Journal of Scientific Research & Reports

15(4): 1-6, 2017; Article no.JSRR.35451 *ISSN: 2320-0227*

n**-co-coherent Modules**

Abdul-Qawe Kaed^{1*}

¹*Department of Mathematics, Faculty of applied Science, University of Thamar, Republic of Yemen.*

Author's contribution

The sole author designed, analyzed and interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/JSRR/2017/35451 *Editor(s):* (1) Chun-Gang Zhu, School of Mathematical Sciences, Dalian University of Technology, China. *Reviewers:* (1) Piyush Shroff, Texas State University, USA. (2) Francisco Bulnes, Technological Institute of High Studies of Chalco, Mexico. Complete Peer review History: <http://www.sciencedomain.org/review-history/20631>

> *Received: 13*th *July 2017* **Accepted 25**th **July 2017**

Original Research Article **Published 23rd August 2017**

ABSTRACT

In $[1]$ the notion of n-coherent modules are introduced and studied. In this paper, we introduce and study a dual notion of n -coherent modules which we call it n -co-coherent modules.

Keywords: Finitely copresented modules; finitely generated modules; finitely presented modules; a finitely cogenerated module; a coherent module; a co-coherent module; a coherent ring and a co-coherent ring; n*-coherent modules,* n*-co-coherent modules;* n*-coherent rings and* n*-co-coherent rings.*

2010 Mathematics Subject Classification: 13E05, 13D02, 13E15, 13E99, 16D50, 16D80.

1 INTRODUCTION

Throughout this paper R means a commutative ring with an identity element and all modules are unital R-modules.

In $[1]$ the notion of *n*-coherent modules is introduced and studied, such that for a ring R and a positive integer n , an R -module M is called n-coherent if M is n-present and each $(n - 1)$ presented submodule of M is n -presented.

**Corresponding author: E-mail: Kaed2012d@gmail.com;*

In this paper, we introduce and study a dual notion of n -coherent R -modules which we call it n -co-coherent R -modules, such that we define it as the following : For a ring R and a positive integer n , an R -module M is called n -cocoherent if M is n-copresent and each $(n - 1)$ copresented submodule of M is n -copresented. If M is n-co-coherent modules for every positive integer n , we say that M is infinitely co-coheret. Recall that a module K is said to be n- presented, for some positive integer n, if there is an exact sequence of R -modules of the form

$$
F_n \longrightarrow F_1 \longrightarrow \dots \dots \longrightarrow F_0 \longrightarrow K \longrightarrow 0
$$

where F_i for $i = 0, 1, 2, \dots, n$ are free and finitely generated modules. see [\[1\]](#page-5-0) . A dual notion of n-presented is called n- copresented R -modules is defined as the following : For a ring R and a positive integer n , an R - module M is called *n*-copresented if there is an exact sequence of R -modules of the form

$$
0 \longrightarrow M \longrightarrow I_0 \longrightarrow I_1 \longrightarrow \dots \dots \longrightarrow I_n
$$

where I_i for $i = 0, 1, 2, \dots, n$ are injective and finitely cogenerated modules.see [\[2\]](#page-5-1) and [\[3\]](#page-5-2). Recall that an R -module M is called a finitely generated, if for any family $(M_i)_{i\in I}$ of submodules of M with $\Sigma_{i\in I}M_i = 0$, there is a finite subset *J* of *I* such that $\Sigma_{i\in J}M_i = 0$ (see [\[4,](#page-5-3) [5,](#page-5-4) [6\]](#page-5-5)). A dual notion of a finitely generated is defined as the following : an R -module M is called a finitely cogenerated, if for any family $M_{i,i\in I}$ of submodules of M with $\bigcap_{i\in I}M_i = 0$, there is a finite subset J of I such that $\cap_{i\in J}M_i =$ 0 , (see [\[4,](#page-5-3) [5,](#page-5-4) [6\]](#page-5-5)).

As in the classical case, a finitely presented module M is defined as a module which is finitely generated such that, for every short exact sequence $0 \longrightarrow K \longrightarrow L \longrightarrow M \longrightarrow 0$, if L is a finitely generated, then K is also a finitely generated (see [\[5,](#page-5-4) [6\]](#page-5-5)). Also a dual notion of a finitely presented is defined as the following: a finitely copresented module M is a finitely cogenerated such that, for every short exact sequence $0 \longrightarrow M \longrightarrow L \longrightarrow K \longrightarrow 0$, if L is a finitely cogenerated, then K is also a finitely cogenerated see [\[5,](#page-5-4) [6\]](#page-5-5).

In proposition [2.1](#page-1-0) we prove that if R is a ring and a positive integer n, then each $(n - 1)$ copresented submodule of an n -co- coherent

 R -module is itself an n -co-coherent R-module. And we prove in proposition [2.2](#page-2-0) that every n -cocoherent R -module is m -co- coherent for every positive integer $m \leq n$. In [2.3](#page-2-1) we claim that for a positive integer n , if R is n -co-coherent ring, then every n -co-coherent R -module is an infinitely cocoherent, where For a positive integer n , a ring R is called n-co-coherent, if then every $(n - 1)$ copresented ideal of R is n -copresented. That is equivallante that n -copresented R-module is $(n+1)$ -copresented [\[2\]](#page-5-1) section 3. The proposition [4.4](#page-4-0) shows that 1-cocoherent module is just, the co-coherent module. In theorem [4.1](#page-5-6) we give the main result which studies the behavior of n -cocoherent modules on short exact sequences. In corollary [3.2](#page-3-0) we prove that every finite direct sum of an n -co-coherent R -modules are also an n co-coherent R-modules. In theorem [3.3w](#page-3-1)e prove that if $m \geq n$ are positive integers and let

$$
M_0 \stackrel{u_1}{\rightarrow} M_1 \stackrel{u_2}{\rightarrow} M_3 \stackrel{u_3}{\rightarrow} \dots \dots \stackrel{u_m}{\rightarrow} M_m
$$

be an exact sequence of an n -co-coherent R modules. Then $Im(u_i)$, $Ker(u_i)$ and $Coker(u_i)$ are *n*-co-coherent R-modules for each $i =$ $1, 2, \ldots, m$. In lemma we introduce an important result with the change of rings, such that If $H \longrightarrow$ G is a ring homomorphism such that G is $(n-1)$ copresented H-module, where $n \geq 1$ is a positive integer. And let M be G -module. If M is an n -co- coherent as H -module, then it is an n -cocoherent as G -module. Finally, in example 3.5 we study an example to prove that if R is an n -cocoherent module, then $R|I$ is an *n*-co-coherent module.

2 n**-CO-COHERENT** R**-MODULES**

Definition 2.1. For a ring R and a positive integer $n \geq 1$, an R-module M is called n-co-coherent if M is n-copresent and each $(n - 1)$ -copresented submodule of M is n -copresented.

Remark 2.1*.* If M is n-co-coherent modules for every positive integer n , we say that M is infinitely co-coheret.

Proposition 2.1. *Let* R *be a ring and a positive integer* n*. Then each* (n − 1)*-copresented submodule of* n*-co-coherent* R*-module is itself an* n*-co-coherent* R*-module*

Proof. Let M be an n-co-coherent R-module and let K be an $(n-1)$ -copresented submodule of M, then by [2.1](#page-1-1) K is an n -copresentnd. Suppose that L is $(n - 1)$ -copresented submodule of K, then it is is n -copresented because it is a submodule of M, hence K is an n -co-coherent R-module.

Proposition 2.2. *Every* n*-co-coherent* R*-module is* m*-co-coherent for every positive integer* m ≤ n*.*

Proof. Suppose that M is n -co-coherent R module, then M is n-copresented and for every $m \leq n$, M is m-copresented R-module. Suppose that K is $(n - 1)$ -copresented submodule of M, then K is $(m - 1)$ -copresented and we have K is *n*-copresented from [2.1](#page-1-1) and for $m \leq n$, that implies that K is m-copresented and it follows that M is m -co-coherent.

Before we prove the following proposition we recall the following definition to use it. For a positive integer n , a ring R is called n -cocoherent, if then every $(n - 1)$ -copresented ideal of R is *n*-copresented. That is equivallante that *n*-copresented R-module is $(n + 1)$ -copresented. To know more about this concept see [\[2\]](#page-5-1) section 3.

Proposition 2.3. *For a positive integer* n*, if* R *is* n*-co-coherent ring, then every* n*-co-coherent* R*module is infinitely co-coherent.*

Proof. Therefore M is an n -co-coherent R module, then it is an n -copresented and (since R is n -co-coherent ring), then from [\[2\]](#page-5-1) proposition 3.2 then, M is an innitely copresented. Let N be an $(n - 1)$ -submodule of M, then it is an ncopresented (because M is an $n-$ co-coherent R -module). And also that it is an infinitely copresented that is implies that for every positive integer $m > n$, M is m - co-coherent R-module which means that M is an infinitely co-coherent module.

The following proposition shows that 1- cocoherent module is just, the co-coherent module.

Proposition 2.4. *For a ring* R*, an* R*-module is* 1*-co-coherent if and only if it is a co-coherent.*

Proof. : Suppose that M is 1-co-coherent R -module, Then M is 1-copresented this

equivalente that M is a finitely copresented (see [\[2\]](#page-5-1) proposition 2.3). Suppose that K is a finitey cogenerated submodule of M , from [\[2\]](#page-5-1) proposition 2.2, we get K is 0-copresented R module that is implies that K is 1-copresented see proposition 2.1 and it follows that K is a finitely copresented and from $[7]$ 2.1, hence M is a co-coherent module.

Conversely. suppose that M is a co-coherent R -module, then it is a finitely copresented that is equivalents that M is 1-copresented see $[2]$ proposition 2.3. Suppose that K is 0-copresented submodule of M that is equivalentes that K is a finitely cogenerated submodule of M that is implies that from [\[7\]](#page-5-7) 2.1 M is a finitely copresented and it follows that K is 1-copresented and from [2.1,](#page-1-1) hence M is 1-cocoherent R-module.

3 THE MAIN RESULTS

Now we give the main result in the following theorem which is a dual to a well known result on n-coherent modules see [\[1\]](#page-5-0) and [\[3\]](#page-5-2) and also study the behavior of n -co-coherent modules on an exact sequence.

Theorem 3.1. *Let* R *be a ring and let*

 $0 \to A \stackrel{\alpha}{\to} B \stackrel{\beta}{\to} C \to 0$

be a short exact sequence of R*-modules, Then for a positive integer* n*, we have:*

- *1. If* A *and* C *are* n*-co-coherent, then* B *is* n*-co-coherent.*
- *2. If* C *is* $(n 1)$ *-co-coherent and* B *is* n *-cocoherent, then* A *is* n*-co-coherent.*
- *3.* If A is $(n + 1)$ -co-coherent and B is n-co*coherent, then* C *is* n*-co-coherent.*
- *4.* If $B = A \oplus C$, then B is n-co-coherent if *and only if* A *and* C *are* n*-co-coherent.*

1. Therefore A and C are n -co-coherent modules, then A and C are n -copresented modules. Thus, B is *n*-copresented module. Now let N be an $(n-1)$ -copresented submodule of B, then we get the following daigram

$$
\begin{array}{ccccccc}\n & & & & 0 & & 0 & & 0 \\
 & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \rightarrow & \ker(\beta/L) & \xrightarrow{\alpha} & L & \xrightarrow{\beta} & \beta(L) & \rightarrow & 0 \\
 & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \rightarrow & A & \xrightarrow{\alpha} & B & \xrightarrow{\beta} & C & \rightarrow & 0\n\end{array}
$$

Let $Ker(\beta/N)$ and $\beta(L)$ be $(n-1)$ -copresented submodules of A (resp of C), then they are n copresented modules (Since A and C are n -cocoherent modules). tnen L is an n -copresented module (see 2.4(1) in [\[2\]](#page-5-1)) and by [2.1](#page-1-1) B is an n co-coherent R-module as desired.

2. We have C is $(n - 1)$ -co-coherent and B is nco-coherent, then C is $(n - 1)$ -copresented and B is *n*-copresented [\[2\]](#page-5-1) proposition 2.4). Let K be an $(n - 1)$ -co-coherent submodule of A, then we have

$$
0 \to K \stackrel{\alpha}{\longrightarrow} \alpha(K) \stackrel{\beta}{\longrightarrow} C \to 0
$$

be a short exact sequence of R -modules and $\alpha(K)$ is *n*-co-coherent because it is a submodule of n -co-coherent R -module B so it is an n copresented module and also C is an $(n -$ 1)-copresented module, hence K is an n copresented module and it follows that A is an n -co-coherent module.

3. We have A is $(n + 1)$ -co-coherent and B are *n*-co-coherent modules, then from [2.1](#page-1-1) A is $(n+1)$ -copresented and B is *n*-copresented and hence C is *n*-copresented from [\[2\]](#page-5-1) proposition 2.4). Let K be an $(n-1)$ -copresent submodule of C and supose that $\beta^{-1}(K)$ is $(n-1)$ -copresented submodule of B, then from [2.1](#page-1-0) $\beta^{-1}(K)$ is n-cocoherent and so $\beta^{-1}(K)$ is n-copresent and we have

$$
0 \to A \xrightarrow{\alpha} \beta^{-1}(K) \xrightarrow{\beta} K \to 0
$$

be a short exact sequence of R -modules and from [\[2\]](#page-5-1) proposition 2.4 K is an n-copresented module and it follows that C is an n -co-coherent module [2.1](#page-1-1)

4. Assume that A and C are n -co-coherents. Applying (1) to the following short exact sequence $0 \to A \to B = A \oplus C \to C \to 0$, we get that $A \oplus C$ is n -co-coherent module.

Conversely, suppose that $B = A \oplus C$ is n-co-coherent. Then from [2.1](#page-1-1) B is n-copresent and also A and C are from [\[2\]](#page-5-1) proposition 2.4). Let

 A_0 (resp C_0) be $(n-1)$ -copresented submodules of A (resp C), then A_0 and C_0 are n-copresented modules because they are submodules of $A \oplus C$ which is n -co-coherent, hence A and C are n -cocoherent modules.

Corollary 3.2. *Let* R *be a ring and* M1, M2......, Mⁿ *are* R*-modules, then* M_1, M_2, \ldots, M_n are *n*-co-coherents if and only $if \bigoplus_{i=1}^n M_i$ *is an n-co-coherent* R-module.

Proof. Let M_1, M_2, \ldots, M_n be *n*-co-coherent *R*modules. We have a short exact sequence

$$
0 \to M_n \to \bigoplus_{i=1}^n M_i \longrightarrow \bigoplus_{i=1}^{n-1} M_i \longrightarrow 0
$$

and by induction if $n = 2$, then we get

$$
0 \to M_2 \to \bigoplus_{i=1}^2 M_i \longrightarrow M_1 \longrightarrow 0
$$

from [4](#page-5-6).1 (4) the asseration is true. Now we suppose that M_1, M_2, \ldots, M_n are n-co-coherents if and only if $\bigoplus_{i=1}^n M_i$ is an n-co-coherent Rmodule and we prove it when n+1. The short exact

$$
0 \to M_{n+1} \to \bigoplus_{i=1}^{n+1} M_i \longrightarrow M_1 \longrightarrow 0
$$

and from [4](#page-5-6).1 .2 that is implies that M_{n+1} is an n-co-coherent module (because M_1 is $(n - 1)$ co-coherent). We have also

$$
0 \to M_{n+1} \to \bigoplus_{i=1}^{n+1} M_i \longrightarrow \bigoplus_{i=1}^n M_i \longrightarrow 0,
$$

then from [4.1](#page-5-6) (4) $\bigoplus_{i=1}^{n+1} M_i$ is an n-co-coherent module and it follows that M_1, M_2, \ldots, M_n are n-co-coherents if and only if $\bigoplus_{i=1}^n M_i$ is an n-cocoherent R -module for every n see [\[3\]](#page-5-2).

Theorem 3.3. Let $m \geq n$ be positive integers *and let*

$$
M_0 \stackrel{u_1}{\rightarrow} M_1 \stackrel{u_2}{\rightarrow} M_2 \stackrel{u_3}{\rightarrow} \cdots \stackrel{u_m}{\rightarrow} M_m
$$

be an exact sequence of n*-co-coherent* R*modules.* Then $Im(u_i)$, $Ker(u_i)$ and $Coker(u_i)$ *are* n*-co-coherent* R*-modules for each* i = 1, 2,, m*.*

Proof. : It suffices to prove the assertion for $m = n$. let

$$
M_0 \stackrel{u_1}{\rightarrow} M_1 \stackrel{u_2}{\longrightarrow} M_2 \stackrel{u_3}{\longrightarrow} \cdots \stackrel{u_m}{\longrightarrow} M_m
$$

be an exact sequence of n -co-coherent R modules. We have then exact sequences :

$$
0 \longrightarrow Ker(u_1) \longrightarrow M_0 \longrightarrow Im(u_1) \longrightarrow 0
$$

$$
0 \to Im(u_i) = Ker(u_{i+1}) \to M_i \to Im(u_{i+1}) \to 0
$$

for each $i = 1, 2, ..., n - 1$, and

$$
0 \longrightarrow Im(u_n) \longrightarrow M_n \longrightarrow Coker(u_n) \longrightarrow 0
$$

and M_0 is finitely cogenerated $(M_0$ is n-cocoherent) and $Ker(u_1)$ is a submodule of M_0 , then it is a finitely cogenerated; therefore, $Ker(u₂)$ is 1-copresented, and by induction, we conclude that $Ker(u_n)$ is $(n - 1)$ -copresented. And from [2.1](#page-1-0) $Ker(u_n)$ is n-co-coherent module. Therefore $Ker(u_i)$ and $Im(u_i)$ are n-cocoherents by applying theorem [4.1](#page-5-6) to the above exact seaunces. Finally, Theorem [4.1](#page-5-6) and exactness of sequence

 $0 \longrightarrow Ker(u_i) \longrightarrow M_i \longrightarrow Coker(u_i) \longrightarrow 0$

show that $Coker(u_i)$ are *n*-co-coherent modules.

We introduce a following important result with change of rings. see [\[3\]](#page-5-2)

Lemma 3.4. *Let* $H \rightarrow G$ *be a ring homomorphism such that G is* $(n - 1)$ *copresented H-module, where* $n \geq 1$ *is a positive integer. Let* M *be* G*-module. If* M *is an* n*co-coherent as* H*-module, then it is an* n*-cocoherent as* G*-module.*

Proof. Let $H \longrightarrow G$ be a ring homomorphism, such that G is $(n - 1)$ -copresented H-module. Let M be G -module such that M is an n co-coherent as H -module. Then M is n copresented as H-module [\[2\]](#page-5-1) proposition 2.8 shows that M is an n -co-coherent as G - module. Let N be a submodule of M such that N is $(n - 1)$ -copresented as G-module. Then by [\[2\]](#page-5-1) proposition 2.6 then N is $(n - 1)$ -copresented as H -module. Thus N is n - copresented as G-module since M is an $n-$ co-coherent as H module. Therefore N is n -copresented as G module, hence by 2.1 M is an n -co-coherent as G-module.

Before we study the example we recall this definition: For a positive integer n , a ring R is called an n -co-coherent if and only if R is an n co -coherent R -module.

Example 3.5. *. Let* R *be an* n*-co-coherent ring. And let I be an ideal of R such that I is* $(n - 1)$ *copresented* R*-submodule of* R*-module. then* I *is* (n + 1)*-copresented* R*-submodule (since* R *is an* n*-co-coherent ring). And we have*

$$
0 \longrightarrow I \longrightarrow R \longrightarrow R|I \longrightarrow 0
$$

and by 3.1 *we have* R|I *is an* n*-co-coherent module.* In the case $n = 1$, then I is 0*copresented* R*-module that is implies that* I *is finitely cogenerted of a co-coherent ring* R*, then* I *from [\[7\]](#page-5-7) by* 2.3 *is a co-coherent* R*-module and from [\[7\]](#page-5-7) by* 2.4 R|I *is a co- coherent* R*-module.*

4 CONCLUSION

In this a studying is introduced the new concept in theory of modules (Linear algebra)

Definition 4.1. For a ring R and a positive integer $n \geq 1$, an R-module M is called n-co-coherent if M is n-copresent and each $(n - 1)$ -copresented submodule of M is n -copresented.

Remark 4.1*.* If M is n-co-coherent modules for every positive integer n , we say that M is infinitely co-coheret.

this concept is a dual notion of n -coherent modules and we called it n -co-coherent modules. It studies some properties of the concept.

Proposition 4.1. *Let* R *be a ring and a positive integer* n*. Then each* (n − 1)*-copresented submodule of* n*-co-coherent* R*-module is itself an* n*-co-coherent* R*-module*

Proposition 4.2. *Every* n*-co-coherent* R*-module is* m*-co-coherent for every positive integer* m ≤ n*.*

Proposition 4.3. *For a positive integer* n*, if* R *is* n*-co-coherent ring, then every* n*-co-coherent* R*module is infinitely co-coherent.*

Proposition 4.4. *For a ring* R*, an* R*-module is* 1*-co-coherent if and only if it is a co-coherent.*

It gives the main result in the following theorem which is a dual to a well known result on ncoherent modules see [\[1\]](#page-5-0) and also study the behavior of n -co-coherent modules on an exact sequence.

Theorem 4.1. *Let* R *be a ring and let*

$$
0 \to A \stackrel{\alpha}{\to} B \stackrel{\beta}{\to} C \to 0
$$

be a short exact sequence of R*-modules, Then for a positive integer* n*, we have:*

- *1. If* A *and* C *are* n*-co-coherent, then* B *is* n*-co-coherent.*
- *2. If* C *is* $(n 1)$ *-co-coherent and B is* n *-cocoherent, then* A *is* n*-co-coherent.*
- *3.* If A is $(n + 1)$ -co-coherent and B is n-co*coherent, then* C *is* n*-co-coherent.*
- *4.* If $B = A \oplus C$, then B is n-co-coherent if *and only if* A *and* C *are* n*-co-coherent.*

It explains that the sum of n -co-coherent is also n-co-coherent module :

Corollary 4.2. *Let* R *be a ring and* M1, M2......, Mⁿ *are* R*-modules, then* M_1, M_2, \ldots, M_n are *n*-co-coherents if and only $if \bigoplus_{i=1}^n M_i$ *is an n-co-coherent* R-module.

Finally it studies and introduces very important result with change of rings.

Lemma 4.3. *Let* $H \rightarrow G$ *be a ring homomorphism such that G is* $(n - 1)$ *copresented H-module, where* $n \geq 1$ *is a positive integer. Let* M *be* G*-module. If* M *is an* n*co-coherent as* H*-module, then it is an* n*-cocoherent as* G*-module.*

COMPETING INTERESTS

Author has declared that no competing interests exist.

References

- [1] Dobbs DE, Kabbaj S, Mahdou N, Sobrani M. When is; $D + Mn$ -Coherent and an *(n, d)-domain* . Lecture Notes in Pure and Appl. Math, Dekker. 1999;205:257-270.
- [2] Bennis D, Bouzraa H, Kaed AQ. on n-Copresented modules and n -co-coherent rings. J. Electronic Journal Algebra(IEJA). 2012;12.
- [3] Glaz S. Commutative coherent rings. Lecture Notes in Math, Springer-Verlag, Berlin; 1989.
- [4] Andersen FW, Fuller KR. Rings and categories of modules. Spring- Verlag, Heidelberg, New York; 1974.
- [5] Hiremath VA. Cofnitely generated and cofnitely related modules. Acta Math.Hung. 1982;39:1-9.
- [6] Wisbauer R. Foundations of module and ring theory. Gordon and Breach, Reading; $($ c) 1991.
- [7] Abdul-Qawe Kaed. A co-coherent module. United States of America Research Journal (USARJ) Copyright ©USARJ Publishing, Kansas, USA. 2014;3(1). ISSN 2332-2160

———– c *2017 Kaed; This is an Open Access article distributed under the terms of the Creative Commons Attribution License [\(http://creativecommons.org/licenses/by/4.0\)](http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.*

