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Abstract 
 

In this paper, by using the general discrete Halanay inequalities, the techniques of inequalities and some other 
properties, we study the ultimate boundedness of a class of the discrete-time uncertain neural network 
systems and obtain several sufficient conditions to ensure the ultimate boundedness of discrete-time uncertain 
neural networks with leakage and time-varying delays. Finally numerical examples are given to verify the 
correctness of the conclusion. 
 

 
Keywords: Discrete-time neural network; ultimate boundedness; time-varying delay; uncertainty. 
 

1 Introduction 
 
Neural network is an artificial system that simulates the function of human brain nervous system, and develops 
an artificial system with a variety of intelligent information processing functions by exploring the neurons in the 
human brain [1-3]. Since the discovery of neural network in the 1940s, many domestic and foreign scholars 
have devoted themselves to it, which has developed a broad prospect for the research and development of neural 
network. At present, on the basis of the study of network model and algorithm, artificial neural network has been 
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used to establish a number of practical application systems, such as making robots, completing some signal 
processing or pattern recognition functions.  
 
However, it can not be ignored that neural network, as a nonlinear system, will have time delay in the process of 
hardware implementation. Therefore, in the neural network system, the existence of time delay may reduce the 
transmission speed of the neural network, and affect the dynamic behavior of the whole neural network. In [4], S. 
Li studied non-autonomous recursive neural networks with variable time delay and obtained the boundedness 
and global exponential stability. In [5], Arslan discussed the robust stability for a class of neural networks with 
multiple time delays. In [6], Y. Cheng considered the stability analysis of the DNNs with time-varying delay. 
And in [7-9], scholars have also explored other characteristics of time delay neural networks. In addition, 
leakage delay is also inevitable and more difficult to deal with. Therefore, considering leakage delay is of great 
help to the study of neural networks. In [10-13], scholars have studied the leakage delay. 
 
Furthermore, in the process of establishing the neural network model, due to modeling errors, external 
disturbances and parameter fluctuations, the value of network parameters may show deviation. These 
uncertainties in the network parameters may lead to some complex dynamics phenomena in the neural network. 
The existence of uncertainty can also make the system difficult to control, and even difficult to model. For this 
reason, scholar has analyzed the robust stability of time-varying delay neural networks with norm bounded 
uncertainties in [14]. Similarly, scholars also conducted research and analysis on the system of uncertainty from 
different perspectives in [15-18]. 
 
With the deepening of the research on neural networks, the categories of neural networks have been refined. 
Discrete neural network is a kind of artificial neural network, which has the functions of bidirectional 
associative memory, nonlinear output adjustment and adaptive tracking. However, in the current dynamic 
behavior of neural networks, most dynamic behaviors involve continuous time systems, while discrete-time 
dynamic neural networks are more relevant to many problems in nature and biological reality than continuous 
time networks. Hence, in practical application, discrete-time neural network is actually more important than 
continuous time neural network. Thereupon, it is particularly necessary and important to study the dynamic 
characteristics of discrete-time neural networks. As an important dynamic characteristic in the study of neural 
networks, stability analysis of neural networks has been studied by many scholars [19-24]. While there are few 
researches on the ultimate boundedness of discrete-time neural networks. 
 
Difference equations are often used to help model real life problems as a special case of inequality [25]. This 
article will use the differential equation to establish the model of uncertain discrete-time neural network. And by 
using the general discrete Halanay inequalities, the techniques of inequalities and some other properties, we 
obtain some sufficient conditions to ensure the ultimate boundedness of uncertain discrete-time neural networks, 
and numerical examples are given to prove the validity of the theoretical results. 
 

2 Preliminary Knowledge 
 
For the purposes of proof and derivation, we need to clarify some symbols, definitions, and preliminary results: 

Let R denote the set of all real numbers, R
the set of positive real numbers, 

+
0R the set of non-negative real 

numbers, Z the set of integers, Z 
the set of positive integers, 

rZ 
the set of all integers greater than or equal 

to r . And A the norm in space 
n nR 

, 
1

A the column norm in space 
n nR 

, 
TA the transpose of the 

matrix, ( )idiag a the diagonal matrix.  

 

Also 1( ) ( ), , ( )
T p

py y y R       is the neuron state vector, 1, ,
T

pb b b    is a constant input vector. 

( ), 1, 2, ,i k i r   are positive integers and represent the time-varying delays satisfying 0 ( ) ,i ik  

1, 2, ,i r  , and 0i   are known integers. ( ), 1, 2, ,i k i r   are the leakage delays satisfying 

0 ( ) ,i ik   1, 2, ,i r  , and 0i   are known integers. ( )( (0,1)),i mi miA diag a a 
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( )( (0,1)),i iA diag A A  ,B iB  and iC  are the interconnection matrices. 

1 1 2 2( ) ( ( )), ( ( )), , ( ( ))
T

p pg g y g y g y       is the activation function, and we assume that there exists a 

constant 0mL  such that the activation function ( ), 1,2, ,mg m p    satisfies the following inequality 

( ) ( ) , , .m m mg x g y L x y x y R    
 

 
At the same time, in order to satisfy the uncertainty conditions of the system, we establish some uncertainty 

matrixs with the following conditions ( ), ( ), ( )iA k A k B k    and ( ), 1,2, ,iC k i r   :  

 

1 1 1 1( ) ( ) , ( ) ( ) ,
i iiA k H F k E A k H F k E   

 
 

2 2( ) ( ) , ( ) ( ) ,i i iB k H F k E C k W F k D   
 

 

where 1 1 2 1 1 2, , , , , ,
i i iH H H E E E D  and , 1, 2, ,iW i r   are  known matrices, and ( )F k   is an unknown 

time-varying matrix satisfying  
 

( ) ,F k I  

 

where I is the identity matrix. Besides, maxm mL  is the maximum of the vector and  

 

maxmax ( ), max ( ),m m m ml L a A 
 

 

1max 1 2max 2 maxmax ( ), max ( ), max ( ).m m m m i m ime E e E d D  
 

 
We mainly study the ultimate boundedness of uncertain discrete-time neural network system, so it is necessary 
to give the definition of the ultimate boundedness of uncertain discrete-time neural network system: 
 
Definition 2.1(Exponential stability) [19]. The system is called exponentially stable if for any solution 

( , )y k   with the initial condition  , there  exist constant scalars 0 1   and 0   such that  

 

( ) , 0,ky k k    
 

 

where    ,0
max ( )

rs
s


 

 
  for all admissible uncertainties. 

 

Definition 2.2(Ultimate boundedness). The system is called ultimate bounded if  for any solution ( , )y k   

with the initial condition  , there  exist constant scalars 0 1   and 0   such that  

 

( ) , 0,ky k M k     
 

 

where M  is a constant and    ,0
max ( )

rs
s


 

 
  for all admissible uncertainties. 

 

3 Ultimate Boundedness 
 
In order to obtain the sufficient conditions for the ultimate boundedness of uncertain discrete-time neural 
networks quickly and effectively, the difference equation is used to establish the model, and the discrete Halanay 
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inequality and the skills of inequality are used to obtain the sufficient conditions for the ultimate boundedness. 
Now, we consider the following DNNs with leakage and time-varying delays: 
 

   
1

( 1) ( ) ( ( )) ( ) ( ( ))
r

i i i
i

y k A A k y k k B B k g y k


       
 

 
1

( ) ( ( ( ))) .
r

i i i
i

C C k g y k k b


                                                                                            (3-1) 

 
with the initial conditions for the system 
 

( ) ( ),m my s s  1, 2, , ,m p   
 

where 1 2( ) ( ), ( ), , ( )
T

ps s s s       is an initial function,  ,0rs   , and r  is the maximum value 

of r  and r . 

 

To more simple and clear application of the system,  ( )y k  is expressed by ky . We will use the inequalities in 

Lemma 3.1 to prove Theorem 3.2, thus obtaining sufficient conditions for the ultimate boundedness of uncertain 

discrete-time neural networks with leaky and time-varying delays. And when b  is the zero vector, the condition 
of ultimate boundedness can be generalized to the condition of exponential stability. 
 

Lemma 3.1. Let 
0

( 1) 1,
r

i i
i

q p


    and let  
rj j Z

v


 be a sequence of real numbers, where 

0 0 1, , 1, , ; , , 0 .i i r rq R Z i r p R                Assume the following inequality holds 

 

0

0 0

( 1) , ,
ir

k k i i k j
i j

v pv q v k Z


 
 

      �
 

 

where 1 ,k k kv v v    and   is a constant. Then there exists 0 (0,1)   such that  

 

  0
0 1 0

0

max 0, , , , .

( 1)
r

k
k r

i i
i

v v v v k Z

p q






 



  

 
 ，

 
 

Besides, 0  may be chosen as the smallest root of the polynomial 

 

1

0 0

( ) (1 ) ( 1)
i

r r r

r
j

i i
i j

P p q


       

 

     
 

 
which lies in (0,1). 
 
Proof. See [26]. 
 
Now, Lemma 3.1 will be used to prove and obtain sufficient conditions for the ultimate boundedness of 
uncertain discrete-time neural networks with leakage and time-varying delays. 
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Theorem 3.2. The system (3-1) is ultimate bounded if 
 

2 2max max max 1 1 max
1

( 1)( ( ) ) 1.
i i

r

i i i i i
i

l B l H e l C W d a H e


                           (3-2) 

 

Proof. Consider the function .k kz y  Then the difference equation in system (3-1) can be expressed as  

 

1( ) k kz k y y  
 

 

( ) ( )
1 1

( )
1

= ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

i i i

i

r r

i i k k k k i k k k k
i i

r

i i k k k k
i

A A y B B g y C C g y b y

A A y B B g y

 



 
 




         

     

 


 

        ( )
1

( ) ( )
i i

r

i k k k k
i

C C g y b y


      

            1 1 ( ) 2 2
1

( ) ( )
i i i

r

i k k k k k
i

A H F E g l B H F E y


     

            ( )
1

( )
i

r

i i k i k k k
i

l C W F D y b y


     

1 1 max ( ) 2 2max
1

( ) ( )
i i i

r

i k k k
i

A H e y l B H e y


     

            max ( )
1

( )
i

r

i i i k k k
i

l C W d y b y


   

2 2max max 1 1 max ( )
1

(1 ) ( )
i i i

r

k i k k
i

l B l H e y a H e y 


             

max ( )
1

( )
i

r

i i i k k
i

l C W d y b


    

            2 2max(1 ) kl B l H e y     

            max max 1 1 max
1 0

( )
i

i i

r

i i i i k j
i j

l C W d a H e y b



 

     
   

2 2max(1 ) kl B l H e y   

max max 1 1 max
1 0

+ ( 1) ( )
i

i i

r

i i i i i k j
i j

l C W d a H e y b


 
 

     
  

 

 

0 0

( 1) ,
ir

k i i k j
i j

pz q z


 
 

       

 

where 2 2max1 ,p l B l H e   max max 1 1 max( ) ,
i ii i i i iq l C W d a H e    .b   

 



 
 
 
 

Hua and He; JAMCS, 36(6): 97-109, 2021; Article no.JAMCS.72143 
 
 

 
102 

 

According to Lemma 3.1, there must be 0 (0,1)   such that  

 

  0
0 1 0

0

max 0, , , , , .

( 1)
r

k
k r

i i
i

z z z z k Z

p q






 



  

 
  

 
Therefore, we provide 
 

  0
0 1 0

0

max 0, , , , , .

( 1)
r

k
k k r

i i
i

z y z z z k Z

p q






 



   

 


 
 

 0 1 0

0

0 0

0

max 0, , , ,

( 1)

,

( 1)

r

k

r

i i
i

k k

r

i i
i

y y y

p q

j

p q









   



 





 

 

   

 







 

 

where 

0

( 1)
r

i i
i

j

p q








 
 is a constant. 

 
From definition 2.2, system (3-1) can be proved ultimate bounded. 
 

Lemma 3.3 [19]. Let 
0

( 1) 1,
r

i i
i

q p


    and let  
rj j Z

v


 be a sequence of real numbers, where 

0 0 1, , 1, , ; , , 0 .i i r rq R Z i r p R                Assume the following inequality holds 

 

0

0 0

( 1) , ,
ir

k k i i k j
i j

v pv q v k Z


 
 

     �  

 

where 1 .k k kv v v    Then there exists 0 (0,1)   such that  

 

  0
0 1 0max 0, , , , .

r

k
kv v v v k Z    ，

 
 

Besides, 0  may be chosen as the smallest root of the polynomial 

 

1

0 0

( ) (1 )
i

r r r

r
j

i
i j

P p q


      

 

     
 

 
which lies in (0,1). 
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Proof. See [26]. 
 

Now, Lemma 3.3 will be used to prove and obtain that when b  is the zero vector, the exponential stability 
condition of the system can be deduced. 
 

Corollary 3.4 [19]. Assuming b  in system (3-1) is the zero vector, then the system (3-1) is exponentially stable 
if 
 

2 2max max max 1 1 max
1

( 1)( ( ) ) 1,
i i

r

i i i i i
i

l B l H e l C W d a H e


                            (3-3) 

 
Proof. See [19]. 
 
Since time-varying delay is more common than leakage delay, the conclusion will be more general if we only 
study time-varying delay. Therefore, the system will degraded to an uncertain discrete-time neural network with 
no leakage delay. 
 
So the system (3-1) is going to be equal to 
 

 ( 1) [ ( )] ( ) ( ) ( ( ))y k A A k y k B B k g y k    
 

                 
1

( ) ( ( ( ))) ,
r

i i i
i

C C k g y k k b


                                                                                          (3-4) 

 
with the initial conditions for the system 
 

( ) ( ),m my s s  1, 2, , ,m p   
 

where 1 2( ) ( ), ( ), , ( )
T

ps s s s       is an initial function,  ,0rs   , and r  is the maximum value 

of i . 

 
To prove and obtain sufficient conditions for the ultimate boundedness of uncertain discrete-time neural 
networks with time-varying delays, lemma 3.5 needs to be introduced to prepare for its implementation. 
 

Lemma 3.5. Let 
0

( 1) 1
r

i i
i

q p


    and let  
rj j Z

v


 be a sequence of real numbers, where 

0 0 1, , 1, , ; , , 0 .i i r rq R Z i r p R                Assume the following inequality holds 

 

0

0 0

( 1) , ,
ir

k k i i k j
i j

v p v q v k Z


 
 

      �
 

 

where 1 ,k k kv v v    and   is a constant. Then there exists 0 (0,1)   such that  

 

  0
0 1 0

0

max 0, , , , .

( 1)
r

k
k r

i i
i

v v v v k Z

p q






 



  

 
 ，  

 

Besides, 0  may be chosen as the smallest root of the polynomial 
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1

0 0

( ) (1 ) ( 1)
i

r r r

r
j

i i
i j

P p q


       

 

     
 

which lies in (0,1). 
 
Proof. See [26]. 
 
Now, Lemma 3.5 is used to prove and obtain the sufficient conditions for the ultimate boundedness of uncertain 
discrete-time neural networks with time-varying delays. 
 
Theorem 3.6. The system (3-4) is ultimate bounded if 
 

max 1 1max 2 2max max
1

+ ( 1)( ) 1,
r

i i i i
i

a H e l B l H e l C W d


                                  (3-5) 

 

Proof. Consider the function .k kz y  Then the difference equation in system (3-4) can be expressed as  

 

1( ) k kz k y y  
 

 

( )
1

( )
1

= ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

i i

i i

r

k k k k i k k k k
i

r

k k k k i k k k k
i

A A y B B g y C C g y b y

A A y B B g y C C g y b y











         

          




 

            max 1 1 2 2( ) ( )k k k ka H F E y l B H F E y     

( )
1

( )
i

r

i i k i k k k
i

l C W F D y b y


     

max 1 1max 2 2max( ) ( )k ka H e y l B H e y     

max ( )
1

( )
i

r

i i i k k k
i

l C W d y b y


     

max 1 1max 2 2max(1 ) ka H e l B l H e y       

max ( )
1

( )
i

r

i i i k k
i

l C W d y b


    

max 1 1max 2 2max(1 ) ka H e l B l H e y       

max
1 0

( )
ir

i i i k j
i j

l C W d y b



 

    

max 1 1max 2 2max(1 ) ka H e l B l H e y       

max
1 0

( 1)( )
ir

i i i i k j
i j

l C W d y b


 
 

      

            
0 0

( 1) .
ir

k i i k j
i j

pz q z


 
 

     
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where max 1 1max 2 2max1 ,p a H e l B l H e     max ,i i i iq C W d  .b 
 

 

According to Lemma 3.5, there must be 0 (0,1)   such that  

 

  0
0 1 0

0

max 0, , , , , .

( 1)
r

k
k r

i i
i

z z z z k Z

p q






 



  

 
  

 
Therefore, we provide 
 

  0
0 1 0

0

max 0, , , , , .

( 1)
r

k
k k r

i i
i

z y z z z k Z

p q






 



   

 


 
 

                

 0 1 0

0

0 0

0

max 0, , , ,

( 1)

,

( 1)

r

k

r

i i
i

k k

r

i i
i

y y y

p q

j

p q









   



 





 

 

   

 







 

 

where 

0

( 1)
r

i i
i

j

p q








 
 is a constant. 

 
From definition 2.2, system (3-4) can be proved ultimate bounded. 
 

4 Numerical Example 
 
Example 3.1. Consider the DNNs (3-1) with 1r   where 
 

0 1

0 1

0 1 0 1

1 1 2

0 1 1 1

0.12 0 0.05 0.08 0.08 0.05
, , ,

0 0.11 0.08 0.03 0.05 0.07

0.012 0.003 0.03 0.005
, ,

0.003 0.013 0.02 0.011

0.011 0.015
= , 0.016 0.01

0.012 0.016

A A B C C

H H H

W W E E

      
         

      

    
     

   

 
    

 
 

     

 

2 0 1

0 1

0 1

1 2

2 ,

0.012 0.01 , 0.013 0.02 , 0.01 0.013 ,

sin( )
( ) , 3 5 , ( ) 1 sin( ), ( ) 2 sin( ),

sin( ) 2 2

( ) 1 cos( ), ( ) 2 cos( )
2 2

( ) cos( 0.4 ) 0.2sin( ), ( ) tanh(0.2 ).

E D D

k k k
F k b k k

k

k k
k k

g s s s g s s

 
 

 
 

     

 
       

 

   

   
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Then we can get 
0 10 1 1 1 21 1 1 111

=0.13 = =0.13 = =0.016 =0.05B C C H H H， ， ， ，
 

 

 0 1 0 0 0 0 0 1 1 11 1
0.031, 0, 1, max , 1, 1, 2, maxW W                  

 

 
0 11 1 0max 1max 1 max 1 max 2max 0max, 2, 0.12, 0.016, 0.012, 0.02,a a e e e d          

 

1max 1 20.013, 0.4, 0.5d L L    and 0.5.l   By calculation, we have 

 

0 02 2max 0 0 0 0max 0max 1 1 max1 1 1 1 1
0.5 0.5 ( 1)(0.5( ) )B H e C W d a H e       

1 11 1 1 1max 1max 1 1 max1 1 1
( 1)(0.5( ) ) 0.9928045 1,C W d a H e      

 
 
which satisfied (3-2) in Theorem 3.2. Thus, the system (3-1) is ultimate bounded. 
 

Example 3.2. Consider the DNNs (3-1) with 1r   where 
 

0 1

0 1

0 1 0 1

1 1 2

0 1 1 1

0.11 0 0.05 0.08 0.06 0.05
, , ,

0 0.13 0.08 0.02 0.05 0.02

0.006 0.007 0.01 0.005
, ,

0.007 0.011 0.012 0.016

0.009 0.013
= , 0.013 0.0

0.011 0.017

A A B C C

H H H

W W E E

      
               

    
        

 
     

 

     

 

2 0 1

0 1

0 1

1 2

15 ,

0.013 0.011 , 0.05 0.03 , 0.017 0.012 ,

sin( )
( ) , 0 0 , ( ) 1 sin( ), ( ) 2 sin( ),

sin( ) 2 2

( ) 1 cos( ), ( ) 2 cos( )
2 2

( ) cos( 0.4 ) 0.2sin( ), ( ) tanh(0.2 ).

E D D

k k k
F k b k k

k

k k
k k

g s s s g s s

 
 

 
 

     

 
      

 

   

   
 

 

Then we can get 
0 10 1 1 11 1 1 11

=0.13 = =0.11 = =0.018B C C H H， ， ，
 

 

 2 0 1 0 0 0 0 0 1 11 1 1
=0.022 0.03, 0, 1, max , 1, 1, 2,H W W              ，

 
 

 
0 11 1 1 0max 1max 1 max 1 max 2maxmax , 2, 0.13, 0.015, 0.011,a a e e e        

 
 

0max 1max 1 20.05, 0.012, 0.4, 0.5d d L L     and 0.5.l   By calculation, we have 

 

0 02 2max 0 0 0 0max 0max 1 1 max1 1 1 1 1
0.5 0.5 ( 1)(0.5( ) )B H e C W d a H e       

1 11 1 1 1max 1max 1 1 max1 1 1
( 1)(0.5( ) ) 0.993511 1,C W d a H e      
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which satisfied (3-3) in Corollary 3.4. Thus, the system (3-1) is exponentially stable. 
 

Example 3.3. Consider the DNNs (3-4) with 1r   where 
 

0

1 1 2

0.18 0 0.17 0.07 0.18 0.05
, , ,

0 0.15 0.07 0.15 0.05 0.18

0.2 0.2 0.01 0.023 0.003 0.005
, , ,

0.1 0.1 0.003 0.013 0.002 0.011

A B C

C H H

      
       

      

       
       

        
 

 

     

 

0 1 1

2 0 1

0 1

1

0.011 0.013 0.011 0.015
, , 0.013 0.017 ,

0.012 0.006 0.019 0.006

0.012 0.021 , 0.011 0.023 , 0.014 0.016 ,

sin( )
( ) , 2 1 , ( ) 1 sin( ), ( ) 2 sin( ),

sin( ) 2 2

( ) cos(

W W E

E D D

k k k
F k b k k

k

g s

 
 

    
          

     

 
       

 

  20.4 ) 0.2sin( ), ( ) tanh(0.2 ).s s g s s 
 

 

Then we can get 0 1 1 21 1 1 1 1
=0.24 =0.23 =0.3, =0.036, =0.016B C C H H， ， ，

 
 

0 1 0 1 max 1max 2max 0max1 1
0.023, 0.03, 1, 2, 0.18, 0.017, 0.021,W W a e e d          

1max 1 20.023, 0.016, 0.4, 0.5d L L    and 0.5.l   By calculation, we have 

max 1 1max 2 2max 0 0 0 0max1 1 1 1 1
+ 0.5 0.5 0.5( 1)( )a H e B H e C W d      

1 1 1 1max1 1
0.5( 1)( )=0.982029 1,C W d   

 
 
which satisfied (3-5) in Theorem 3.6. Thus, the system (3-4) is ultimate bounded. 
 

5 Conclution 
 
In this paper, by using the general discrete Halanay inequalities, the techniques of inequalities and some other 
properties, we obtain several sufficient conditions to ensure the ultimate boundedness of a class of discrete-time 
uncertain neural networks. However, due to the random phenomenon is ubiquitous in real life, therefore we will 
devote to the research on the ultimate boundedness of neural networks with more randomness in the future work. 
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