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Abstract

In this paper, the static and dynamic buckling loads of a viscously damped imperfect finite column lying
on an elastic foundation with cubic — quintic nonlinearity but trapped by a step load (in the dynamic case)
is investigated analytically. The main objective is to determine analytically both the static and dynamic
buckling loads by means of perturbation and asymptotic procedures and relate both buckling loads in one
single formula. The formulation contains small perturbations particularly in the viscous damping and
imperfection amplitude. Multi — timing perturbation techniques and asymptotics are easily utilized in
analyzing the problem. The results, which are nontrivially obtained, are implicit in nature and are valid as
long as the magnitudes of the small perturbations become asymptotically small compared to unity.

Keywords: Non-linear elastic foundations, dynamic buckling; step load; perturbation and asymptotic
analyses.
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1 Introduction

Investigations concerning static and dynamic buckling of structures under prescribed loading histories, have
received tremendous patronage in recent times. Such investigations include studies by Chitra and
Priyardarsini [1], Ferri et al. [2], Kolakowski [3], Kowal-Michalska [4]and Mcshane et al. [5]. Priyardarsini
et al. [6] investigated numerical and experimental study of advanced fiber composite cylinders under axial
compression while Reda and Forbes [7] studied the dynamic effect of lateral buckling of high temperature /
high pressure of off shore pipelines. Of special note is the investigation by Belyav et al. [8], who
investigated the stability of transverse vibration of rod under longitudinal step — wise loading while Kripka
and Martin [9] investigated cold — formed steel channel columns optimization with simulated annealing
method. Similarly, Jatav and Datta [10] investigated shape optimization of damaged columns subjected to
conservative and non — conservative forces while Artem and Aydin [11] studied exact solution and dynamic
buckling analysis of beam — column loading.

Worthy of mention are also the following recent research works on the buckling of elastic structures and the
effects of imperfection on the structures. Patil et al. [12] reviewed the buckling analyses of various
structures like plates and shells while Hu and Burguefio [13] studied the elastic post buckling response of
axially — loaded cylindrical shells with seeded geometric imperfection design. In the same way, Ziolkowski
and Imieowski [14] discussed the buckling and post buckling behaviour of prismatic aluminium column
submitted to a series of compressive loads while Adman and Saidani [15] discussed the elastic buckling of
columns with end restraint effects. Similarly, Avcar [16] studied the elastic buckling of steel columns under
axial compression while Kriegesmann et al. [17] studied sample size dependent probabilistic design of
axially compressed cylindrical shells.

This work is an extension of previous works on columns to the case where the column lies on a cubic-
quintic nonlinear elastic foundation. It is to be noted that most other works had dealt with columns on cubic
foundations or quadratic — cubic nonlinear foundations. Works on columns with cubic - quintic nonlinearity
are rare.

2 Governing Equation of Motion

The governing differential equation satisfied by the normal displacement W(X, T) of the viscously damped
column trapped by an arbitrary load P(T) is as follows [18]:

d*w
MWop + oWy + EIW gy + 2PWyy + ki W + ak,W3 = Bk WS = —2P(T)——, T >0, (1)

axz’
0<X<m, (2)
W(X,0)= Wz(X,00=0, 0<X<m ¢4>0 3)
W= Wy =0atX=0m T=0 4)

where, m is the mass per unit length of the finite column, ¢, is the positive but light viscous damping
coefficient, EI is the bending stiffness, where E and I are the Young’s modulus and the moment of inertia
respectively,a and f3; are exponents of imperfection sensitivity parameters which are to be chosen such that
the structure is imperfection sensitive, W is the stress — free time independent but twice — differentiable
imperfection while X and T are spatial coordinate and time variable respectively. The cubic — quintic
nonlinear elastic foundation exerts a force per unit length given by kW + ak,W3 — B ksW5 on the
column. All nonlinearities higher than quintic are neglected while all nonlinear derivatives are similarly
neglected. Here, a subscript after a comma indicates partial differentiation.
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3 Nondimensionalization of the Governing Equations

Let
EI\G k\2 P(T) knZ
v @) we (e 0= LD e ()
1 2 2(Elk,)z 2
1 3
£= (E)ZT' 2e2= ﬂ=<ﬁ:—k>
m (mk,)2 2

On substituting these non-dimensional quantities into the governing equations, the resultant equations are

Weet 262We 4+ Wopee + 2f (OWay +w + aw® — pw’ = —ZAef(t)C;TZZ, t>0 (5)
oO<x<m (6)
w(x,0) = w(x,0) =0, 0<x<m @)
W= Wy(x0)=0atx=0m t=0 €))

Here, simply -supported boundary conditions are assumed, while € and A are small parameters satisfying the
inequalities 0 < € < 1, and 0 < A < 1. Physically, € denotes the amplitude of imperfection while A is that
of the applied load and f(t) is the actual time dependent load function, which, in this investigation, is the
step load given by

f@)={1, t>0 and O0for t<O 9

4 Solution of the Associated Static Problem

The governing equation in this case is

d*w d*w d’w

Tt ZAW+W+ aw? — pw® = —ZAEW, 0<x<m (10a)
w= dzw=0atx=0,n (10b)
dx?
Let
w= X2, VO (an

By equating coefficients of powers of €, the following equations are easily obtained.

dtv® a2y d*w

0€): — =+ 22—+ VW = —20e— (12)
atv® d?v®@

0(?): ——+ 20—+ V@ =0 (13)
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dtv® d2y® 3
3. @ = _g(y®
0(e%): — =+ 20—+ V a(v®) (14)
dty@® d2v@® 2
0(e"): — =+ 20—+ V@ = 3a(vV)v® (15)
av® azv® 2 2 5
5. ® - _ M2yE) 4 Oy &)
0(e9): — =+ 24—+ VO = 3a (VOIY® 4y Oy @) 4 py (16)
etc.
Let
@ = apsinmx, VO®u) = Yo, VPsinnx a7

Substituting Eq. (17) into (12) yields

Z:(n4 —2n24 + 1) VP sinnx = 2Am?a,,sin mx (18)

n=1

Multiplying (18) by sin mx , gives

2
"(11) T omt Z—A;nmgjln+ 1° (19a)
The solution of (13) easily yields
y® =0 (19b)
Equation (14) now takes the form
arw® dv® aB®
P + 22 P +V® = —T(3sin mx — sin 3mx ) (20)
On substituting (17) in (20), it is observed that, when n = m, the result is
74 = ﬂ, 6% = (m*-2m?A+1)>0 (21a)
402
However, for n = 3m, the result is
A i%(, w?= (81m*—18m?A+1) >0 ¥m 1
40w?
Thus, for V®, we get
Vv = vsin mx + Vg(,fl)sin 3mx (22)

On substituting in (15), using (19b), the following result is obtained

Vvt =0

Substitution is next made into (16), using (19b) and (22) to get
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3)
1 3V, 1 2 1 2
= —3a [E y?* (Tm - V;,fl)) sin mx + §<Vm(1) 3 ZVm(l) V,,(f)) sin 3mx

1
+ ZV(l)ZV;TfL)sin 5mx

5
+ 131—6(1 1sin mx — 5sin3mx + sin Smx ) (23)

Using (17) for n = m, we get

—3a(1 3 18
5) _ 2 3) 3) ,
V™ = [92 {EV(D <EV"‘ _‘/3"1)}+ 1692]5””’” 24

However, for n = 3m, the result is

56B5 —3a(l_ 2 1
5 .
v = [16w2 - — {EVm(l) A ZV(I) 1/3(31)}] sin 3mx (25a)
Now, when n = 5m in (23), we get
O OF
1|V 3al,
A = ST V3| sin 5mx (25b)

p?= (625m* —50m?A1+1)>0¥vm (25¢)
It follows that

VO = ysinmx + VS sin 3mx + V) sin 5mx (26)

Thus, the displacement at static loading is

w(x) = EV,,(ll)sin mx + 63(V,,(13)sin mx + Vg(,i)sin 3mx )
+ € (V,,(Ls)sin mx + Vg(,i)sin 3mx + Vg(,i)sin Smx ) + - 27

5 Static Buckling Load

As in Amazigo [ 18], the static buckling load A is obtained from the maximization
a _ 0 28

It should be noted that V,,(ll) depends on the load parameter A through B. The static buckling load will here be
given in two separate approximations, first, by taking the displacement strictly in the shape of the
imperfection and next, by admitting the buckling mode in the combined shape of sin 3mx alongside the
mode in the shape of imperfection.

5.1 Static Buckling Load Using Modes in the Shape of Imperfection

Here,

w(x) = (¥ + e3P + 54 )sinmx + - (29)
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where,
1) ®3) —3aB? 5) B>Qy
V.’ =B, VY = —207 m = a2 (30)
_11B 32{1(9+1)} 31
UG =16 3% glzez * o2 G
Equation (29) shall be determined at a convenient point, namely at x = %, where % = 0. This gives
w(x) = eV + 33 4+ Sy 4 32)
Let WWW=c, W =c  WW=oq.
Consequently, the result becomes
w=ec +e3c, + €5cg + (33)

It should be noted that the choice of x = % follows from the fact that the accompanying dynamic problem

will eventually be determined at the same point. As in Amazigo [18], the series (33) does not converge when
w > w,, where w, is the displacement at buckling. The difficulty is overcome by reversing (33) in the form

e =dw+dwd+ dsw®+ - (34

By substituting for w from (33) in (34) and equating the coefficients of powers of €, the following are
obtained

1 —cy 3¢2 — ¢4
d1 = a, dz = ?, d3 = T (35(1)
. _1 _ -3a _ —11Qss (B
L. dy = B’ d; = 4B62’ ds = 16B (92) Qa7
27 [a?
o= [ () o
11Q46 \ B

The maximization (28) is now accomplished through (34) to yield
This yields

—3d, +/9d2 — 20d,d,
10d,

w2 =

(37

By taking the positive square root sign, equation (37) becomes

18a 220046047
2 _ —_
M = 558 0unr [/1 BT 1] (38)

Therefore, the following result is finally obtained

1 1
2 (a\2 5
3J55(3) f 22004605 |
wy = —o2 D] | gy SETA6CAT (39)
vV Q4-6Q47 99
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where, (38) and (39) are determined at A = Ag. The static buckling load in the case of buckling modes
strictly in the shape of imperfection is determined by evaluating (34) at static buckling condition, where
w = w, andA = A;.This gives

€ = wyld;, + dyw2+d; wil (40)

Multiplying (40) by 5 and after, substituting for 5dsw; from (36) and simplifying, the following is obtained

4w, (m* — 2m?A; + 1 3aw?z (L
_ a( S )[1_ a( S) (41)

S5e =
€ m2a,As 802
Here, the static buckling load Ag is given implicitly through B, Q,¢ and Q.

5.2 Static Buckling Load A in the Case of Modes in the Combined Shapes
of sin mx and sin 3mx

Here, the displacement (27) becomes

w = EV,,(ll)sin mx + 63(V,,(13)sin mx + Vg(,i)sin 3mx ) + ES(V,,(IS)sin mx + V3(:l)sin 3mx )

o (42)
On determining (42) at x = %, the following is obtained
w= el + (1 =)+ e (15 — ) + - (43)
where,
o _ B 6 _ BQs 44)
m 462’ 3m 16w?
Qa9 = (3a* —5p) (45)
Thus, from (43) the following is obtained
w= €e; + €de, + €’e; + (46a)
where,
3aB? 0\*
(=B =0 0a=|4(>) -1 (46b)
es = B5Q,.0 Q PR TR (46¢)
3 4652, 52 16Q,00?
The series (46a) is now reversed in the form
€= fiw+ fLwd+ fow® + - (46d)
where,
1 e _ 3ef —ejes
fl_ 91' f2 ef. ) f3_ 917
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After simplification, we have

1 _ 3aQs; Q46052053
fl_ B! fZ_ 4923! f3_ B
where,
27a2Q%, )
Oss (1694046052

The maximization (28) is next invoked to yield the static buckling load Ag (through (46d)) and through the
equation

fi +3f,wi +5f3w, =0 (47a)

Where w,, is the value of w for the displacement to have a maximum in the case of modes in the combined
shapes of sinmx and sin3mx.

Thus, the following is obtained
2 _ T3 £V —20fifs

W =
ac 10f3
1
3Qs1 320Q460520Q5389%)2
=——1—{1——} 47b
4062Q46Q520Qs3 [ 81a2Q%; (47b)

where, the negative square root sign in (47b) has been taken. Therefore, the following is obtained

1
1112
3a 320 BO*)2
Wge = . Qs1 1 {1 _ Q4—6Q22Q253 } (470)
4002Q460Q52053 81la?Q%,
To get the static buckling load in this case, (46d) is determined at static buckling to get
€ =welfi + Wgc(fz + Wgch)] (48a)
On multiplying (48a) by 5 and substituting for 5fzwg. from (47a) and simplifying, the following is obtained
3aw?
5m2a,,els = 4wge(m* — 2m?As + 1) [1 + #Q“] (48b)

The result (48b) is implicit in the load parameter Ag throughQ,e, Q@s4, Qs3 and 6.
6 Solution of the Dynamic Problem (5) — (8)

The full equations are here recast as
d*w
Weet 262We 4+ Woper + 2 (OWoy +w + aw® — pw® = —ZAef(t)W, t>0, (49q)

0<x<m (49b)

w(x,0) = w,(x,0) =0, 0<x<m (49¢)
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w=w, = 0atx=0m t=0 (49d)

Let
T = €?t, w(x,t) = U(x, t,1,€) (50a)
- we=Up+ €Uy wep= U+ 262U+ €*U, (50b)

Substituting these in the governing equation of motion, yields

(Uge+ 262U+ €*Up) + 2€2(Up + €2Uy) + Upnx + 24U + U + QU — BUS

PP 51
= €z (51)
Let
U(x,t,T,€) = Z U®¢t (52)
i=1
The following equations are obtained
@ = O, O ™, d*w
0(€): LUD = Uy + Uy + 20Uz + UD = —206 —— (53)
0(e?): LUD = 0 (54)
3
0(e®): LU® = —2(UL + UP) — a(UD) (55)
2
0(e): LU = —3a(UD) U@ —2(v? + vP) (56)

0(e%): LU® = =3a[(UD)'U® + UD WD)’ ]+ (D) —2(v¥ + UP) (57)
etc.

The initial conditions evaluated at t = 7 = 0 are

UD(x,0,0)=0,i=1,2,3,.. (58a)
0(e):UM =0 (58b)
0(): UP =0 (58¢)

0E): UP+ul =0 (58d)
0@n: UP+UuP =0 (58e)
0): U +UuP =0 (581)
Ud = v =0atx=0m; i=123,.. (589)
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Let
w=a,sinmx,m=1,2,3, ... and let
O] _ Vo @ .
UW(x,t, 1) = Yoy Uy’ (t,T)sin mx

On substituting into (53), the result is

DU+ =202+ 1) U = 2a,Am?sinmx

n=1

For n = m, the result gives

v+ 02U = 2a,,Am?

mtt
UiP0,0) = UL(0,0) =0
The solution of (60a, b) is

U,(nl)(t, 7) = a,(t)cos Ot + y,(t)sin Ot + B

B = ( 2amAm? )= 2amAm?
m*—2m21+1 02

where, as in (21a),
0?2 = (m*-2m?1+1) >0 ¥vm.
~ a,;(0) = —B, y:.(0) =0
Substituting (59) into (54) (for i = 2) and for n = m, the following is obtained (using (58a, c))
U,(,f)(t, T) = a,(1)cos Ot + y,(t)sin 6t

» a(0) = y,(0)=0
The next substitution into (55) requires the simplification

3
3a3

3 2
U,(nl) = (a;(t)cos Bt + y,(1)sin Bt + B )% = (3Baf + B+ 33%) + {—+ 3a; (BZ +

4
Salyl124cosbt+3al2y14+3F2y1+ yl134si Wt+3Fal2— Byl122cos28t+3alylBsin

3 2 2 3
(ﬂ— 3:1;;/1) cos30t + (%—y—l) sin 36t
4 4 2 4

Substituting (59) into (55) and for n = m, the following is obtained

3
U+ 07U = <2 (U + 07 UD) = 3au)

Ui20,00 = U$0,0) + USL(0,0) =0

However, for n = 3m in the substitution into (55), the resultant equation is

(59)

(60a)

(60b)

(60¢)

(60d)

(60e)

(60f)

(61a)

(61b)

Vi

)-

20t +
(62)

(63a)

(63b)

10
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3
Us(frz,tt + w? Us(frz = aUr(nl) (64a)
U 0,00= u® (0,0)=0 64b
sm(0,0) = Us,,,(0,0) = (64b)
w?= (81m*—18m?2+1) >0 vm. (64c)

Now, substituting from (60c, d) and (62) into (63a) and ensuring a uniformly valid solution in t by equating
separately, on the right hand side, the coefficients of cos 8t and sin 8t to zero, it is obtained, for coefficient
of cos Ot :

3a3 2 9a,yi
—20(y; + v1) — 3 {Tl +3a, (BZ + %1)} + iyl =0 (65a)

and for coefficient of sin 8t, the following is obtained

3a2 3
20(a) + ay) — 3a{ i 3 (BZy1 + %)} =0 (65b)
Simplifying (65a, b) further, the following is obtained
20(y1 + v1) +9aa,;K =0 (65¢)
20(a; + a;) —9ay;:K =0 (65d)
where,
2 2
L N 4
K = 2 + B + 2 (65e)
Multiplying (65¢) by y; and (65d) by a; and adding, followed by simplification, yields
1842+ ad)
=————+1=0 (65f)
Vit oai
The solution of (65f), using (60f), yields
(of+ af) = B’e™™ (659)

It should be noted that a; and y; are not going to be solved explicitly because every information needed later
about a4 (7) and y; () can be easily obtained from (65¢ — g). For example, the following results are needed

, . 2025a2B5
al(O) = —al(O) = B, aq (O) = W— (65h)
' (0) = 45aB3 (0) = —27aB? 65
r1(0) = —2— 11(0) = —o— (650)
The remaining equation in the substitution into (63a) is
Ur(:,)tt+ 02 U,(,f) = —3alry + rycos 20t + r,sin 20t + r3cos 360t + r,sin 36t ] (66a)

11
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U (0,0) =0, Ui20,0) + Ui(0,0) =0
where,
3By?
To = <3Ba§ + B3+ %) 15(0) = 4B3 (66b)
B 2
=3 (Balz - %) 7,(0) = 3B3 (66¢)
of  3ayyf -B?
r, = 3a1¥1B, r(0) = 0; 3 =—-- , r3(0) = — (66d)
4 4 4
3af  ¥i
= V1 (T_ =) 7(0) =0 (66€)
The solution of (66a — e) is
UL = ay,(0)cos Ot + Pyp(T)sin Ot — 3a [ﬁ - rl:zzzm - r253i611229t - JTZ( r3c0s 360t +
r4sin 36¢ (67)
where,
T, 7 T3 | 291aB?® -B
a12(0) = 3a [ﬁ— 392 w] =0 = 3507 B12(0) = e (67b)
The following terms will be useful later:
, s , —135aB°® , 3B3 , 135aB®
r(0) = —=6B°%,  1;(0) = 80 r3(0) = = 7,(0) = 160

Now, going back to the substitution in (55) to the case n = 3m, the resultant equation is

U_,ff,z“ + w? Ug(frz = alry + r5c050t + 165inOt + 11c0S 20t + T,5in 20t + 13005 30t +

r4sin 36t (6&2)
Usn(0,0) = US; . (0,0) =0 (68b)
where,
s = [Og +3a; <B2 + g) _30571]/12]' r5(0) = _fg
Te = [30‘5“ +3 <32y1 + §>] 16(0) = 0
w?= (81m*—-18m?21+1) >0 vm. (68¢)
It also follows that
21B3 6755aB>
15(0) = R 16(0) = 328

12
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The solution of (68a, b) is

U_,Ef,z = azcoswt + Pzsin wt
+ [ro <r50036t+ rssinet) <rlcos 20t + 1,sin 20t )

“loz w?— 62 w? — 462
+ (r3cos 30t + rysin 360t )]
w?— 962

4 5 3
w2 Aw?- 02) " wr- 467 4(w?— 96?)

az(0) = —aB30,, 2, = [
p3(0) =0
The next substitution into (56) requires the following simplification

2
U,(,f) U,(,f) = [rg + 119c0S0t + 154SinOt + 1,,c08 20t + 15,5in 20t + 153c05 30t
+ 1y45in 30t ]

where,
rg = Blaya; + v172), 115(0) =0
Tyo = [( o %+B> 11;1)/2 =2 )], T16(0) = 0
ai yf 121 Y2
rzo:[(?"‘ 7"‘32)]/2 +T+Z(0{12—V12)]. 750(0) =0
1 = Blaya; — v172), 7:(0) =0
122 = Blayy, + azy1), 75,(0) =0

T3 =

[(al )0-'2 _@hya

4 ]: 1,3(0) =0

aa
DN @i yp], @ =0

T24 = [ 2
Now substituting into (56), yields

u® + u®

SXXXX

+2208) + U™

3a 2
= —Z(U,(,f)” U(Zt)sm mx — - UL UL (3sin mx — sin 3mx )

After substituting (59) into (71), for i = 4, and for n = m, the following are obtained

U+ 02 UL = 22U, + UR) - 9au”’ U(Z)
U$(0,0) = 0, Uih,0) + U(0,0) =

However, for n = 3m, the following are obtained

(69a)

(69b)

(69¢)

(70a)

(70b)

(70c)

(70d)

(70e)

(701)

(709)

(70h)

71

(72a)
(72b)

13
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3a 2
U:Srz,tt-l- w? Uéfi = TUr(rP Ur(rf) (72¢)
Usn(0,0) = U (0,0) =0 (72d)

2
Now, on substituting into (72a) for U,(,f) from (61a) as well as for U,(nl) U,(,f) from (70a) and ensuring a
uniformly valid solution in t by separately equating to zero the coefficients of cos 8t and sin 6t , the
following are obtained, respectively

B —90{7'19 B —90(7‘20
Yo+ Vo = 30 and a, + a, = 7 (73a)
Solving (73a) gives
"9aryq T9ary,
— _pT d , — -7 d 73b
12 e L T a, e L T (73b)
Observation shows that
y2(0) = az = y,'(0) = a3’ (0) =0
Infact, all derivatives of y, and a, evaluated at T = 0 vanish. Thus, without loss of generality,
Y2(0) = a;(x) =0
Hence, the following are obtained
U@ = uP(t,1)=0 (73¢)
The remaining equation in (72a) is
u® 4+ 02U = —9—a[r cos 20t + 1,,5in 20t + 153 cos cos 30t + 1,,5in 36t ] (74a)
mtt m = T 22 23 24

which is now solved together with (72b) to yield
U,(,f) = q,(t)cos Ot + q,(t)sin Ot
9« 1 1
-7 [— 392 (ry1€08 20t + 15,5in 260t ) — 302 (ry3c05 30t + 1y,5in 36t )] (74b)
q1(0) =0 =q,(0) (74c)
On substituting from (70a) into (72c) and solving, the following are obtained

U_,Ef’,z = a,(t)cos wt + y,(T)sin wt
3a[rg <T‘19C059t + rzosinHt) + <r21cos 20t + 1,,8in 260t )

w? w? — 6?2 w? — 467
T53€0S 30t + 15,5in 30t
* ( w? — 962 )] (75a)
2,(0) = y,(0) =0 (75b)

14
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Thus,
U® = Ul simmx + UL si Bmx (75¢)

The next substitution into (57), using (73c), needs the following simplications:

5
UL’ = (aycos 0t + y,sin 0t + B)S
=1, + 13050t + 195in0t + 19c05 20t + 1115in 20t + 11,005 30t + 135in 36t

+ 114€05 40t + 1y55in 40t + rygcos 50t + ry;sin 50t (75d)
where,
T
= 1504137+ 5a%( B% + 3viB L5ay v + i +B%|( B3+ riB + 3B v + B?
-8 % 4 16 2 2 i\ 7 "
3yiB
+2n (75¢)
8
5af 10a3B (v} 5
B=g Ty \2738
3yt 5 L) 1/3v a2\ BY
—5aty; 10ajy,B ,(vi 5B°n Yi o L\ (Y, ..
9 = 16 - 2 +5(Z1 7—T +3 7+B I+B)/1
2 2,,3 3 5
s B By 3(vi r
+2le<B+ > + > +4 4+By1 +16 (759)
S5aiB 3 (vi Vi 3yiB\vi
T = T-I— 5&%33 —§<7+ B? ]/123 — 3B]/1 Z-i— BZ)/1 — (B3 + 2 7 (75h)
15a3y,B 11B%y, 13By3 ,
1 = T+ S5a, 2 + 8 (75i)
5af 5aj vi 1(3yf Byt
= —+4 —|3B2-— 5 (=L 4 3y2RB2 - 75
T12 16+2 4+0‘1 2 8+V1 +4 (75))
15aty;  5aiy,B L(3vi 5, 1vi )\ . B
T3 = 3 + 2 +5a1 T-F ZB Y1 —Z ?+B Yi — 2
3(vi
_Z<I+Bzh i (75k)
S5afB  15a?y?B  3y{B
T14 = 4 - 4 + 8 (751)
—5a,y3B
rs = —2i2 (75m)
2
5 3,,2 4
_ Saiyr | 15a3y1
T = 3 8 + 16 (75n)
Safy: 15afyfB  vi
T17 —_ 8 - 8 R (750)
where,

15
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63B° —105B° 25B°
r,(0) = g 15(0) = — 5 r(0) = 0, 110(0) = 2 711(0)
—125B° 5B%
=0, 112(0) = 16 113(0) = 0, 114(0) = 2 715(0)
5
= 0, 7'16(0) = -, T17(0) = 0

8

The following simplifications are also needed,

2
U,(nl) U,(,f) = Tys5 + T6C080t + 1,55iN0t + 1,505 20t + Ty95in 20t + 130c0s 30t + 134 Sin sin 30t

+ 13,005 40t + 1335in 40t + 134005 50t + 1355in 50t (76a)
where,
1 —3ar, a2 — y2
T5 = {E(af + i) + BZ}( g O) +Bajai; + By iz + @ (%) Y1 (76b)

6aryBa; Bajar; Bajay;;

1 1
T26 = {E(“lz -+ Bz}“u - + Z(“f - yDag,

92 92 92
3a(af — y{)rs
;202 : (76¢)
1 Bajar, 6ar,By; Bajay; 3Bayr; 1
7 = {E(a&z - }/12) + Bz}ﬁn + 92 - 92 - 92 - 802 - Z(af - Vlz),Blz
3a(a? — vy,
(af — yiny (76d)

3262

In the same vein, the following simplifications are also needed

U,(,II)ZUSJ = T3¢ + 737050t + T3gSinOt + 139c0S 20t + 14Sin 20t + 14,c05 30t + 14,5in 30t
+ 133005 40t + 14,5in 40t + 14508 50t + T4esin 50t + 1y;c05(0 + W)t
+ 14g5in(0 + w)t + 1r9cos (0 — w)t + r59sin (0 — w)t + 15, coscos (20 + w)t
+ 15, sinsin (20 + w)t  + 153 coscos (w — 20)t + rgusin (w — 20)t + r5scos wt

+ T5¢Sin wt (77a)
where,
arpy (1 2Baa,ry, Baa;rs Bay,rs a(af — y{)n
o= (47) {zﬁxf - +BZ}+ o to—etw-e T aw-ey U7
B ar 1, , ) 2Baayr Bay,r, 1, arg 2 2
Ty = (m){z(al — yl) + B }-I' w? — 402 + o — 402 + Z(wz _ 92) (al - yl)
a(a?z — yHrs
_alaf — yi)rs 77
4(w? —962) e
_ arg 1 2 2 Bay,ry Bayin alaf — yi)rs
T3g = (w2_92) 5(“1— i)+ B+ w2 w2462  4(w?-6?)
a(a? — yHr,
alat — yin 77d
4(w? —96?) o

16
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_ ary 1 5 5 Baa;rg Baa;r; Bay rg Bay;r,
39 = (w2—492){5(“1 RN }+ @7 =02 WZ—962 wZ—2  w?—9p?
1 2 (AT0
+Z(a1 - ¥i) (ﬁ) (77e)
ar, 1 Baagrg Baar, Baayr, Baasy,
no = (2 —4392){5(“12 BRe BZ} Tormert wraer T T ooz Tz - g
ay."3
T w2—9p2 771)
N ( ars ){l (- D)+ Bz} N Bay,a,  Baym ala? — yHrs
a= zogez/ 20 T 11 wr— 407 ©2—992 ' 4(w?—402)
Bay,r,
T w2z — 402 (779)

_ ar, 1 5 5 , Bayin 1 5 5 arg
Ty = (m){z(% - vi)+B }+ m‘l' Z(Oﬁ - }’1)(0)2 _92) (77h)

Baa;rs a(af — yPn

_ 770
"7 5292 " 4(w? - 962) 770
Baa;r, Bay;rs a(ai — yHr,
_ 77j
"= 7092 T w2 —0p2 T 402 —907) 77D
a(af — y{)rs a(ai — vy
_ ' _ o~ vin 77k
"45 = Z(w2 — 902) "6 = 2(w? — 96?) (775
Ty7 = —By1fs, Tyg = Bayfs + Byyvs 770
Tao = (Bajaz + By f53), Tso = Bayf3 + Byyvs (77m)
as(af — y{) Bs(af — v{)
T5y = +: Tsy = + (77n)
az(af — i) Bs(ai — vi)
T3 =—4 Ta =5 (770)
1, 2 2 1, 2 2
7"55=0~’3{E(“1+V1)+B }' 7"56=ﬁ3{§(“1+)’1)+3 } (77p)
where,
9 2
) =B = (g 43)
_ p _ 9 1 3
rs7(0) = aB*0d;, 013 = (s(wz —02) " 162 —62) w?— 492)
. 15 1 1
(0 =0, 19(0) = aBMy, 0, = <2(a)2 09 T 2w —07) T 3(w? — 902) +E)
T40(0) = 0 11(0) = aB50®, o = - 11
40 ’ 41 4 4 8((})2 — 962) 32(@2 —_ 402)

3 1
H(w? —46%) T 2w? = 992))

10y (0) =0,  7,3(0) = aB50, g = (

17
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1
14(0) =0,  745(0) = —aB%2, 0= " 16(w? — 962)

746(0) =0, 147(0) =0, 15(0) =0

—aB%
T49(0) = 0135-01: 750(0) =0, 751(0) = Tl
—aB50, —3aB50,

— 154(0) =0, 755(0) = > , 756(0) = 0.

15,(0) =0, 155(0) =
Now, substituting the relevant terms into (57) yields

(©) ©)
U,t t + U,xxxx

+2205) + U®

= —2(U(3) + U,(,f’)t)sin mx — (U(3) + Ul )sin3mx

mtt 3m;tt 3m,t
1 2 1
- 3a [Z U,(nl) U,(,f)(3sin mx —sin3mx )+ ZU,(,PUS)(sin 3mx — sinmx )]
5
+ %U,(nl) [11sin mx — 5sin 3mx + sin 5mx ] (78a)

Using (59) for n = m, the following are obtained
mtt m,

3a 2 2 11 5
Ugnet 02U = =2(U +U) = [3U v - vl )] +—16ﬁ UY” (78b)

v0,00=0, U900 + UL0,0)=0 (78¢)

where as for n = 3m, the following are obtained

56 5
®) ®) _ ®) ®) @
U3m,tt + w? U3m - _2(U3m,t‘r+ U3m,t) - EUm (78d)
u£(0,0) =0, u$) (0,0) + UL (0,0) =0 (78e)
For n = 5m, the following are obtained
) 2y _ B @S
Usmeet @7 Usm = 72 Unm (78f)
ul0,00=0,  US.(0,0) =0 (789)
where,
@? =(625m* —50m?1+1) >0 vm. (78h)

After substituting into (78b), using (75a — o) and (76a — d), and ensuring a uniformly valid solution in t by
equating to zero the coefficients of cos 8t and sin 0t , the following are obtained, for the coefficient of
cos 0t

, 1 3 Iy 1187y
Biz+ Brz=p1 (1), p1= %[a (1737 - T) t—e (79a)
and forsin 6t , the following are obtained
, 11a 11871,
A+ a = pa(7), P2 = 20 [Z (977 — 3138) — 16 ] (79b)
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The solutions of (79a, b) are

T T
Biz=e™ [ | eSpl(s)ds], ap = e [ [ eputsds + a0 (79¢)
0 0
Meanwhile, it follows from (79a — c) that
, s , 483aB3
Bi2(0) = B>, a;,(0) = T 32092 (79d)
where,
0. = [ 2{3!23 27,297} 11558 79
7T U T 256602) T 128 (79¢)

The remaining equation in the substitution into (78b) is

+ QZUS) =757 + 155€0520t + T595in20t + 159c05 30t + 14,5in 30t + 14,c05 40t
+ 763Sin 40t  + 15,0550t + 1ggSin 50t 4 156c05(0 + W)t + 1g;5in(0 + w)t
+ 76505 (0 — W)t + 1g95in (0 — w)t + 179c0s (20 + w)t + r;y5in (260 + w)t
+ 1,005 (W — 20)t + ry3sin (w — 20)t + ry,c0s wt + r755in Wt (80a)

u®

m,tt

where,

—90(7'25 30(7'36 11ﬁ7’7

7= |7 4 16 (800)
reg = :—9:{7‘28 + 30(;‘39 4 111,867‘10 (800)
ey = :4a(r1’9+ 1) 3 9(1;"29 N 302"40 111ﬁ67"11] (80d)
reo = [—9a(ry + 1) _9ary,  3ary 11[)’r12] (80¢)
T 80 4 4 16

o = :—9a(g3’9+ 73) 3 902"31 + 30{;*42 115213] (80f)
vy = :—921"32 N 3a4r43 N 111[)’6r14 (80g)
res = '—9ZT33 + 30{;’14 + 111,867"15 (80h)
roy = _9Zr34 302"45 1lfg16 (800)

e = —9zr35 3a:,6 111ﬁ6rl7 80)

19



Ette et al.; JAMCS, 30(6): 1-35, 2019, Article no. JAMCS.46862

3ar, 3arng 3ary,
Tee = z Te7 = Teg = 4 (80k)
Te9 = 3“:51’ T70 = 3“:51’ 7 = 3a:52 (801)
T72 = 30{:“; T73 = —3(1:48, 174 = —3a:49 (80m)
3ar
s =~ (80m)
; , (28107  30;\ 693
r57(0) = By, 0y = [“ (38492 * T) 12862] (800)
135 475 3N 69346
_ ps — (22 2 _F
rsa(0) = B, 0 [(792 " 128627 2 ) 128 (80p)
—12aB° ; ,(30, 1215\ 13758
T59(0) = —9 T60(0) = B>(y, (2o = [a (T_ 12892) ~ e (80q)
9aB3 ; 30 9 118
761(0) = 160’ Te2(0) = B>(yy, 4y = (T ~ 6202 + a) (80r)
; ,( 27 30,\ 118
763(0) =0,  764(0) = B>(ly,, (4, = [05 (W—m> ~178 (80s)
3a?B50,
165(0) = 0, T66(0) = 3 167(0) =0 (80¢t)
3a?B50
res(0) = ———,  765(0) =0 (80u)
3a?B5(, 3a?B5(,
170(0) = BT 171(0) =0, 172(0) = 1 (80v)
9a2B5(),
r,3(0) =0, 15,(0) = — r,5(0) =0 (80w)
The solution of (80a — z), using (78c) is
) . Ts; 1 ,
Uy’ = as(t)cos 6t + ys(1)sin 6t + ﬁ—w(rsgcoszm + 1595in26t)
1
- W(rmcos 36t + rgy5in 36t ) — @(rﬂcos 40t + 1435in 46t )
1 . T¢6c0S(0 + w)t + 71¢,5in(6 + w)t
_ @(r@,cos 50t + 1gssin 50t ) — < ge (0T 2697)
(regcos (6 — w)t + 1gosin (6 — w)t ) 170c08 (260 + w)t + 15,sin (20 + w)t
w(20 — w) B8+ w)(6 + w)
4 15,05 (W — 20)t + 1y3sin (w — 26)t <r74cos wt + 1758in wt ) 81
(@—60)(30 — w) 0+ )6 —w) (81a)
where,
0) = B, 81b
a5(0) = — (810)
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'{210 '{211 '{212
O,==-0+ 2+ 24 22
13 [ st g T I5 T
43 { 0, 0, 0, 0,
(o +20) 4020 —w) T 1600 + )30 + @) 16(w — 6)(30 — w)
0
T 200+ w)(0 - w)}] (819
) = 1|2rs9 21, 2763 N 575 + B+ wrs; (60— wrgy 4 (20 + w)ryq
Vsl = 5130 T80 T150 T 150 T w(20 + @) @(20 —w) | (30 + 0)(0 + w)
3 (w —20)1,3 3 WTys ] |
(w—0)BI-—w) OB+w)(O—w)l ™°
1 0
+ 9[ a12(0)+3a{ﬁ—w—862}] |.L- 0 (81d)

Substituting into (78d) and ensuring a uniformly valid solution by equating to zero the coefficients of
coswt and sin wt , the following are obtained respectively

3arsg 3arsg
Pst Bz = ——p—and as+ az = —— (82a, b)
On solving (82a, b), the result gives
| B8a [t

Bs(@) = e |5 | Tsse’ds + f3(0) (82¢)

0

3a (T
az(t) = e " @f e r5eds (82d)

0

The remaining equation in the substitution into (78d) is
U_,Ef,ztt + széfr)l =Ty + T49C050t + 1595inNOt + 15105 20t + 13,5in 20t + 15305 30t +

T54SiN 30t  + 135c05 40t + 1555in 40t + 15,05 50t + 1ggsin 50t + rgecos(0 + w)t +

ToSin(0 + w)t + 191c05 (0 — w)t + 19,5in (0 — w)t + 193c05 (260 + W)t + 1ro,sin (260 + w)t  +

T7295€0S (W — 20)t + 1ygsin (w — 26)t (83a)
Ui (0,0)=0, U .(0,0)+ Us (0,0) =0 (83b)
where,
3arys 5,87"7
T76 = % T36 — ETS (83¢)
—20(r, + ro)a  3ary, 3ary; 15871y
79 [ — 62 4 a2 16 (83d)
20(re + rs)a 3ary,;  3arsg 571y
_ _ _ 83
T80 [ wr_6z '3 4 16 (83¢)
40(ry + r,)a  3aryg  3arys 581y
Tg1 = [ — 92 2 2 16 (83f)
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_ 40(r{ + r)a 3ary,, 3ar, 5B1
Tg2 = w? — 492 7 2 16

_ 66(7}1t + T'4)(Z 3arsg 3ary, Sﬁ‘rlz
Tg3 w? — 992 7 P 16

_ 69(7’3’ + r3)a 3117'31 3(17’42 5‘87'13
T84 w2 — 992 ) P 16

30{7'32 3(17'43 5,87‘]4
Tgs = - -

4 4 16
_ 3arys  3ary,  5P1is
Tge = 2 7 16
_ [Bars,  3arns 57,
Tg7 = 2 7 16
_ [3arss  3arg  5Pniy
Tgg = 4 7 16
r__r&mq " _P&mﬂ
89 4 )] 90 4
N rgaﬁﬂ . _[_3&@%
91 — 4 ) 92 — 4
—3ars; 3ars, 3arss 3ars,
T3 = T T T T Tes =TT e =TTy
where,
s 3123 31548
776(0) = B>(yy, (4 = Toegz T ¥t g
. 18198a? 675a? 30,
79(0) = BMho, o = |0 = Ter—6n 4
3 30a
730(0) = B 230, N30 = @ =09
135 99 30N 1256
— RS _ 2 4
R L I AR VAR

120«

-

r82(0) = 33022. 0y, =

i)

405 243

753(0) = B3y3, (3= — [“2 <8(a)2 “969)B% 151202 4

T84 - 249 24 = wz — 962
63 305\ 258
s = B0, a5 = o (55~ 4) gy

30,

)+

6258
256

(839)

(83h)

(830)

(83))

(83k)

(830)

(83m)

(830)

(83p)

(83q)

(83r)

(83s)

(83¢)

(83u)

(83v)

(83w)

(83x)

(83y)
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76(0) =0,  715,(0) = B50,q, 6 =
155(0) =0, 139(0) = B3My;, (57 =
790(0) =0,  75,(0) = B%M,q, Mg =
793(0) = B9, (39 = &';—2601'
795(0) = 0 B3M39, {30 = %{1—2601'

In evaluating the above, the following facts are used

a3(0) = —a;3(0) = aB*Qy;

The solution of (83a, b) is

1
5) _ ,
Us,, = ag(t)cos wt + ys(T)sin wt + <m

B3(0) =

o s+
a
51262
—30{2.(21
4

—3a%0,
YR

794(0) = 0

T96(0) = 0

9a?B50),
16w

) (1r79c050t + 150Sin6t)

SN

4

128

792(0) = 0

(832)

(84a)

(84b)

(84c)

(84d)

(84e)

+ ((uz 402) (rg3c0s 30t + 1g,sin 36t ) + <m) (rg5c05 40t + 1g6sin 46t )
+ <w2 2592> (rg7c05 50t + 1gg5in 50t )
+ <6(2w n 9)) (1g9c08(0 + w)t + 19¢sin(6 + w)t)
+ (H(Zw n 6)) (r91¢05 (0 — W)t + 19,5in(6 — w)t)
<40 )> (193¢05 (20 + w)t + roysin (20 + w)t )
+ ( ) (r95c0s (W — 20)t + rygsin (w — 260)t ) (85a)
where,
ag(0) = B30, (85b)
0u = — [ {3, {51 {y3 {55 Dy _ 0y "
3 w2—02  w2—402  ©2-902  w2-1602 w2-2502 0QRw+6) 6Qw-—6)
L N (85¢)
4000 + w) | 46(w—0)
The determination of y4(0) follows from using
5
U .(0,0) + UL (0,0) =0 (85d)
Here,
Ul (0,0) = B30, (85€)
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05, = [n +{ 6 2 s . 3 }] 85
32 = [ w? " 4(w2—02) w?—462 ' 4(w?—902) (851
)’6(0) = 33-033 (859)

17 60y 26 30
Q3 ==13 [wZ—ez tor—a02 T p2_gp2 +Q32] (85h)

Now, simplifying (78f), the following are obtained

+ 008 = £ oy

(5)
U
16

smytt

[y + 1r5cosOt + 19sinbt + rycos 20t + 1y,5in 20t + ry,c0s 30t + ry35in 36t

~ 16
+ 7114€05 40t + 1;55in 40t + 15, cos 50t + 1,;sin 50t ] (86a)
US) 0,00 = US) =0 (86b)

The solution of (86a, b) is

Us(f,z = aycos @t + y,sin @t
B 1y 1 , 1 .
+ R[?-I— <m) (rgcosOt + rysinft) + <m) (r1ocos 260t + 1;45in 20t )

1 ] 1 '
+ <_(p2—902) (r1,c0s 360t + ry3sin 36t ) + <m) (r14c0s 46t + 1y55in 460t )
1 .
+ <m) (r14c05 560t + 1,55in 56t )] (87a)
a;(0) = BSOS, ,(0)=0 (87b)
where,
B 163 105 25 125 5

@
W= 2122 _ _
0= T16(807  8(¢p?—02) | 2(p2—407)  16(¢p2—962)  4(p?—1667)

__1 87
a 8(<p2—2562)] (87¢)

The determination of Uf,f’ ) and Ug(f,z in full will automatically depend on U,(n2 ) which vanishes as in (73¢).
Hence, it can be concluded that

4) — 11(4‘) — 4 —
U( ) = m = U3ﬂ] = 0
lhuS, the buckhng mode takeS the form

Ux,t,7,€) = eUD sinmx + 63(U,(:)sinmx + Ug(frzsin3mx)

+ eS(UYsinmx + U sin3mx + UL sin5mx) + -+ (88)

7 Dynamic Buckling Load

According to Amazigo [18], the dynamic buckling load A, is obtained through the maximization
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da
du,

=0 (89)

where U, is the maximum displacement . The dynamic buckling load is the largest value of the load
parameter for the solution to be bounded. The onus on us now is to first determine U, subsequent upon
which (89) shall be invoked to determine the value of A5. The conditions for the maximum U, are

Uy=0 U+ €U,=0 (90a, b)
From (89), it can be seen that the least nontrivial value of x = x,, for U, = 0 is
Xqg = —.

2m

Thus, from (89), the following is obtained

Uxg t,7,6) = €U + (U — UD) +e5(US - D+ v+ (91)

m

Let the values of t and T at maximum displacement be t, and t, respectively and

te =t + 2t + etV 4.
1, = €2ty = e2(t + €2tV + etV + )

The results will be given in two separate levels of approximations, first, by taking all the buckling modes in
the shape of imperfection and secondly, by taking the buckling modes in the combined shapes of sin mx
and sin 3mx .
7.1 Dynamic buckling load for modes in the shape of imperfection
In this case, (91) becomes

U= eUP + U + eSuly + - (92a)

By substituting (92a) into (90b) and equating coefficients of €, the following are obtained

o(e): U (tP,0) =0 (92b)
0(?): tPu + Ul =0 (92¢)

etc.

where, (92b, c) are evaluated at (t((,l), 0). From (92b), it is got that, tél) = gand from (92c),

M =

e
After evaluating (92a) at maximum value, the non — vanishing terms become
Uy = [eu,‘,? + (ePul + uR)

1 2 1 2
+ & (00 426 UD 4 St U+ U+ U] g+ @3
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On simplifying (93a), the following is obtained

Uy = gr€+ ga€> + gz€® + - (93b)
where,
_1833Q40 7'[9
n=2 g= g Qo= (14 5] (930)
2B50340
9= (s (93d)
|14 92 (7'[)2 B—ZOZSQZBS " (TE) 27(ZB3 94
Qur = 250,85 ) |\6 12862 9/\ o2 (94a)
and

Tw

04 _ 0 0y %7 {{ 33 301{ 1+cos (%)

{239 = 3 5 2 tow+20) | 4w(20-w) 16(30+w)(6+w)

|-l )

16(w—-0)(36-w)

91211 +cos wawl 166+wb—w
(94b)

Since the series (93b) does not converge when U, > U,p, where U, is the critical displacement at dynamic
buckling, as in [18], (93b) is reversed in the form

€= LU, + LU+ L;US + - (95a)

By substituting in (95a) for U, from (93b), and equating the coefficients of powers of €, the following are
obtained

l=l=i l=_&=9aQ4o
17 g, 2B 2 gt 8B
I, = 395~ 9195 _ _ 9195 (1 B 39%) _ _@(1 B 39%) _ 3504104
91 91 9193 9y 9193 16B62

where,

243a2Qz
Qa2 = <1 _—Q4o>
235041

In order to determine the dynamic buckling load A,, the maximization (89) is now carried out using (95a) to
get

L + 3L,U2, + 5lU% =0 (95b)

92
U2 = 27 i -1- |1+ 2036001 0a2
b 5 | 23504104, (9a6Q40)?

where, U,p = U, (Ap).This yields
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27 < 2-(238041 Q42
U, 95
ab 5 03504, Q42 (90{9Q40)2 ] ©5¢)

To determine the dynamic buckling load Ap, (95a) is evaluated at dynamic buckling condition where
U, = Ugp . Next, (95a) is multiplied by 5. By making 5[;U2;, the subject in (95b) and substituting same in
(95a), (as multiplied by 5) and simplifying, the following is obtained

5¢ = ZI;“D [1 + 9“0"8"”‘%”] (95d)
On simplifying (95d), the following is obtained
Sm?anel, = (m* —2m?2, + DU,p [1 + %} (96)
It must be stressed that equation (96) is evaluated at A = A, and it is implicit in 4.
7.2 Dynamic Buckling Load in the Shape of Both sin mx and sin 3mx
In this case, (91) becomes
Ulxg t,7,€) = U + (U - UD) +e5(Uf) — uS)) + - (97a)
Let the values of t and T at maximum displacement of (97a) be t. and 7. respectively, where
te =t + 2t + e*tP + - (97b)
T, = €t, = ez(téz) + eztéz) + e“tiz) +) (97¢)

By substituting (97b, ¢) into (90b) and expanding as usual (similar to operations leading to (92b, c¢)), the non
— vanishing terms become

0(e): U =0 (98a)
0(e®): tPUS), — S + Ul =0 (98b)
From (98a), the following is obtained
T
tP = = (98¢)
0
and from (98b), the following are obtained
1
t® = —(1-B%0y,) (98d)

4 15 + 3 ]
w? 4(w?-02) (w?-4602?) 4(w?-962)

sin sin (%)
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Now, determining the maximum U, of (97a), using (97b, c¢) and (98¢, d), the following non — vanishing
terms are obtained

Ue = eU + (el + Uy — U,

1 52 2
2 1 2 1 2 1 2 3 3 2 3 3
+e° [t§ Wiy + 567 U+ 60 U + 62U = US)  + 62 (U = Ug) |

2 m,tt
+ (U - Ug(frf)] + o (99a)
where,
Uz(frz(tth)' 0) = aBQy5 (99b)
1—cos (%) 15{1 — cos (%) } 3 {1 —cos (%) }
.(235 = 4 wz - 4((1)2—02) + ((1)2—402)
15{1 — cos (“L
1sfi-as () "
4(w?-9062)
Uéfrz,t(t(()m'o) = awB®(3 (100a)
0. = 4 15 3 15 Wit
36~ [E 2(02—07) T (02—402) _ #(w2—902)| “°° (7)

27aB?
3 2 3
U (t5?,0) = —57 Uy

3m,t

(t,0) = aB*0s,

037 = [.(Zlcos (%) +9af,B3sin (%)

32 7 2 ! 100b
- {E+4(w2—92)+ (w2—492)+4(a)2—992)}] (100D)

©) (@ 28°
U (to '0) = 92 {233 (101a)
Ny 0
o= 0= -5
wit
02%2q? 30, 30, 30 {1+COS (T)}

2 N20@+20) " 2020 -—o) 16630+ 0)(@ + o)

30 {1+cos ()} 90 {1 +cos (%) }}

16(30 + 0)(6 + w)  16(0 + 0)(6 — ) (101b)
USHEE,0) = B0y, (102a)
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_ it 233 wrt o 27 {33 {5
39 = |soc0s () + Farsin () ~ g * (@2—467)  2(@?-907) | 4(w?—1667)
i i wr
Dy Parc05 () | Qascos () scos (%)
4(w?—-25602) 02w + 9) 02w —0) 40(6 + w)
Wit
+ frocos (T)] 102b
40(w — 0) ( )
The maximum U, of (99a) is now determined using (98c, d) and (97b, c), to get
Br , (18
U. =2Be + € [—7—013 < + !235
0%t (z) t(z)z
+e8|-B|t? + —2025a2B5) — twa B50y4
O 2B
+ B3t 92 1237) pE + B0, (103a)
Further simplification of (103a) gives
U, = eq® + e3¢ + €5¢F (103b)
—18aB?®
a7 =28, 4" = —;5— Qs (103¢)
S RS L
Cse = 18aB% \a %
2B50,50
@) _ 3857
3 =gz (103d)
_ o2 o Lz, & 2p5y _ 1@ s
Q57— 1+F_{238 B.Q39—B tZ +§t2 6 +T(B—2025aB)—t2 awB '{236
@ (27aB? s
to T— aB>(;, (103e)
The series (103b) is now reversed by letting
€= hU.+ hyU3 + hyUS (104)
where,
L1 _1 . a?  9aQss
177>~ 2p’ 2= 4 2
q 2B qu) 8B6
2
h ‘I§2) qiz)qu) _ q§2) (1 3q(2) > —(359aQ570sg
3 = 7 - 6 ’
CIiZ) qf” q(Z)q(Z) 32BO2
243a2(Q2
o = |- 200
020235057

29



Ette et al.; JAMCS, 30(6): 1-35, 2019, Article no. JAMCS.46862

The maximization % = 0 to obtain the dynamic buckling load 4, yields, through (104),
c
where, U.p = U.(4p) and is the value of the displacement at dynamic buckling stage. This yields

—3h, +/9h2 — 20h; h,

2 _
Uen = 10h;
= (3h2) 14 |1 20hs 105b
~ \10h, 9hZ ( )
%( Qs6(—a) ) “1+ 1 +2092-038Q57Q258
235057058 729(aQs6)
Therefore,
1
; z 200203405,Q % :
2 a) \2
Uy = <_> <Q56( ) ) 1i{1+ 38Us7 258} (105¢)
5 (135057058 729(aQs6)
The dynamic load A in this case is obtained by first multiplying (104) by 5 to get
5¢ = U.[5h; + 5h,U% + 5h3U¢] (106a)

From (105a), 5hyU} is made the subject and substituting same in (106a) and simplifying, the following are
obtained

(106b)

9aQseU?
S5m2a,edp = (m* — 2m?A, + 1)U, [1 + %}

Equation (106b) gives an implicit equation for determining the dynamic buckling load A, in the case of
buckling modes that are in the shapes of sinmx and sin3mx.

8 Discussion of Results

The results (41), (48b), (96) and (106b) are all implicit in the corresponding load parameters and are valid
provided the parameters of asymptotic expansions are really small compared to unity. Using equations (41)
and (96) on one hand, and (48b) and (106b) on the other hand, we can easily determine the mathematical
relationship between the dynamic buckling load 4, and the corresponding static buckling load As. These are
respectively given as

9 Q,,U?
(AD) C1(mt—2mPA, + 1\ Ugp |1+ e 107
A/ 4\mt —2m2hs +1) wy | | _ 3aQs,wé (107)
802
9aQscU?
(AD) 1(m* —2m?p +1\ U [1+ —Q“ ‘ 108
As 4 —2m?is+1 Wac 1+ 3“Q51Wac (108)

862
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9 Main Results and Their Significance

In this analysis, the static buckling load of the structure for the case in which the buckling mode is strictly in
the case of imperfection has been determined. The result is

4w, (m* — 2m?As + 1 3awZ(1
_ Awg( s )[1_ wg (4s) (109)

5e¢ =

m?a,,Ag 862
Also, the static buckling load for the case where the buckling mode is partly in the shape of imperfection and
partly in the shape of sin3mx is determined. The result is

(110)

3aw?
5m2a,eds = 4wy (m* — 2m2A5 + 1) [1 + LQM]

802

In the same way, the dynamic buckling load of the structure for the case in which the buckling mode is
strictly in the case of imperfection has been determined. The result is

(111)

9aQ,4oUZ
S5m2aedp = (m* —2m?A, + DUyp [1 + %}

Finally, the dynamic buckling load of the structure for the case in which the buckling mode is partly in the
shape of imperfection and partly in the shape of sin3mx is

(112)

9aQssU?
5m2a,,edp = (m* — 2m?1, + 1)U, [1 + ﬁ]

862

Using equations (109) and (111), the dynamic buckling load is related to the static buckling load in the case
where the buckling mode is strictly in the case of imperfection, as

9“Q40U§D
8

(A_D> 1 (m4 —2m?Ap + 1> Ugp [T+ (113)

A) " a\mt—2mias + 1) w, | 3a0s,wé
802

In the same way, using equations (110) and (112), the dynamic buckling load is related to the static buckling
load in the case where the buckling mode is partly in the shape of imperfection and partly in the shape of
sin3mx. The result is

90‘Q56Uc2
8

4

y) 1/m*—-2m21, +1\ U, |1+
(D) < D ) c (114)

A5) ~ a\m* —2m2is + 1) wae 1+ 30{Q512Wc%c
86

The significance of (113)and (114) is that, given any of A,or A, the other value can be found without the
labour of repeating the same asymptotic and perturbation procedures for the same imperfection parameter.

10 Numerical Results and Graphical Plots

Numerical values and graphical plots of the results were obtained using Q-Basic codes and the results are
hereby presented in Tables 1, 2, 3, Figs. 1, 2 and 3 below.
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Table 1: Relationship between Imperfection Parameter a, ¢ and Static Buckling Load A for m =
1,a =1, =1and a; = 0.01, using modes in the shape of imperfection, as in eqn (41)

Imperfection Parameter a, € Static Buckling Load A
0.01 0.593423
0.02 0.593421
0.03 0.59342
0.04 0.593419
0.05 0.593418
0.06 0.593417
0.07 0.593416
0.08 0.593415
0.09 0.593414
0.1 0.593413
0.593424
Ag
0.593422 -
0.559342 -
EI 0.593118
c .
- —
o 0.593416
=
= 0.593414 -
S
= 0593412 -
[
o 0.58341 -
=
< 0.593408 ; ; . i |
v 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
IMPERFECTION PARAMETER a €

Fig. 1. Graphical plot showing the relationship between Imperfection Parameter a, € and Static
Buckling Load Ag for m = 1, = 1, = 1 and a; = 0.01, using modes in the shape of imperfection

Table 2. Relationship between Imperfection Parameter a, e and Static Buckling Load A for m =
1,a =1,8 =1and a; = 0.01, in the case of modes in the shapes of combined sin sin mx and
sin sin 3mx , as in eqn (48b)

Imperfection Parameter a, € Static Buckling Load A
0.01 0.312078
0.02 0.281438
0.03 0.258314
0.04 0.239293
0.05 0.222829
0.06 0.208059
0.07 0.194414
0.08 0.181451
0.09 0.168739
0.1 0.155691
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0.35 -

Sy

0.3 -

0.25

0.15

0.1 +

STATIC BUCKLING LOAD

0.05 -

001 002 003 004 005 006 007 008 0.09 01
IMPERFECTION PARAMETER a;e

Fig. 2. Relationship between Imperfection Parameter a,¢ and Static Buckling Load A5 for
m=1,a =16 = 1and a; = 0.01, in the case of modes in the shapes of combined sin sin mx
and sin sin 3mx

03 -

~
S

0.25

0.2 <

0.15 -

0.1

0.05

DYNAMIC BUCKLING LOAD

0.01 002 003 004 005 006 007 008 0.09 0.1
IMPERFECTION PARAMETER ae€

Fig. 3. Graphical plot showing the relationship between Imperfection Parameter a, € and
Dynamic Buckling Load 1, form =1, = 1,8 = 1 and a, = 0.01, using modes in the shape of
imperfection
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Table 3. Relationship between Imperfection Parameter a,€ and Dynamic Buckling Load A, for

m=1,a =10 = 1and a; = 0.01, using modes in the shape of imperfection, as in eqn (96)

Imperfection Parameter a, € Dynamic Buckling Load 4,
0.01 0.250018
0.02 0.142869
0.03 0.100011
0.04 0.076929
0.05 0.062461
0.06 0.052657
0.07 0.045459
0.08 0.040004
0.09 0.035718
0.1 0.032261

11 Conclusion

In this paper, the static and dynamic buckling loads of a viscously damped column lying on a cubic — quintic
nonlinear elastic foundation stressed by a step load (in the dynamic loading case) have been dtermined. All
results are asymptotic and implicit in the load parameters. The implicit nature of results notwithstanding, this
work has been able to relate the dynamic buckling load Aj to its corresponding static equivalent Ag. This
shows that if one of these buckling loads is known, then the other can be obtained easily. Specifically, the
following are obtained from the graphical plots:

(a) This static and dynamic buckling loads decrease with increased imperfection,
(b) The static buckling load, for the case of buckling modes in the case of sinmx, appears to be higher

than the corresponding static buckling of the case of buckling modes that are in the combined
shapes of sinmx and sin3mx,

(c) The dynamic load is significantly lower than the corresponding static buckling load for the same

imperfection.
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