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Abstract 
 

This paper uses a power transformation approach to introduce a three-parameter probability distribution 
which gives another extension of the Gompertz distribution known as “Power Gompertz distribution”. 
The statistical features of the power Gompertz distribution are systematically derived and studied 
appropriately. The three parameters of the new model are being estimated using the method of maximum 
likelihood estimation. The proposed distribution has also been compared to the Gompertz distribution 
using a real life dataset and the result shows that the Power Gompertz distribution has better performance 
than the Gompertz distribution and hence will be more useful and effective if applied in some real life 
situations especially survival analysis and cure fraction modeling just like the conventional Gompertz 
distribution. 
 

 

Original Research Article 



 
 
 

Ieren et al.; ARJOM, 15(2): 1-14, 2019; Article no.ARJOM.52035 
 
 
 

2 
 
 

Keywords: Power transformation; Gompertz distribution; statistical properties; parameters; method of 
maximum likelihood estimation; real life data; performance. 

 
AMS Classication: 60E05, 62FXX, 62F10, 62G05, 90B25. 
 

1 Introduction 
  
The Gompertz distribution is both skewed to the right and to the left. It is a generalization of the exponential 
distribution and is commonly used in many applied problems, particularly in lifetime data analysis [1]. The 
Gompertz distribution has been applied in the analysis of survival, in some sciences such as gerontology [2], 
computer [3], biology [4], and marketing science [5]. The hazard rate function of the Gompertz distribution 
is an increasing function and often applied to describe the distribution of adult life spans by actuaries and 
demographers [6]. 
 
New families of distributions are produced day by day and are useful for adding parameters to all forms of 
probability distributions which makes the resulting distribution more flexible for modeling heavily skewed 
dataset. Some of these families of distributions include the beta generalized family (Beta-G) by Eugene et al. 
[7], Transmuted family of distributions by Shaw and Buckley [8], Gamma-G (type 1) by Zografos and 
Balakrishnan [9], the Kumaraswamy-G by Cordeiro and de Castro [10], McDonald-G by Alexander et al. 
[11], Gamma-G (type 2) by Ristic et al. [12], Gamma-G (type 3) by Torabi and Montazari [13], Log-gamma-
G by Amini et al. [14], Exponentiated T-X by Alzaghal et al. [15], Exponentiated-G (EG) by Cordeiro et al. 
[16], Weibull-X by Alzaatreh et al. [17], Weibull-G by Bourguignon et al. [18], Logistic-G by Torabi and 
Montazari [19], Gamma-X by Alzaatreh et al. [20], a Lomax-G family by Cordeiro et al. [21], a new 
generalized Weibull-G family by Cordeiro et al. [22], a Beta Marshall-Olkin family of distributions by 
Alizadeh et al. [23], Logistic-X by Tahir et al. [24], a new Weibull-G family by Tahir et al. [25], a Lindley-
G family by Cakmakyapan and Ozel [26], a Gompertz-G family by Alizadeh et al. [27] and Odd Lindley-G 
family by Gomes-Silva et al. [28] and so on.  
 
Following the introduction of the above listed families of probability distribution and the desire to add 
skewness and flexibility to classical distributions particularly the Gompertz distribution, many authors have 
proposed different extensions of the distribution and some of the recent and known studies include the 
generalized Gompertz distribution by El-Gohary and Al-Otaibi [29] which was based on an idea of Gupt and 
Kundu [30], the Beta Gompertz distribution by Jafaril et al. [31], the odd generalized Exponential-Gompertz 
distribution by El-Damcese et al. [32], the Transmuted Gompertz distribution by Abdul-Moniem and Seham 
[33] and the Lomax-Gompertz distribution by Omale et al. [34].  
 
It has been discovered that using power transformation of a random variable offers a more flexible 
distribution model by adding a new parameter called the power parameter. Ghitany et al. [35] introduced two 
parameters distribution called power Lindley distribution and this model provides more flexibility than 
Lindley distribution. Also Rady et al. [36] introduced a three parameter Power Lomax Distribution using the 
power transformation approach. The new distribution exhibited a much more flexible model for life time 
data especially bladder cancer data than its predecessor Lomax distribution with a decreasing, inverted bath 
tub hazard rate function. They also used a real life data to illustrate and compare the potential of power 
Lomax distribution with other competing distributions and the results showed that it offered a better fit than 
a set of extensions of Lomax distribution.   
 
Hence, our interest in this article is to present another extension of the Gompertz distribution using the 
power transformation approach considered previously by Ghitany et al. [35] and Rady et al., [36] and hope 
that it will yield a better model for analyzing real life situations especially in survival analysis.  
 

The cumulative distribution function (cdf) of the Gompertz distribution with parameters   and   and the 
probability density function (pdf) is given as: 
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respectively. For 0, 0, 0x      where   and   are scale and shape parameters of the model 
respectively.  

 
The remaining parts of this article are presented in sections as follows: definition of the new distribution 
with its graphical analysis is provided in section 2. Section 3 derived some properties of the new             
distribution such as limiting behavior, quantile function for median, skewness and kurtosis as well as 
simulation of random variables, survival and hazard functions and distribution of order statistics. The 
estimation of parameters using maximum likelihood estimation (MLE) is provided in section 4. An 
application of the new model with other existing distributions to a dataset on the remission times of a 
random sample of 128 bladder cancer patients is done in section 5 and a useful summary and conclusion is 
given in section 6. 

 

2 Formulation of the Power Gompertz Distribution (PGD) 
 
2.1 Definition 
 
Here we introduce a new extension of the Gompertz distribution by considering the power transformation, 

1

X T  , where the random variable T  is said to follow a Gompertz distribution with parameters   and 

 .  The distribution of X is referred to as Power Gompertz distribution. Symbolically, it is abbreviated by 

 , ,X PGD   
  to indicate that the random variable X  has the power Gompertz distribution with 

parameters  , 


 and  . 

 
Therefore, the cumulative distribution function (cdf) of the Power Gompertz distribution (PGD) with 

parameters  , 


 and   and the probability density function (pdf) of the Power Gompertz distribution 
(PGD) are given as: 
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respectively. For 0, 0, 0, 0x        where   and   are scale and shape parameters of the model 

respectively and   is the power parameter responsible for addition of skewness and flexibility into the 
conventional Gompertz distribution. 
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2.2 Graphical Presentation of Pdf and Cdf of PGD 
 
The pdf and cdf of the PGD using some parameter values are displayed in Figs. 1 and 2 respectively as 
follows. 
 

 
 

Fig. 1. PDF of the PGD for different values of the parameters 
 
Fig. 1 indicates that the PGD distribution is positively skewed and takes various shapes depending on the 
parameter values.  
 

 
 

Fig. 2. CDF of the PGD for different values of the parameters 
 

Also, from the above cdf plot in Fig. 2, it is clear that the cdf approaches one (1) when X tends to infinity and 
equals zero when X tends to zero as normally expected. 
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3 Mathematical and Statistical Properties of PGD 
 
In this section, we derived, study and discuss some properties of the PGD distribution. They are as follows:  
 

3.1 Asymptotic behavior 
 
This section investigates the limiting behavior of the PGD, that is, the limit of the PDF and CDF of the PGD 

as X approaches infinity, x   and as X  tends to zero, 0x  . This is demonstrated as follows: 
 
For the PDF: 
 

    lim lim 1 11 1e e( ) ( ) 0e e e e
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For the CDF: 
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This demonstration above affirms that the distribution has at least one mode or it is a unimodal distribution 
and that it is a valid probability distribution.  
 

3.2 Quantile function 
 
Hyndman and Fan [37] defined the quantile function for any distribution in the form 

   1
qQ u X F u 

 where 
 Q u

 is the quantile function of F(x) for 0 1u   
 

Taking F(x) to be the cdf of the PGD and inverting it as above will give us the quantile function as follows: 
 

1e( ) 1 e
x

F x u
 


   
                                                                                                                (9) 

 
Simplifying equation (9) above and solving for X presents the quantile function of the PGD as: 
 

    1 log 1 1qQ u X u
    

                                                                                       (10) 
 
This function is derived above is used for obtaining some moments like skewness and kurtosis as well as the 
median and for generation of random variables from the distribution in question.  
 

3.3 Skewness and Kurtosis 
 
This paper presents the quantile based measures of skewness and kurtosis due to non-existence of the 
classical measures in some cases.  
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The Bowley’s measure of skewness (Kennedy and Keeping [38]) based on quartiles is given by; 
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And the Moor’s kurtosis by Moors [39] is on octiles and is given by; 
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Where 
 .Q

 is obtainable with the help of equation (10). 
 

3.4 Reliability analysis of the PGD 
 
The Survival function describes the likelihood that a system or an individual will not fail after a given time. 
Mathematically, the survival function is given by: 
  

   1S x F x 
                                                                                                               (13) 

  

Applying the cdf of the PGD in (13), the survival function for the PGD is obtained as: 
 

 1( ) 1 1 e
xeS x
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The following is a plot for the survival function of the PGD using different parameter values as shown in 
Fig. 3 below; 
 

 
 

Fig. 3. Survival function of the PGD at different parameter values 
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The plots in Fig. 3 shows that the probability of survival equals one (1) at initial time or early age and it 
decreases as time increases and equals zero (0) as time approaches infinity. 
 
Hazard function is the probability that a component will fail or die for an interval of time. The hazard 
function is defined as; 
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Meanwhile, the expression for the hazard rate of the PGD is given by 
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where 
, , , 0x    

. 
 

The following is a plot of the hazard function for arbitrary parameter values in Fig. 4. 
 

 
 

Fig. 4. The hazard function of the PGD for different values of the parameters as displayed in the key 
on the plots 

 

The figure above revealed that the PGD has increasing failure rate which implies that the probability of 
failure for any random variable following a PGD increases as time increases, that is, probability of failure or 
death increases as life ages.  
 

3.5 Order statistics 
 

Suppose 1 2, ,....., nX X X
 is a random sample from the PGD and let 1: 2: :, ,.....,n n i nX X X

 denote the 
corresponding order statistic obtained from this same sample. The pdf, ��:�(�) of the ith order statistic can be 
obtained by 
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Using (3) and (4), the pdf of the ith order statistics��:�, can be expressed from (17) as; 
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Hence, the pdf of the minimum order statistic �(�)  and maximum order statistic �(�)  of the PGD are 

respectively given by; 
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4 Estimation of Unknown Parameters of the PGD Using Method of 
Maximum Likelihood 

 
In this section, the estimation of the parameters of the PGD is done by using the method of maximum 

likelihood estimation (MLE). Let nXXX .,,........., 21  be a sample of size ‘n’ independently and 

identically distributed random variables from the PGD with unknown parameters  , 


 and   defined 
previously.  
The likelihood function of the PGD using the pdf in equation (4) is given by; 
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Let the natural logarithm of the likelihood function be,
   log | , ,l L X   

, therefore, taking the 
natural logarithm of the function above gives: 
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Differentiating 
 l 

 partially with respect to  , 


 and   respectively gives the following results; 
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Making equation (23), (24) and (25) equal to zero (0) and solving for the solution of the non-linear system of 

equations produce the maximum likelihood estimates of parameters 
ˆˆ ,  and ̂ . However, these solutions 

cannot be obtained manually except numerically with the aid of suitable statistical software like R, SAS, 
MATHEMATICA e.t.c. Hence, some datasets are being considered in the next section to fit the proposed 
distribution with other distributions using “Adequacy Model” package in R software. 
 

5 Applications to Three Real Life Datasets 
 
This section presents a real life dataset, its descriptive statistics, graphical summary and applications. The 
section compares the fits of the Power Gompertz Distribution (PGD) and Gompertz Distribution (GD) using 
a dataset on the remission times of a random sample of 128 bladder cancer patients. 
 
To compare the above listed distributions, we have considered some model selection criteria which include 
the value of the log-likelihood function evaluated at the MLEs (ℓ), Akaike Information Criterion, AIC, 
Consistent Akaike Information Criterion, CAIC, Bayesian Information Criterion, BIC and Hannan Quin 
Information Criterion, HQIC. These statistics are computed with the following formulas: 
 

2 2AIC k   , 
 2 log ,BIC k n    

2
1

2 kn
n k

CAIC
 

  
 and

 2 2 log logHQIC k n     
 

 
Where ℓ denotes the value of log-likelihood function evaluated at the MLEs, k is the number of model 
parameters and n is the sample size. Meanwhile, when taking our decisions we consider any model with the 
lowest values for these statistics to be a best model that fit the dataset. The required computations are carried 
out using the R package “AdequacyModel” which is freely available from http://cran.r-
project.org/web/packages/AdequacyModel/AdequacyModel.pdf. 
 
Table 2 list the Maximum Likelihood Estimates of the model parameters whereas the statistics AIC, CAIC, 
BIC and HQIC for the fitted PGD and GD models are given in Tables 3 based on the dataset on the 
remission times of a random sample of 128 bladder cancer patients. 
 
Dataset: This data represents the remission times (in months) of a random sample of 128 bladder cancer 
patients adopted from the work of Rady et al. [36]. It has previously been used by Lee and Wang [40], Rady 
et al. [36], Ieren and Chukwu [41] and Abdullahi et al. [42]. It is given and summarized as follows:  
 
0.080, 0.200,  0.400, 0.500, 0.510, 0.810, 0.900, 1.050, 1.190, 1.260, 1.350, 1.400, 1.460, 1.760, 2.020, 
2.020, 2.070, 2.090, 2.230, 2.260, 2.460, 2.540, 2.620, 2.640, 2.690, 2.690, 2.750, 2.830, 2.870, 3.020, 
3.250, 3.310, 3.360, 3.360, 3.480, 3.520, 3.570, 3.640, 3.700, 3.820, 3.880, 4.180, 4.230, 4.260, 4.330, 
4.340, 4.400, 4.500, 4.510, 4.870, 4.980, 5.060, 5.090, 5.170, 5.320, 5.320, 5.340, 5.410, 5.410, 5.490, 
5.620, 5.710, 5.850, 6.250, 6.540, 6.760, 6.930, 6.940, 6.970, 7.090, 7.260, 7.280, 7.320, 7.390, 7.590, 
7.620, 7.630, 7.660, 7.870, 7.930, 8.260, 8.370, 8.530, 8.650, 8.660, 9.020, 9.220, 9.470, 9.740, 10.06, 
10.34, 10.66, 10.75, 11.25, 11.64, 11.79, 11.98, 12.02, 12.03, 12.07, 12.63, 13.11, 13.29, 13.80, 14.24, 
14.76, 14.77, 14.83, 15.96, 16.62, 17.12, 17.14, 17.36, 18.10, 19.13, 20.28, 21.73, 22.69, 23.63, 25.74, 
25.82, 26.31, 32.15, 34.26, 36.66, 43.01, 46.12, 79.05. 
 



 
 
 

Ieren et al.; ARJOM, 15(2): 1-14, 2019; Article no.ARJOM.52035 
 
 
 

10 
 
 

Table 1. Summary statistics for the data set 
 

Parameters n Minimum 
1Q

 
Median 

3Q
 

Mean Maximum Variance Skewness Kurtosis 

Values 128 0.0800 3.348 6.395 11.840 9.366 79.05 110.425 3.3257 19.1537 

 

 
 

Fig. 5. A graphical summary of the aforementioned dataset 
 

Based on the descriptive statistics in Table 1 and the histogram, box plot, density and normal Q-Q plot 
generally known as graphical summary shown in Fig. 5 above, it is seen that the dataset on the remission 
times of a random sample of 128 bladder cancer patients is heavily skewed to the right or positively skewed. 
  

Table 2. Maximum likelihood parameter estimates for the dataset 
 

Distribution ̂  ̂
 

̂  

PGD 0.071803  -0.009980  1.200525  
GD 0.114844  -0.007515  - 

  
Table 3. The statistics ℓ, AIC, CAIC, BIC and HQIC for the dataset 

 
Distribution ̂  

AIC CAIC  BIC  HQIC Ranks 

PGD -411.1731  828.3463  836.9023  828.5397  831.8226  1st  
GD -413.7624  831.5248  837.2289  831.6208  833.8424  2nd  

 
The following figure displayed the histogram and estimated densities and cdfs of the fitted models to a 
dataset on the remission times of a random sample of 128 bladder cancer patients. 
 
Table 3 presents the parameter estimates and the values of AIC, CAIC, BIC and HQIC for the PGD and GD 
using a dataset on the remission times of a random sample of 128 bladder cancer patients which is skewed to 
the right. The values of AIC, CAIC, BIC and HQIC in Table 3 are smaller for the PGD compared to those of 
the GD and these results indicate that the Power Gompertz distribution (PGD) is better than the Gompertz 
distribution (GD) and this is confirmed from the estimated density plots in Fig. 6 as well as the Q-Q plots 
presented in Fig. 7. This result confirms the that fact that the power transformation approach of adding 
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parameter to distributions has advantage over the conventional probability distributions. These results above 
has proven that the power parameter is really responsible for additional skewness and flexibility in some 
continuous probability distributions just previously reported by Ghitany et al. [35] and Rady et al. [36].   
 

 
 

Fig. 6. Histogram and plots of the estimated densities and cdfs of the fitted distributions to a dataset 
on the remission times of a random sample of 128 bladder cancer patients 

 

 
 

Fig. 7. Probability plots for the fit of the PGD and GD based on our dataset on the remission times of a 
random sample of 128 bladder cancer patients 

 

6 Summary and Conclusion 
 
This research considered a power transformation approach to define and study a Gompertz distribution 
leading to a new distribution called “Power Gompertz distribution”. The research derived and studied some 
of its properties of the proposed distribution with graphical analysis and discussion on its usefulness and 
applications. The paper has checked analytically the validity of the Power Gompertz distribution with plots 
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of its probability density function and cumulative distribution function which has shown that the new 
distribution is flexible with different shapes and could be adequately used in real life situations. We also 
checked the limiting behavior of the new model which has also proven that it is a very accurate probability 
model. This study also derived and generated plots of the survival and hazard function which has revealed 
that the new distribution will be useful for modeling random variables whose chances of survival decreases 
with time and those of failure increases with time, that our model has a decreasing hazard rate useful for 
many lifetime datasets. This article also proposed density functions for minimum and maximum order 
statistics which are applicable in robust statistical estimation and detection of outliers, characterization of 
probability distributions and goodness of fit tests, entropy estimation, analyses of censored samples, 
reliability analysis, quality control and strength of materials. Hence, having demonstrated earlier in the 
previous section, it is clear that the new model (PGD) has a better fit compared to the Gompertz distribution 
based on the data set considered in this study. 
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