aerospace 2022, 9, 106 18 of 25

coefficients are generally larger at the middle of the low-pressure zone (φ = π + θ/2) than at
other locations (except in case H), and larger at the downstream border (φ = π + θ) than at
the upstream border (φ = π). Comparing the plots of cases B and D, the pressure coefficients
of upstream and downstream borders tend to be equal at high-radius locations as the Reϕ

increases. Comparing the two plots of cases B and F, a change in the Euler number does not
significantly affect the distribution pattern of the pressure coefficients; only the magnitude
of the values changes. Comparing the graphs of cases B and H, the pressure coefficient at
the downstream border even exceeds that at the middle of the low-pressure zone as the θ
increases. This corresponds to the fact that the downstream border is the first to experience
backflow as the θ increases (see Figure 16).
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near the upstream border at the high-radius location. The pressure coefficient decreases 
as the ܴ݁ఝ increases. However, by continuing to increase the ܴ݁ఝ, the pressure coeffi-
cient at high radii increases (see the enlargement of Figure 19a). Furthermore, there is a 
sudden drop in the pressure coefficient at the downstream border (ϕ = π + θ) near the 
outlet. This is mainly because the fluid in the low-pressure zone is carried upstream and 
the downstream is filled with high-pressure fluid (similar to Figure 14). 

Figure 18. Pressure coefficient of different cases at plane z/s = 0.5: (a) case B, (b) case D, (c) case F,
(d) case H.
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Figure 19 shows the distribution of pressure coefficients at different Reϕ values, where
a, b, c and d represent different circumferential positions. As the Reϕ increases, the pressure
coefficients at each location do not vary much, except for a slight increase near the upstream
border at the high-radius location. The pressure coefficient decreases as the Reϕ increases.
However, by continuing to increase the Reϕ, the pressure coefficient at high radii increases
(see the enlargement of Figure 19a). Furthermore, there is a sudden drop in the pressure
coefficient at the downstream border (φ = π + θ) near the outlet. This is mainly because
the fluid in the low-pressure zone is carried upstream and the downstream is filled with
high-pressure fluid (similar to Figure 14).
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Figure 19. Pressure coefficient for Cw = 10, 137, E = 0.2, θ = 0.1 at plane z/s = 0.5: (a) φ = 0,
(b) φ = π, (c) φ = π + θ/2, (d) φ = π + θ.

Figure 20 shows the distribution of the pressure coefficients for different Euler num-
bers, where a, b, c and d represent different circumferential positions. It is clear that an
increase in the Euler number does not affect the pressure at low radii. As for the higher
radii, the pressure coefficients in and around the low-pressure zone increase significantly
as the Euler number increases.

The distribution of pressure coefficients for different θ values is shown in Figure 21,
where a, b, c and d represent different circumferential positions. Unlike the E and the Reϕ,
variations in the θ can affect the pressure coefficient even at low-radius locations, resulting in
an increase in the pressure coefficient in the low-pressure region and its immediate vicinity.
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Figure 20. Pressure coefficient for Cw = 10, 137, Reϕ = 5.12 × 105, θ = 0.1, at plane z/s = 0.5:
(a) φ = 0, (b) φ = π, (c) φ = π + θ/2, (d) φ = π + θ.
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Figure 21. Pressure coefficient for Cw = 10, 137, Reϕ = 5.12 × 105, E = 0.2, at plane z/s = 0.5:
(a) φ = 0, (b) φ = π, (c) φ = π + θ/2, (d) φ = π + θ.
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3.3.2. Thrust Coefficient

Figure 22 shows the thrust coefficients of the rotor and stator for different cases,
where a, b and c show the impact of the Reϕ, E and θ respectively. The thrust coefficient
characterizes the ratio of the axial force on the disk to the centrifugal force, which is defined
as in [25]:

CF =

v
(pb − p)ds
ρΩ2b4

=
∫ b

a

2π(pb − p)rdr
ρΩ2b4

(5)
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By definition, CF and Cp are related as follows:

CF =

v
(pb − p)ds
ρΩ2b4

=
1
b2

{ (pb − p)ds
ρΩ2b2

=
1
b2

{
Cpds (6)

It is clear that the thrust coefficients of the rotor and the stator are almost equal. E = 0
and θ = 0 mean the blades are intact, while E = 0.2 and θ = 0.1 means a blade is fractured.
From Figure 22a, it can be seen that the disk thrust coefficient of the stator increases by 1.7%,
3.3%, 3.8%, and 0.8%, when the Reϕ = 2.39× 105, 5.12× 105, 1.02× 106, and 2.39× 106,
respectively, because of blade fracture. This is mainly due to the fracture of the turbine
blades, resulting in a low-pressure area on the disk surface. In addition, the increased
ratio first increases and then decreases as the Reϕ increase. When the blades are already
fractured, the thrust coefficient of the disks decreases significantly as the Reϕ increases
but as the Reϕ continues to increase, the thrust coefficient increases. This is the result
of the combined effect of centrifugal force and the low-pressure zone. When the Reϕ is
small, increasing the Reϕ will increase the effect of centrifugal force, making the pressure
coefficient gradually converge to zero across the disk (refer to Figure 19), so the thrust
coefficient decreases significantly. However, by continuing to increase the Reϕ, the pressure
coefficient at high radii increases (see the enlargement of Figure 19a). Therefore, continuing
to increase the Reϕ will increase the thrust coefficient slightly, according to Equation (6).
This also means that the thrust coefficient is more sensitive to the Reϕ whether blades
fracture or not, especially when the Reϕ is small. Figure 22b shows that an increase in
the Euler number increases the thrust coefficient. Figure 22c shows that an increase in
the θ also increases the thrust coefficient, and the effect of the θ on the thrust coefficient is
approximately linear.
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3.4. Moment Coefficient

Figure 23 shows the moment coefficients of the rotor and the stator on the rotor shaft
z for different cases, where a, b and c show the impact of the Reϕ, E and θ respectively.
The moment coefficient is defined by Equation (7) [25]:

CM =
2·|M|
ρΩ2b5

(7)
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Figure 23. Moment coefficient of rotor and stator on the rotating shaft (z): (a) E = 0.2, θ = 0.1;
(b) Reϕ = 5.12× 105, θ = 0.1; (c) Reϕ = 5.12× 105, E = 0.2.

From Figure 23, it can be seen that the moment coefficient of the rotor is much greater
than that of the stator. In addition, the E (turbine blade fracture) and the θ have almost no
effect on the moment coefficient. Figure 23a shows that as the Reϕ increases, the moment
coefficient of the rotor decreases while that of the stator increases, whether or not blades
fracture. This is mainly because as the Reϕ increases, the swirl ratio increases, and there-
fore the moment coefficient of the rotor decreases (according to Han et al. [26]). How-
ever, an increase in the swirl ratio increases the relative velocity of the fluid to the stator,
and therefore the moment coefficient of the stator increases.

After the turbine blade fracture, a low-pressure zone appears and the pressure dis-
tribution in the rotor-stator cavity is no longer symmetrical, so the moment coefficient on
the radial direction is not zero. This means that the turbo disk tends to roll over on its
side. The moment coefficients for the rotor and the stator on ϕ = π/2 + θ/2 are shown in
Figure 24, where a, b and c show the impact of the Reϕ, E and θ respectively. It is equal
in magnitude to that on the rotating shaft. The moment coefficient in this direction is the
largest of all radial directions. The moment coefficients of the stator and the rotor are
essentially the same. Figure 24a shows that as the Reϕ increases, the moment coefficient
decreases. This is because the pressure coefficient gradually converges to zero along the
radius as the Reϕ increases. From Figure 24b,c, it can be seen that increasing the E and the
θ increases the moment coefficient.
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Figure 24. Moment coefficient of rotor and stator on the ϕ = π/2 + θ/2: (a) E = 0.2, θ = 0.1;
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4. Conclusions

Turbine blade fracture can lead to engine safety problems, so this paper investigated
the effect of turbine blade fracture on the flow in a simple rotor-stator system without a
shroud, employing numerical simulation. The results of the numerical simulations were
compared with relevant empirical correlations. Specifically, this paper studied the effects
of control parameters, such as the rotational Reynolds number, the Euler number, and the
range of low-pressure zones on the velocity and pressure fields, as well as the thrust
coefficient, the moment coefficient, and heat transfer in a simple rotor-stator cavity. Within
the scope of this paper’s research, the following conclusions can be drawn.

1. For the swirl ratio, the effects of the rotational Reynolds number, the Euler number,
and the θ are similar. In addition, although the downstream region is more affected
than the upstream region, an increase in the Euler number and the θ increases the
swirl ratio variation, while an increase in the rotational Reynolds number decreases
the swirl ratio variation.

2. Increases in the rotational Reynolds number, the Euler number, and the θ all lead to a
more uneven distribution of the flow rate. Furthermore, regardless of the rotational
Reynolds number and the Euler number, the flow rate at the upstream border is
always smaller than at the downstream border, but an increase in the θ may lead
to a more balanced flow rate distribution (there is a critical θc that makes the flow
rate distribution most balanced; θc ∼= 0.2 when Cw = 10, 137, Reϕ = 5.12 × 105,
and 0.2 ≤ E ≤ 0.4).

3. Turbine blade fracture causes an increase in the thrust coefficient and is more pro-
nounced at smaller rotational Reynolds numbers. The increase in the thrust coefficient
does not exceed 4% when E = 0.2, θ = 0.1, as discussed in this paper.

4. Changes in the rotational Reynolds number, the Euler number, and the θ have al-
most no effect on the moment coefficient about the axis of rotation but have a more
significant effect on the moment coefficient about the radial direction. The latter
will decrease as the rotational Reynolds number increases and increase as the Euler
number and the θ increase.
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Abbreviations

a inlet radius, m
B radius of rotor and stator, m
S axial spacing between rotor and stator, m
Ac effective sealing area, m2

δAe, δAi area of a small orifice where air egresses/ingresses, m2

Cw dimensionless mass flow rate, m/µb
E Euler number, (P2 − P1)/0.5 ρΩ2b2

G gap ratio, s/b
.

m mass flow rate, kg/s
N number of blades
P1, P2 outlet pressure of rotor-stator cavity, Pa
P∗ dimensionless pressure difference, (P2 − p)/0.5ρΩ2r2

P(θ) pressure profile of outlet, Pa
Q volume flow rate, m3/s
r∗ dimensionless radius, r/b
Res rotational Reynolds number based on s, Ωs2/ν

Rer radial to rotational Reynolds number, Rer = Cw/2πGReϕ

Reϕ rotational Reynolds number based on b, Ωb2/ν

Vr, Vϕ radial and tangential velocity, m/s
Greek
β swirl ratio, Vϕ/Ωr
θ the range of low-pressure area, rad
Ω rotating velocity, rad/s
ν kinematic viscosity, m2/s
ρ density, kg/m3

λT turbulent flow parameter, Cw/Re0.8
ϕ

Subscript
r, z, φ radial, axial, and tangential coordinates, m/m/rad
c critical
1, 2 different location
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