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Abstract

A modified ”SIR” epidemic model is proposed taking into account of suitable protein doses that
are applied on the total population as a control to manage a disease outbreak when treatments are
not available. The proteins cause a change in behavior resulting in three susceptible classes. The
stability analysis is studied and the optimal control theory is applied to the system of differential
equations to achieve the goal of minimizing the infected population (while minimizing the cost).
Some numerical simulations are given in order to illustrate the obtained results.
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1 Introduction

Understanding how an epidemic develops once it has emerged is crucial if we want to hope to
control it. To do this, various models have been developed which highlight (in particular) the
crucial role played by the parameter R0, describing the average number of new infections due to a
sick individual. As one can imagine, if this number is less than 1 then the epidemic will tend to go
out, whereas it will be able to persist even to extend to the entire population if R0 > 1. However,
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these classical models obviously have their limits and the parameter R0 does not really describe
on its own the future of an epidemic in a real population (assuming that we know how to find it
in this case). For example, the fact that a population is always finished induces random effects all
the more marked that the population is small. On the other hand, most populations also have a
structure in the form of groups within which bacteria are closer (and therefore more easily infected)
than between groups. All this requires finer models and the development of the tools necessary for
their study.
In a chemostat, an epidemic model can also be understood as a competition model where various
pathogen strains compete for the the same susceptible host as only resource [1, 2]. Such models
predict the strain with the largest basic reproduction number to be the winner. In [2], it is proved
that this prediction amount to the same if the per capita functional responses of infective bacteria to
the density of susceptible are proportional to each other but that they are different if the functional
responses are non-proportional.
The effects of changing behavior is important in epidemic outcomes, and now such effects are
beginning to be included in models [3, 4]. Management strategies of how to motivate bacteria to
make such behavior changes will become increasingly important.

The present article is a contribution to this question. More precisely, a proposed investigating
for the level of suitable protein doses that are applied on the population as a control to manage a
disease outbreak when the treatments are not available or too costly to be widely used. The model
is adapted from [5] to have three susceptible classes depending on behavior and having different
transmission rates and with time-varying protein doses. With limited resources, the balance between
benefits of lower numbers of infected and the cost of the protein doses is investigated using optimal
control theory on this system of differential equations, the protein doses is taken as the control.
In the next section, the model is formulated and discuss briefly its stability analysis. The optimal
control problem is formulated as an objective functional in section 3. Finally, some numerical
simulations are given in section 4 with some concluding comments.

2 Mathematical Model and Analysis

An optimal control model is developped of Susceptible, Infected and Recovered- an SIR type model.
In this optimal control problem, the used control is the protein doses, which helps to change the
behavior of some bacteria in the susceptible class.
It has been taked into account of the dilution rate only and all individual specific mortality
(maintenance) rates are neglected. Only susceptible bacteria are introduced into the reactor with
a constant dilution rate D and an input concentration Sin (Fig. 1).

This change in behavior leads to subdividing susceptible into three subclasses, namely S, S1

and S2. A proportion of the susceptible populations, S, decide to change their behavior due to an
effect of the protein doses and thus enter in the S1 or S2 class. These two classes, S1 and S2, have
lower transmission rates than the S class and will contribute to lower the number of new infections
and thus also lower the recovered/removed population (Fig. 2).

The proposed model is given by the following system of ordinary differential equations describing
the effect of protein doses on Susceptible as following:

Ṡ = DSin − (a1 + a2)PS − bSI −DS

Ṡ1 = a1PS − b1S1I −DS1

Ṡ2 = a2PS − b2S2I −DS2

İ =
(
bS + b1S1 + b2S2 − (D + γ)

)
I

Ṙ = γI −DR

(2.1)
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Fig. 1: A modified ”SIR” epidemic model taking into account of some suitable
protein doses that are applied to all bacteria as a control variable.
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Fig. 2: A modified ”SIR” epidemic model taking into account of some suitable
protein doses that are applied to all bacteria as a control to manage a disease
outbreak when treatments are not available.

with initial conditions S0, S10, S20, I0, and R0. The input concentration of Susceptible into the
reactor is given by Sin and with a dilution rate D. Since there is three susceptible classes, three
infection rates b, b1, b2 are proposed for S, S1, and S2 respectively for their interactions with the
Infected class I. Notice that, as a result of interactions of bacteria in class S with the control,
protein doses P , a proportion of the susceptible leave the general susceptible class S and move to
S1 and S2. The rate of moving into class Si for i = 1, 2 is aiPS. Also, as a result of each susceptible
class interacting with the infected class we have bacteria leaving at their respective rates and moving
to the infected class. The rate γ is the transition rate where bacteria leave the infected class I and
move to the removed class R. The removed class R could represent recovered, infected or removed
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bacteria due to disease related deaths.
Since model (2.1) represents bacterial populations, all parameters in the model are non-negative

and one can show that the solutions of the system are non-negative, given non-negative initial values
[6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].

R5
+, the closed non-negative cone in R5, is positively invariant by the system (2.1). More

precisely,

Proposition 1.

1. For all initial condition in R5
+ , the solution of system (2.1) is bounded and has positive

components and thus is defined for all t > 0.

2. System (2.1) admits a positive invariant attractor set of all solution given by Ω = {(S, S1, S2, I, R) ∈
R5

+ / S + S1 + S2 + I +R = Sin}.

Proof. 1. The positivity of the solution is proved by the fact that :
If S = 0 then Ṡ = DSin > 0 and if S1 = 0 then Ṡ1 = a1PS > 0. If S2 = 0 then
Ṡ2 = a2PS > 0 and if I = 0 then İ = 0. Finally, if R = 0 then Ṙ = γI > 0.
Next one has to prove the boundedness of solutions of (2.1). By adding all equations of
system (2.1), one obtains, for T = S + S1 + S2 + I + R − Sin, a single equation for total
populations :

Ṫ = Ṡ + Ṡ1 + Ṡ2 + İ + Ṙ
= D(Sin − S − S1 − S2 − I −R)
= −DT

then

S + S1 + S2 + I +R = Sin +
(
S0 + S10 + S20 + I0 +R0 − Sin

)
e−Dt. (2.2)

Since all terms of the sum are positive, then the solution of system (2.1) is bounded.

2. The second point is simply a direct consequence of equality (2.2)

To consider the stability of the model, it is temporarily assumed that the control P is just a
constant parameter. Under this assumption, P (t) = p, where p is a constant and the model (2.1)
has a disease free equilibrium, obtained by setting the right-hand sides of the equations in the model
to zero, given by

E0 = (S∗, S∗
1 , S

∗
2 , I

∗, R∗) =
( DSin

(a1 + a2)p+D
,

a1pSin

(a1 + a2)p+D
,

a2pSin

(a1 + a2)p+D
, 0, 0

)
.

The stability of E0 can be established using the next generation operator method on the system
(2.1). As I is the infected compartment, then using the notation in [19], the Jacobian matrices F
and V for the new infection terms and the remaining transfer terms are respectively given by,

J1 = [bS∗ + b1S
∗
1 + b2S

∗
2 ] and J2 = [D + γ].

It follows that the basic reproduction number of the system (2.1), denoted by R0, is given by

R0 = ρ(J1J
−1
2 ) =

bS∗ + b1S
∗
1 + b2S

∗
2

(D + γ)
=

Db+ (a1b1 + a2b2)p

(D + γ)((a1 + a2)p+D)
Sin, (2.3)

where ρ is the spectral radius.
Further, using [19, Theorem 2], the following result is established.
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Lemma 1. The disease free equilibrium of system (2.1) (with P (t) = p), given by E0, is locally
asymptotically stable if R0 < 1, and unstable if R0 > 1.

The basic reproduction number (R0) measures the average number of new infections generated
by a single infected individual in a completely susceptible population [20, 19]. Thus, Lemma 1
implies that the infection can be eliminated from the population (when R0 < 1) if the initial sizes
of the sub-populations are in the basin of attraction of the disease free equilibrium, E0. The endemic
equilibrium does not considered here since the case when a disease outbreak has just started was
considered.

3 Optimal Control Problem via Suitable Protein Doses

In this section, let focus on the optimal control problem using a time-varying control function P (t)
describing suitable protein doses applied on susceptible bacteria to change their behavior. The
control set Pad is

Pad = {P (t) : 0 ≤ Pmin ≤ P (t) ≤ Pmax < 1, 0 ≤ t ≤ T, P (t) is Lebesgue measurable}.

The goal is to find the control P (t) and associated state variables S(t), S1(t), S2(t), I(t), and
R(t) to minimize the following objective functional:

J [P ] =

∫ T

0

(
I(t)− α

(
S(t) + S1(t) + S2(t)

)
+ βP (t)

)
dt.

By choosing appropriate positive balancing constants α and β, the goal is to minimize the infected
population, and maximize the susceptible population while minimizing the cost of the control. If
one only wants to minimize the infected population and not be concerned with the level of the S, S1

and S2 populations, one would take α = 0, The structure of this model bounded solutions for finite
final time T . This objective functional and the differential equations are linear in the control with
bounded states, and one can show by standard results that an optimal control and corresponding
optimal states exist [21].

By applying Pontryagin’s Maximum Principle [21, 22, 23] we derive necessary conditions for
our optimal control and corresponding states. The Hamiltonian is

H = I − α(S + S1 + S2) + βP + λ1(−a1PS − a2PS − bSI +DSin −DS) + λ2(a1PS − b1S1I −DS1)

+ λ3(a2PS − b2S2I −DS2) + λ4(bSI + b1S1I + b2S2I −DI − γI) + λ5(γI −DR)

(3.1)

For a given optimal control P ∗, there exist adjoint functions, λ1, λ2, λ3, λ4, λ5, corresponding
to the states S, S1, S2, I, and R such that:

λ̇1 = −∂H

∂S
= −[−α+ λ1(−a1P − a2P − bI −D) + a1λ2P + a2λ3P + bλ4I],

λ̇2 = − ∂H

∂S1
= −[−α+ λ2(−b1I −D) + b1λ4I],

λ̇3 = − ∂H

∂S2
= −[−α+ λ3(−b2I −D) + b2λ4I],

λ̇4 = −∂H

∂I
= −[1 + λ1(−bS) + λ2(−b1S1)− b2λ3S2 + λ4(bS + b1S1 + b2S2 −D − γ) + γλ5],

λ̇5 = −∂H

∂R
= −Dλ5,

(3.2)
where λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 0, λ4(T ) = 0, and λ5(T ) = 0 are the transversality conditions.
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The Hamiltonian is minimized with respect to the control variable at P ∗. Since the Hamiltonian
is linear in the control, one must consider if the optimal control is bang-bang (at its lower or upper
bound), singular or a combination. The singular case could occur if the slope or the switching
function,

∂H

∂P
= β + [−(a1 + a2)λ1 + a1λ2 + a2λ3]S, (3.3)

is zero on non-trivial interval of time. Note that the optimal control would be at its upper bound
or its lower bound according to:

∂H

∂P
< 0 or > 0.

To investigate the singular case, suppose that
∂H

∂P
= 0 on some non-trivial interval. In this case,

by calculating
d

dt

(∂H
∂P

)
= 0

and then one can see that control is not present in that equation. To solve for the value of the
singular control, let further calculate

d2

dt2
(∂H
∂P

)
= 0.

The above equation can be written in the form (see Appendix A)

d2

dt2
(∂H
∂P

)
= f1(t)P (t) + f2(t) = 0

and then the singular control is expressed as

Psingular(t) = −
f2(t)

f1(t)
,

if

f1(t) ̸= 0 and Pmin ≤ −
f2(t)

f1(t)
≤ Pmax

with

f1(t)

= −DSin[(a1 + a2)
2λ1 − (a1 + a2)(a1λ2 + a2λ3)]−

[
a1(b1 − b)λ2

+ a2(b2 − b)λ3 + (a1(b− b1) + a2(b− b2))λ4

]
(a1 + a2)SI

= −DSin[(a1 + a2)
2λ1 − (a1 + a2)(a1λ2 + a2λ3)]

− [a1(b− b1)(λ4 − λ2) + a2(b− b2)(λ4 − λ3)](a1 + a2)SI

= −DSin(a1 + a2)
β

S
− [a1(b− b1)(λ4 − λ2) + a2(b− b2)(λ4 − λ3)](a1 + a2)SI

and

f2(t)

= −DSin

{
[b(a1 + a2)λ1 − a1b1λ2 − a2b2λ3 + (a1(b1 − b) + a2(b2 − b))λ4]I

+D
β

S

}
+

{
a1(b1 − b)(b1I +D)λ2 + a2(b2 − b)(b2I +D)λ3 + (a1b1(b− b1)

+ a2b2(b− b2))λ4I − (a1(b− b1) + a2(b− b2))((bS + b1S1 + b2S2

−D − γ)λ4 + 1 + α− bλ1S − b1λ2S1 − b2λ3S2 + γλ5)
}
SI +

[
a1(b1 − b)λ2

+ a2(b2 − b)λ3 + (a1(b− b1) + a2(b− b2))λ4]
{
(bS + b1S1 + b2S2

− (D + γ))SI + (−bSI +DSin −DS)I
}

6
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To check the generalized Legendre-Clebsch condition for the singular control to be optimal, it

require
d

dP

d2

dt2

(
∂H

∂P

)
= f1(t) to be negative [24]. To summarize, the control characterization is:

On a nontrivial interval,

if
∂H

∂P
< 0 at t, then P ∗(t) = Pmax,

if
∂H

∂P
> 0 at t, then P ∗(t) = Pmin,

if
∂H

∂P
= 0, then Psingular(t) = −

f2
f1

.

Hence, the control is optimal at t provided f1(t) < 0 and Pmin ≤ −
f2(t)

f1(t)
≤ Pmax.

4 Numerical Results and Conclusions

Consider a subdivision of the time interval [0, T ] as follows

[0, T ] =

N−1∪
n=0

[tn, tn+1], tn = nδt, δt = T/N

Let Sn, Sn
1 , S

n
2 , I

n, Rn, λn
1 , λ

n
2 , λ

n
3 , λ

n
4 , λ

n
5 and Pn be an approximation of S(t), S1(t), S2(t), I(t), R(t),

λ1(t), λ2(t), λ3(t) and the control P (t) at the time tn. S
0, S0

1 , S
0
2 , I

0, R0, λ0
1, λ

0
2, λ

0
3, λ

0
4, λ

0
5 and P 0 as

the state and adjoint variables and the controls at initial time. SN , SN
1 , SN

2 , IN , RN , λN
1 , λN

2 , λN
3 , λN

4 , λN
5

and PN as the state and adjoint variables and the control at final time T .
In order to resolve the stae system, a created improving the Gauss-Seidel-like implicit finite-
difference method was applied.
For the adjoint system, a first-order backward-difference is applied and then the following appropriated
scheme was adapted:



Sn+1 − Sn

δt
= D Sin −DSn − (a1 + a2)P

nSn − bSnIn,

Sn+1
1 − Sn

1

δt
= a1P

nSn − b1S
n
1 I

n −DSn
1 ,

Sn+1
2 − Sn

2

δt
= a2P

nSn − b2S
n
2 I

n −DSn
2 ,

In+1 − In

δt
= bSnIn + b1S

n
1 I

n + b2S
n
2 I

n − (D + γ)In,

Rn+1 −Rn

δt
= γIn −DRn,

λN−n−1
1 − λN−n

1

δt
= −

[
− α+ λN−n

1 (−a1P
n − a2P

n − bIn+1 −D) + a1λ
N−n
2 Pn

+a2λ
N−n
3 Pn + bλN−n

4 In+1
]
,

λN−n−1
2 − λN−n

2

δt
= −

[
− α+ λN−n

2 (−b1In+1 −D) + b1λ
N−n
4 In+1

]
,

λN−n−1
3 − λN−n

3

δt
= −

[
− α+ λN−n

3 (−b2In+1 −D) + b2λ
N−n
4 In+1

]
,

λN−n−1
4 − λN−n

4

δt
= −

[
1 + λN−n

1 (−bSn+1) + λN−n
2 (−b1Sn+1

1 )− b2λ
N−n
3 Sn+1

2

+λN−n
4 (bSn+1 + b1S

n+1
1 + b2S

n+1
2 −D − γ) + γλN−n

5

]
,

λN−n−1
5 − λN−n

5

δt
= −DλN−n

5 .
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Hence, the algorithm given in Appendix B will be applied under MATLAB software to solve
the optimality system and then one deduces the optimal control.

Table 1: Description of the variables and parameters for model (2.1)

Variable Description

S(t) Susceptible bacteria
S1(t), S2(t) Susceptible bacteria who change their

behavior due to protein doses
I(t) Infected bacteria
R(t) Removed bacteria

Parameter Description Value

D Dilution rate 0.0015
Sin Input concentration of susceptible 10/3
a1 a2 Transfer rate of protein doses 0.0019, 0.0152
b, b1, b2 Infection rate 0.0040, 0.0002, 0.0016
γ Removal rate 0.005
Pmin, Pmax Control lower and upper bound 0, 0.85
α, β Balancing constant 0, 5× 10−2

The numerical simulation of system (2.1) are done using parameter values in Table 1 and initial
conditions, S0 = 1.5, S10 = 0, S20 = 0, I0 = 1.2, R0 = 0.05, P (0) = 0.5, except when otherwise
stated. With no control, the basic reproductive number R0 is 2.0513, thus, indicating the disease
free equilibrium is unstable. Here S0, S10, S20, I0 and R0, as well as the corresponding states in
the figures, are in millions of bacteria.

Time(days)
0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

2.5

S(t)
S1(t)
S2(t)
I(t)
R(t)
P(t)

Fig. 3: Numerical simulations for system (2.1), using the parameter values in Table
1.
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Fig. 4 shows a higher number of susceptible bacteria in the absence of vitamin (without control)
compared to the application of vatamin doses (with control). This is due to the fact that susceptible
bacteria in the community are not changing their behavior which causes them to move to either of
the two other susceptible classes S1 and S2.
By increasing a2, the S2-class increases and then the reduction in the total number of infected

Time(days)
0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

2.5

S(t)
S1(t)
S2(t)
I(t)
R(t)
P(t)

Time(days)
0 5 10 15 20 25 30 35 40

0

0.5

1

1.5

S(t)
S1(t)
S2(t)
I(t)
R(t)
P(t)

Fig. 4: Numerical simulation of system (2.1) without control (P (t) = p, constant)
compared to the application of vatamin doses (with control P (t)).

bacteria(Fig. 5).

Time(days)
0 5 10 15 20 25 30 35 40

0

0.5

1

1.5

S(t)
S1(t)
S2(t)
I(t)
R(t)
P(t)

Time(days)
0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5

S(t)
S1(t)
S2(t)
I(t)
R(t)
P(t)

Fig. 5: a2 = 0.0152 left and a2 = 0.152 right.

Same by increasing the input concentration of susceptible Sin = 20/3, one need more time to
obtain an efficient effect of the strategy (Fig. 6).
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Time(days)
0 5 10 15 20 25 30 35 40
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S(t)
S1(t)
S2(t)
I(t)
R(t)
P(t)

Time(days)
0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

2.5

3

3.5

S(t)
S1(t)
S2(t)
I(t)
R(t)
P(t)

Fig. 6: Sin = 10/3 left and Sin = 20/3 right.

Next by increasing the upper bound Pmax = 1.75, the S-compartment decreases however the
S1- and S2-compartments increase and then a reduction of infected bacteria and a decrease of the
time control (Fig. 7).

Time(days)
0 5 10 15 20 25 30 35 40

0

0.5

1

1.5

S(t)
S1(t)
S2(t)
I(t)
R(t)
P(t)

Time(days)
0 5 10 15 20 25 30 35 40

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

S(t)
S1(t)
S2(t)
I(t)
R(t)
P(t)

Fig. 7: Pmax = 0.085 left and Pmax = 1.7 right.

To conclude, an optimal control for a model with three susceptible classes due to changing
behavior has been illustrated. The behavior changes result from an application of some protein
doses to susceptible. This work demonstrates an optimal control tool allowing to slow down an
epidemic with a strategy by applying a protein doses process in a continuous reactor.
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Appendices

A Singular control

By simplifying the time derivative of
∂H

∂P
,

0 =
d

dt

(∂H
∂P

)
=

d

dt
{β + [−(a1 + a2)λ1 + a1λ2 + a2λ3]S}

= [−(a1 + a2)λ1 + a1λ2 + a2λ3]Ṡ + [−(a1 + a2)λ̇1 + a1λ̇2 + a2λ̇3]S

(A.1)

Both sums can be calculated separately and then added together. The first sum can be written as:

[−(a1 + a2)λ1 + a1λ2 + a2λ3]Ṡ

= [−(a1 + a2)λ1 + a1λ2 + a2λ3][−(a1 + a2)PS − bSI +DSin − dS]

= (a1 + a2)
2λ1PS + b(a1 + a2)λ1SI − (DSin − dS)(a1 + a2)λ1

− a1(a1 + a2)λ2PS − a1bλ2SI + (DSin − dS)a1λ2

− a2(a1 + a2)λ3PS − a2bλ3SI + (DSin − dS)a2λ3

The second sum can be written as:

(a1 + a2){−α+ λ1[−(a1 + a2)P − bI −D] + a1λ2P + a2λ3P + bλ4I}S
− a1[−α+ λ2(−b1I −D) + b1λ4I]S − a2[−α+ λ3(−b2I −D) + b2λ4I]S

= −(a1 + a2)
2λ1PS − b(a1 + a2)λ1IS −D(a1 + a2)λ1S + a1(a1 + a2)λ2PS

+ a2(a1 + a2)λ3PS + b(a1 + a2)λ4SI + a1(b1I +D)λ2S − a1b1λ4SI

+ a2(b2I +D)λ3S − a2b2λ4SI

Thus combining, one has

0 =
d

dt

(∂H
∂P

)
= −DSin(a1 + a2)λ1 − a1bλ2SI +DSina1λ2

− a2bλ3SI +DSina2λ3 + b(a1 + a2)λ4SI

+ a1b1λ2SI − a1b1λ4SI + a2b2λ3SI − a2b2λ4SI

= [−DSin(a1 + a2)λ1 +DSina1λ2 +DSina2λ3] + (a1b1 − a1b)λ2SI

+ (a2b2 − a2b)λ3SI + [b(a1 + a2)− a1b1 − a2b2]λ4SI

= DSin[a1(λ2 − λ1) + a2(λ3 − λ1)]

+ {a1(b1 − b)λ2 + a2(b2 − b)λ3 + [a1(b− b1) + a2(b− b2)]λ4}SI.

It can be seen that the control does not explicitly show in this expression, so next let calculate
the second derivative with respect to time.

0 =
d2

dt2
(∂H
∂P

)
= DSin[a1(λ̇2 − λ̇1) + a2(λ̇3 − λ̇1)] +

{
a1(b1 − b)λ̇2 + a2(b2 − b)λ̇3

+ [a1(b− b1) + a2(b− b2)]λ̇4

}
SI +

{
a1(b1 − b)λ2

+ a2(b2 − b)λ3 + [a1(b− b1) + a2(b− b2)]λ4

}
(Sİ + ṠI)

(A.2)

Using systems (2.1) and (3.2), then simplify (A.2) as follows
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0 =
d2

dt2
(∂H
∂P

)
= −DSin

{
[b(a1 + a2)λ1 − a1b1λ2 − a2b2λ3 + (a1(b1 − b) + a2(b2 − b))λ4]I

+D[(a1 + a2)λ1 − a1λ2 − a2λ3] +
[
(a1 + a2)

2λ1

− (a1 + a2)(a1λ2 + a2λ3)
]
P
}
+

{
a1(b1 − b)(b1I +D)λ2

+ a2(b2 − b)(b2I +D)λ3 + (a1b1(b− b1) + a2b2(b− b2))λ4I

− (a1(b− b1) + a2(b− b2))((bS + b1S1 + b2S2 −D − γ)λ4

+ 1 + α− bλ1S − b1λ2S1 − b2λ3S2 + γλ5)
}
SI

+ [a1(b1 − b)λ2 + a2(b2 − b)λ3 + (a1(b− b1) + a2(b− b2))λ4]

×
{
(bS + b1S1 + b2S2 − (d+ γ))SI + (−(a1 + a2)PS − bSI +DSin −DS)I

}
.

The above equation can be written in the form

d2

dt2
(∂H
∂P

)
= f1(t)P (t) + f2(t) = 0

and then solve for the singular control as

Psingular(t) = −
f2(t)

f1(t)
,

if

f1(t) ̸= 0 and Pmin ≤ −
f2(t)

f1(t)
≤ Pmax

14
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B Algorithm for the optimal control resolution
Algorithm B.1.

1: S0 ← S0, S
0
1 ← S10, S

0
2 ← S20, I

0 ← I0, R
0 ← R0, λ

N
1 ← 0, λN

2 ← 0, λN
3 ← 0, λN

4 ← 0, λN
5 ← 0,

P 0 ← P (0),
2: for n = 0 to N − 1 do

Sn+1 ← Sn + δt
(
D Sin −DSn − (a1 + a2)P

nSn − bSnIn
)
,

Sn+1
1 ← Sn

1 + δt
(
a1P

nSn − b1S
n
1 I

n −DSn
1

)
,

Sn+1
2 ← Sn

2 + δt
(
a2P

nSn − b2S
n
2 I

n −DSn
2

)
,

In+1 ← In + δt
(
bSnIn + b1S

n
1 I

n + b2S
n
2 I

n − (D + γ)In
)
,

Rn+1 ← Rn + δt
(
γIn −DRn

)
,

λN−n−1
1 ← λN−n

1 − δt
[
− α+ λN−n

1 (−a1P
n − a2P

n − bIn+1 −D) + a1λ
N−n
2 Pn

+a2λ
N−n
3 Pn + bλN−n

4 In+1
]
,

λN−n−1
2 ← λN−n

2 − δt
[
− α+ λN−n

2 (−b1In+1 −D) + b1λ
N−n
4 In+1

]
,

λN−n−1
3 ← λN−n

3 − δt
[
− α+ λN−n

3 (−b2In+1 −D) + b2λ
N−n
4 In+1

]
,

λN−n−1
4 ← λN−n

4 − δt
[
1 + λN−n

1 (−bSn+1) + λN−n
2 (−b1Sn+1

1 )− b2λ
N−n
3 Sn+1

2

+λN−n
4 (bSn+1 + b1S

n+1
1 + b2S

n+1
2 −D − γ) + γλN−n

5

]
,

λN−n−1
5 ← λN−n

5 − δtDλN−n
5 ,

fn+1
1 ← −DSin(a1 + a2)

β

Sn+1
− [a1(b− b1)(λ

N−n−1
4 − λN−n−1

2 )

+a2(b− b2)(λ
N−n−1
4 − λN−n−1

3 )](a1 + a2)S
n+1In+1

fn+1
2 ← −DSin

{
[b(a1 + a2)λ

N−n−1
1 − a1b1λ

N−n−1
2 − a2b2λ

N−n−1
3

+(a1(b1 − b) + a2(b2 − b))λN−n−1
4 ]In+1 +D

β

Sn+1

}
+
{
a1(b1 − b)(b1I

n+1 +D)λN−n−1
2 + a2(b2 − b)(b2I

n+1 +D)λN−n−1
3

+(a1b1(b− b1) + a2b2(b− b2))λ
N−n−1
4 In+1 − (a1(b− b1)

+a2(b− b2))((bS
n+1 + b1S

n+1
1 + b2S

n+1
2 −D − γ)λN−n−1

4 + 1 + α

−bλN−n−1
1 Sn+1 − b1λ

N−n−1
2 Sn+1

1 − b2λ
N−n−1
3 Sn+1

2 + γλN−n−1
5 )

}
Sn+1In+1

+
[
a1(b1 − b)λN−n−1

2 + a2(b2 − b)λN−n−1
3 + (a1(b− b1)

+a2(b− b2))λ
N−n−1
4 ]

{
(bSn+1 + b1S

n+1
1 + b2S

n+1
2 − (D + γ))Sn+1In+1

+(−bSn+1In+1 +DSin −DSn+1)In+1
}

Pn+1 ← max(min(−fn+1
2

fn+1
1

, Pmax), Pmin),

S∗(n+ 1) ← Sn+1, S∗
1 (n+ 1)← Sn+1

1 , S∗
2 (n+ 1)← Sn+1

2 ,
I∗(n+ 1) ← In+1, R∗(n+ 1)← Rn+1, P ∗(n+ 1)← Pn+1.

end
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