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ABSTRACT 
 

The Expert Team on Sector-specific Climate Indices (ET-SCI) for daily temperature and 
precipitation were analyzed for Mt Makulu (Latitude: 15.550° S, Longitude: 28.250° E, Elevation: 
1200 meter) in Zambia. The study objective was to evaluate the ET-SCI climate indices for extreme 
weather conditions on temperature and precipitation from 1963 to 2012. Quality and homogeneity 
of the time series data were checked using RHtestsV4 and RHtests_dlyPrcp while ClimPACT2 
software package was used to compute the ET-SCI indices. The Mann-Kendall for annual 
maximum and mean temperature were statistically significant with a positive linear trend (p<0.05). 
Additionally, results showed a significant increase in absolute indices as a function of temperature. 
The maximum warmest daily temperature (TXx) index showed a predominant increase in the 
monthly and annual maximum value of daily maximum temperature at Mt Makulu. The minimum 
warmest daily temperature (TXn) showed a similar trend for the annual value. Results also showed 
that the daily mean temperature (TMm) and mean daily maximum temperature (TXm) had 
increased from 1963 - 2012. The Daily Temperature Range (DTR) significantly increased annually 
and monthly resulting in a linear slope of 0.031 and 0.003, respectively. SU (Number of days when 
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TX > 25°C) for both monthly and annual trend had in creased significantly with a slope of 1.204 and 
0.009, respectively. There were much higher heat spell events during DJF and SON with 
probability occurrence of 0.78 and 0.98 at p<0.05, respectively. Precipitation extreme indices 
(PRCPTOT, R30 mm, RX5 day, and R95p) had a non-significant positive trend at p<0.05. 
 

 
Keywords:  ClimPACT2; climate indices; RHtest, climate change; climate extremes; heatwaves; 

RClimDex. 
 
1. INTRODUCTION 
 
Climate extremes associated with droughts, 
floods, frosts, and heatwaves are substantially 
significant to societal, ecological, and economic 
impacts across most regions of the world. 
Observations of extreme events provide a key 
foundation and understanding of long-term 
climate change and variability and provide 
underpinning climate model evaluations and 
projections [1]. The Intergovernmental Panel on 
Climate Change (IPCC) first attempt at global 
assessment of long-term changes in temperature 
and precipitation extremes appears in its Third 
Assessment Report (AR3) of 2001 [1]. The report 
highlights increased heavy precipitation events, 
decreased the frequency of extremely low 
temperature and increased the frequency of 
extremely high temperature. There is a 
consensus within the climate community that any 
change in the frequency or severity of extreme 
weather events would have profound impacts on 
nature and society [2–4] and it is thus imperative 
to analyze extreme events. The monitoring, 
detection, and attribution of changes in climate 
extremes usually require daily time series data 
[3]. The IPCC AR4 (2007) report observed that 
climate change was likely to affect precipitation 
across the world as reflected in the precipitation 
mean and variability estimates [5,6]. The 
Zambian climate has a historical record of 
droughts and floods occurrence [7]. Many studies 
have investigated climate change and extreme 
weather events on a large scale or either at 
regional or national scale [8], but few of these are 
undertaken in Zambia at the local level. 
 
The Expert Team on Climate Change Detection 
and Indices (ETCCDI) started its work in 1999. It 
is co-sponsored by the World Climate Research 
Programme (WCRP) and Joint WMO-
Intergovernmental Oceanographic Commission 
of the United National Educational, Scientific and 
Cultural Organization (UNESCO) Technical 
Commission for Oceanography and Marine 
Meteorology (JCOMM) [9]. This team has 
developed an internationally coordinated set of 
core climate indices consisting of 27 descriptive 

indices for moderate weather extremes [10–12]. 
These indices were drawn up with the detection 
and attribution of the research community in 
mind [10]. To detect changes in climate extremes, 
the set of indices should be statistically robust, 
cover a broad range of climatic zones, and 
possess a high signal-to-noise ratio. Also, these 
internationally agreed indices derived from daily 
temperature and precipitation allow for results to 
be compared consistently across different 
climatic zones and also have the advantage of 
overcoming most of the restrictions on the 
dissemination of daily data that are applied in 
many countries [9]. The ETCCDI has organized 
regional workshops and developed climate-
extreme indices based on daily temperature and 
precipitation, both of which aim to document 
change in climate extremes over poorly studied 
areas [9,10,13] and thereby enhance global 
analysis [12]. The Expert Team on Climate Risk 
and Sector-specific Indices (ET CRSCI) 
commissioned the development of the software 
called ClimPACT, with the aim of producing an 
easy and consistent way of calculating these 
climatic indices [9].  
 
The ClimPACT2 is an R software package that 
was written in r-code to calculate Sector-specific 
Climate Indices (ET-SCI) and other additional 
climate extreme indices from data stored in text 
and netCDF files. ET-SCI indices represent a set 
of over 60 climate extremes indices together with 
ETCCDI indices. ClimPACT2 provides useful 
indices for application in Health, Agriculture and 
Food Security, and Water Resources and 
Hydrology Sectors. ClimPACT2 is based on the 
computations in RClimDEX software developed 
by the World Meteorological Organization (WMO) 
Commission for Climatology (CCl)/World Climate 
Research Programme (WCRP) on Climate 
Variability and Predictability (CLIVAR)/JCOMM. It 
also directly incorporates the R packages 
climdex.pcic and climdex.pcic.ncdf developed by 
the Pacific Climate Impacts Consortium (PCIC). 
The software provides three methods for 
computing indices using text files containing 
station data: (i) Graphical User Interface; (ii) to 
batch process multiple station text files in parallel; 
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and (iii) calculating indices from netCDF data [10]. 
The development and analyses of these 
ClimPACT2 sector specific indices have made a 
significant contribution to climate change 
discussions in the IPCC Assessment Reports [1]. 
 
Before indices are computed, daily input data are 
checked for quality and homogeneity. This is 
done to detect artificial change-points in climate 
data series and to minimize bias in climate trends, 
variability, and extreme analysis [8,14]. The 
ETCCDI recommend the use of the RHTest 
software for checking data homogeneities. It is 
common to find: typos, missing data, outliers and 
trends in time series data, which may then 
require a detailed process of quality assessment 
and control, and estimation of missing data. The 
literature reviewed indicated that there is 
insufficient information on trends in climate 
extremes especially in developing countries at 
local-scale due to inadequate resources and 
limited access to data, Zambia is no exception. 
Therefore, the objective of this study was to 
investigate the changes in selected ET-SCI 
climate indices in temperature and precipitation 
extremes at Mt Makuku. 
 
2. MATERIALS AND METHODS  
 
2.1 Study Area and Data 
 
The study used weather data from Mt Makulu 
Agromet (Latitude: 15.550° S, Longitude: 28.250° 
E, Elevation: 1213 meter above sea level) 
located within the perimeters of the Zambia 
Agriculture Research Institute (ZARI) Central 
Research Station. ZARI Central Research 
Station is also the headquarters of the Zambia 
Agriculture Research Institute (ZARI) and the 
largest Agricultural research entity in the country. 
The weather station is located in Agro-ecological 
Region II (AERII) of Zambia as shown in Fig. 1 
and was characterized by an annual rainfall of 
800 to 1,000 mm and area coverage, 42% of the 
country. The climate of Zambia is described as a 
wet and dry tropical and sub-tropical modified by 
altitude [15]. On the basis of rainfall and 
temperature patterns, the year is divided into four 
seasons, namely: the Hot Season (September to 
October), the Rainy Season (November to 
March), the Post Rainy Season (April and May), 
and the Cool and Dry Season (June to August) 
[15]. The annual precipitation is strongly 
influenced by the shifting of the Pacific Ocean’s 
El Nino Southern Oscillation (ENSO), the Inter-

Tropical Convergence Zone (ITCZ) and                 
the Congo Air Boundary. The multi-decadal 
trends in these phenomena contribute to              
annual variations in rainfall patterns and 
temperature. Historical climate data (1963-2012) 
for daily rainfall, minimum and maximum air 
temperature was obtained from the Zambia 
Meteorological Department (ZMD) and is shown 
in Fig. 2.  
 

2.2 Trends in Time Series Data  
 
The Mann-Kendall test is a commonly-used 
nonparametric test for time trend [16–18] 
analysis. The annual time series data for Mt 
Makulu was tested for annual trends and slopes 
using the Mann–Kendall test in R Programming 
software [18,19]. Before applying the Mann-
Kendall test to the time series data of annual 
precipitation and temperature levels, the data 
were assessed for serial correlation. This is an 
important test before applying the Mann-Kendall 
test in conjunction with block bootstrapping to 
account for serial correlation. More details on 
testing for trends in precipitation and temperature 
are provided by [16–18]. The Mann-Kendall test 
statistic was calculated according to the 
equations below: 
 � = ∑ ∑ ���(�� − �
)�

�����
��            (1) 

 
 
Where n is the length of the time series xi . xn, 
and sgn (.) is a sign function, xj and xk are values 
in years j and k, respectively. The expected value 
of S equals zero for series without trend and the 
variance was computed as: 
 

��(�) = �
�� ��(� − 1)(2� − 4) − ∑ ��(�� −���1)(2��+5)                                      (2) 

 
and q is the number of tied groups; tp is the 
number of data values in Pth group. The test 
statistic Z was then given as below: 
 

� =
 !
"
!#

$��
%&'($)  )* � > 0

      0        )* � = 0
$��

%&'($)  )* � < 0
.            (3) 

 
The Z statistic was used to test the null 
hypothesis, H0, that the data were randomly 
ordered in time, against the alternative 
hypothesis, H1, where there is an increasing or 
decreasing monotonic trend [16–18]. 
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Fig. 1. Location of Mt Makulu 
 

 
 

Fig. 2. Annual precipitation and temperature for Mt  Makulu – 1963-2012 
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2.3 Seasonal and Annual Changes 
 
The seas version 0.4-3 package [20] for the R 
programming environment was used to compute 
seasonal and annual changes between two 
dates. Absolute and relative for precipitation and 
temperature were computed from T1 (1963-
1973:1974-1984), T2 (1974-1984:1985-1995) 
and T3 (1985-1995:1996-2006) for Mt Makulu. 
The seasonal sums are calculated independently 
from the annual sums in the seas version 0.4-3 
package. The relative and absolute changes 
were computed between the central tendency 
and spread of each seasonal state. 
 

2.4 Climate Indices 
 
The Expert Team on Sector-specific Climate 
Indices (ET-SCI) indices related to daily 
temperature and precipitation characteristics 
were analyzed. A full descriptive list of the 
indices is found in [1,9]. ET-SCI extreme 
temperature and precipitation indices were used 
to answers questions concerning aspects of the 
climate system that affect many human and 
natural systems with particular emphasis on 
extremes. The temperature indices describe cold 
and warm extremes while the precipitation 
indices describe wet extremes. The studied 
indices were divided into 5 categories as adapted 
from [12] and [21] and are presented in Tables 1 
and 2. 
 
2.4.1 Percentile-based indices  
 
The percentile-based indices are defined as days 
over the warmest/coldest long-term percentiles. 
The temperature percentile-based indices 
included the occurrence of hot days (TX90p), 
warm nights (TN90p), cold days (TX10p), very 
warm day (TX95t), cold nights (TN10p) and 
Fraction of days with above average temperature 
(TXGT50p). According to [12], the temperature 
percentile-based indices sample the coldest and 
warmest deciles for both maximum and minimum 
temperatures which enable evaluating the extent 
to which extremes are changing. Precipitation 
percentile-based indices were: very wet days 
(R95pTOT) and extremely wet days (R99pTOT) 
and these indices represent the amount of 
rainfall falling above the 95th (R95pTOT) and 
99th (R99pTOT) percentiles;  
 
2.4.2 Absolute indices   

 
Absolute indices represented maximum or 
minimum values of weather parameters within a 

season or year. The temperature absolute 
indices included: maximum warmest daily 
temperature (TXx), minimum coldest daily 
temperature (TNn), maximum daily minimum 
temperature (TNx), minimum daily maximum 
temperature (TXn), Number of days when TX >= 
30°C (TXGE30) and Number of days when 
TX >= 35°C (TXGE35). The absolute 
precipitation indices are maximum 1-day 
precipitation amount (RX1day), maximum 5-day 
precipitation amount (RX5day). Extreme 
precipitation regimes are defined as monthly 
maximum 1-day precipitation amount (Rx1day) 
and monthly maximum consecutive 5-day 
precipitation amount (Rx5day) [22];  
 
2.4.3 Threshold indices  
 
These are defined as the number of days at 
which temperature or precipitation value falls 
above or below a fixed threshold, including 
annual occurrence of frost days (FD), annual 
occurrence of ice days (ID), summer days (SU), 
annual occurrence of tropical nights (TR) and 
number of very heavy precipitation days > 20 
mm (R20 mm); 
 
2.4.4 Duration indices   
 
Duration indices define periods of excessive 
warmth, cold, wetness or dryness or in the case 
of growing season length - periods of mildness. 
Temperature duration indices include excessive 
warmth (WSDI), cold spell duration indicator 
(CSDI), Growing Degree Days (GDDgrow), warm 
spell duration indicator (WSDI), diurnal 
temperature range (DTR) and extreme 
temperature range (ETR). The DTR and ETR 
indices are computed from TXx and TNn [21]. 
The GSL index is meaningful in the Northern 
Hemisphere extra-tropics [12].                       
Precipitation duration indices are growing season 
length (GSL), consecutive dry days (CDD) and 
consecutive wet days (CWD). The CDD                 
index is the length of the longest dry                    
spell in a year while the CWD index is                 
defined as the longest wet spell in a year;       
and; 
 
2.4.5 Other indices  
 
Included indices of annual precipitation total 
(PRCPTOT), Standardized Precipitation Index 
(SPI), Standardized Precipitation 
Evapotranspiration Index (SPEI) and simple daily 
intensity index (SDII). 
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Table 1. Core ET-SCI extreme temperature and precip itation indices 
 

  Indices Definition Units Time scale Sector(s) 
1 SU No. of days when TX > 25°C days Mon/Ann H 
2 TR No. of days when TN > 20 °C  days  Mon/Ann  H, AFS 
3 GSL Annual No. of days between the first occurrence of 6 consecutive days with TM > 5 °C and the fir st 

occurrence of 6 consecutive days with TM < 5°C 
days Ann AFS 

4 TXx Warmest daily TX °C Mon/Ann AFS 
5 TNn Coldest daily TN °C Mon/Ann AFS 
6 WSDI Annual No. of days contributing to events where 6 or more consecutive days experience TX > 90th 

percentile 
days Ann H, AFS, WRH 

7 CSDI Annual No. of days contributing to events where 6 or more consecutive days experience TN < 10th 
percentile 

days Ann H, AFS 

8 CSDId Annual No. of days contributing to events where d or more consecutive days experience TN < 10th 

percentile 
days Ann H, AFS, WRH 

9 TXgt50p Percentage of days where TX > 50th percentile % Mon/Ann H, AFS, WRH 
10 TX95t Value of 95th percentile of TX °C Daily H, AFS 
11 TXge30 No. of days when TX >= 30°C days Mon/Ann H, AFS 
12 TXge35 No. of days when TX >= 35°C days Mon/Ann H, AFS 
13 CDDcoldn Annual sum of TM - n (where n is a user-defined location-specific base temperature and TM > n) degree-days Ann H 
14 GDDgrown Annual sum of TM - n (where n is a user-defined location-specific base temperature and TM > n) degree-days Ann H, AFS 
15 CDD Maximum No. of consecutive dry days (when PR  < 1.0 mm) days Mon/Ann H, AFS, WRH 
16 R20mm No. of days when PR >= 20 mm days Mon/Ann AFS, WRH 
17 PRCPTOT Sum of daily PR >= 1.0 mm mm Mon/Ann AFS, WRH 
18 R95pTOT 100*r95p / PRCPTOT % Ann AFS, WRH 
19 R99pTOT 100*r99p / PRCPTOT % Ann AFS, WRH 
20 RXdday Maximum d-day PR total mm Mon/Ann H, AFS, WRH 
21 SPEI Measure of “drought” using the Standardized Precipitation Evapotranspiration Index on time scales of 

3, 6 and 12 months 
unit less Custom H, AFS, WRH 

Note:  H: Health, AFS: Agriculture and Food security and WRH: Water Resources and Hydrology; Indices in bold are those used in the IPCC Fifth Assessment Report [23] 
Source: [10], [24] 
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Table 2. Non-core ET-SCI extreme temperature and pr ecipitation indices 
 

  Short name Definition Units Time scale Sector(s) 
1 DTR Mean difference between daily TX and daily TN °C Mon/Ann   
2 TNx Warmest daily TN °C Mon/Ann   
3 TXn Coldest daily TX °C Mon/Ann   
4 TMm Mean daily mean temperature °C Mon/Ann   
5 TXm Mean daily maximum temperature °C Mon/Ann   
6 TNm Mean daily minimum temperature °C Mon/Ann   
7 TX10p Percentage of days when TX < 10th percentil e % Ann   
8 TX90p Percentage of days when TX > 90th percentil e % Ann   
9 TN10p Percentage of days when TN < 10th percentil e % Ann   
10 TN90p Percentage of days when TN > 90th percenti le % Ann   
11 CWD Maximum annual number of consecutive wet days (when PR >= 1.0 mm) days Ann   
12 R10mm Number of days when PR >= 10 mm days Mon/Ann   
13 Rnnmm Number of days when PR >= nn days Mon/Ann   
14 SDII Annual total PR divided by the number of we t days (when total PR >= 1.0 mm) mm/day Ann   
15 R95p Annual sum of daily PR > 95th percentile mm Ann   
16 R99p Annual sum of daily PR > 99th percentile mm Ann   
17 Rx1day Maximum 1-day PR total mm Mon/Ann   
18 Rx5day Maximum 5-day PR total mm Mon/Ann   
19 HWN(EHF/Tx90/Tn90) The number of individual heatwaves that occur each summer. A heatwave is defined as 3 

or more days where either the EHF is positive, TX > 90th percentile of TX or where TN > 
90th percentile of TN. 

events Ann H, AFS, 
 WRH 

20 HWF(EHF/Tx90/Tn90) The number of days that contribute to heatwaves as identified by HWN. days Ann H, AFS,  
WRH 

21 HWD(EHF/Tx90/Tn90) The length of the longest heatwave identified by HWN. days Ann H, AFS,  
WRH 

22 HWM(EHF/Tx90/Tn90) The mean temperature of all heatwaves identified by HWN. °C (C2 for 
EHF) 

Ann H, AFS, 
 WRH 

23 HWA(EHF/Tx90/Tn90) The peak daily value in the hottest heatwave (defined as the heatwave with highest HWM). °C (°C2 for 
EHF) 

Ann H, AFS,  
WRH 

24 CWN_ECF The number of individual ‘cold waves’ that occur each year. events Ann H, AFS, 
 WRH 

25 CWA_ECF The minimum daily value in the coldest ‘coldwave’ (defined as the coldwave with lowest 
ECF_HWM). 

C2 Ann H, AFS,  
WRH 

26 CWF_ECF The number of days that contribute to ‘cold waves’ as identified by ECF_HWN. days Ann H, AFS,  
WRH 

Note: H: Health, AFS: Agriculture and Food security and WRH: Water Resources and Hydrology; Indices in bold are those used in the IPCC Fifth Assessment Report [23] 
Source: [10,24] 
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2.5 Quality Control and Homogenization 
  
The RHTests (RHtestsV4 and RHtests_dlyPrcp) 
software packages by ETCCDI [9,12,25] were 
used to check for data quality and homogeneity. 
The RHtests V4 and RHtests_dly Prcp provided 
a free option for checking in-homogeneities in 
temperature and precipitation, respectively. The 
homogenization procedure was divided into two 
main steps, namely: (i) the detection of 
inhomogeneities; and (ii) the calculation of data 
adjustment parameters as described by [26]. 
RHtestsV4 software package was used to    
detect and adjust for multiple change-points 
(shifts) that existed in data series (temperature) 
that had first order autoregressive errors as 
described by [27]–[29]. Conversely, the 
RHtests_dlyPrcp software package was 
designed to handle homogeneity of daily 
precipitation data time series, which is 
noncontinuous, non-negative, non-Gaussian and 
non-normally distributed [30,31]. Details on 
quality control and data homogenization are well 
documented by [28–31]. The penalized maximal 
T-test and penalized maximal F-test [14,29,32] 
were used to check for homogeneity of the 
historical data series. 
 
2.6 Computation and Analysis of Climate 

Indices 
 
ClimPACT2 [9,10] was used to calculate the core 
and non-core ET-SCI indices presented in 
Tables 1 and 2, respectively. It directly 
incorporates the R packages climdex.pcic and 
climdex.pcic.ncdf developed by the Pacific 
Climate Impacts Consortium (PCIC). Time-series 
of daily minimum temperature (TN), daily 
maximum temperature (TX) and daily 
precipitation (PR) were used as inputs into the 
ClimPACT2. Diurnal temperature range (DTR) 
was calculated as the difference between the 
maximum and minimum temperature during a 
24-hour period [33]. Many of the indices were 
calculated at both annual and monthly time 
scales.  
 
Clim PACT2 also uses the SPEI R package 
which incorporates a set of functions for 
computing potential evapotranspiration and 
several widely-used drought indices. The SPEI 
package was developed to compute SPEI time 
series under various data scenarios [34,35]. 
Furthermore, the package contains several 
auxiliary functions (spei and spi) for analyzing 
SPEI data. The SPEI package has the 
advantage of combining multi-scalar character 

with the capacity to include the effects of 
temperature variability on drought assessment 
[36]. The procedure to calculate the index 
involves a climatic water balance, the 
accumulation of deficit/surplus at different time 
scales, and adjustment to a log-logistic 
probability distribution. Because the SPEI is 
based on a water balance, it can be compared to 
the self-calibrated Palmer Drought Severity Index 
(sc-PDSI) [37].  
 
The heatwave (HW) computations used in 
ClimPACT2 are based on [38] with some slight 
modifications to the Excess Heat Factor (EHF). 
Three HW definitions are used in ClimPACT2, 
and these definitions are based on the 90th 
percentile of TN (minimum daily temperature) 
designated Tn90, the 90th percentile of TX 
(maximum daily temperature) designated Tx90 
and the EHF. The EHF combines a measure of 
the temperature of a particular day relative to the 
baseline period, with a measure of the potential 
acclimatization that occurred in the preceding 30 
days. The two measures are represented by 
excess heat indices (EHI) of significance (sig) 
and acclimatization (acc), respectively (see 
equations 4-6 below). According to the three HW 
definitions (Tn90, Tx90, and EHF) an HW event 
is defined as any length of three or more days 
where one of the following conditions is met1: (i) 
TN > 90th percentile of TN; (ii) TX > 90th 
percentile of TX; and (iii) the EHF is positive. The 
percentiles for Tn90 and Tx90 were calculated 
from the baseline specified by the user and for 
each calendar day using a 15-day running 
window [1,9].  
 

EHI234 = (56�5678�567')
9 − T;<       (4) 

 EHI=>> = (T3 + T3�� + T3��) − (T3�� + ⋯ +T3�9@)/30                           (5) 
 
Where Ti represents the mean daily temperature, 
(TXi + TNi)/2, of day i and T95 represent the 90th 
percentile of T over the baseline period 1963 - 
2012. 
 
The EHF is a combination of the above two 
excess heat indices. 
 EHF = EHI234x max (1, EHI=>>)  (6) 
 
                                                           
1  
https://semc.wa.gov.au/Documents/The%20Hub/natural%20h
azard%20factsheets/Heatwave%20Hazard%20Factsheet.pdf; 
Accessed on 10th January 2017 
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All HW definitions in ClimPACT2 are calculated 
over the extended summer period with the 
exceptions of the EHF and Excess Cold Factor 
(ECF) as defined by [39,40]. In the southern 
hemisphere, the extended summer season 
includes November to March [1]. More details on 
computing indices using ClimPACT2 software 
package are found in [1,9,10,38]. The core and 
non-core ET-SCI sector specific indices were 
tested for significance at 95% level (p<0.05). 
Each slope (positive or negative) was 
categorized into four classes indicating highly 
significant, significant, negative non-significant or 
positive non-significant.   
 
3. RESULTS AND DISCUSSION 
 
3.1 Precipitation and Temperature 

Anomalies and Trends for Mt Makulu 
 
The annual time series and trends for 
precipitation and temperature are presented in 
Fig. 4. The tau and p-value associated with the 
Mann-Kendall test for precipitation (tau = 0.0743, 
2-sided p-value = 0.45155, Sen's Slope = 1.25) 
and minimum temperature (tau = 0.128, 2-sided 
p-value =0.19192, Sen’s slope = 0.01) were 
statistically non-significant (see Fig. 3a and b). In 
contrast, the p-value associated with the Mann-
Kendall test was statistically significant for annual 
mean (tau = 0.402, 2-sided p-value =3.8624e-05) 
and maximum (tau = 0.504, 2-sided p-value 
=2.3842e-07) temperature, respectively. This 
suggested that the mean and maximum 
temperature exhibited the presence of a 
statistically significant upward trend (Fig. 3c and 
d) with Sen's slopes of 0.025 and 0.037, 
respectively. The mean temperature anomaly 
also shows an increasing trend and is statistically 
significant (tau = 0.402, 2-sided p-value 
=3.8624e-05, Sen's slope = 0.03) at p<0.05.  
 
Fig. 4 presents the annual anomalies while Fig. 5 
shows seasonal precipitation and temperature for 
Mt Makulu. On the other hand, absolute changes 
in maximum and minimum temperature and 
relative changes and standard deviation of total 
precipitation are presented in Fig. 6. The relative 
and absolute changes in the central tendency 
and spread of each seasonal state are also 
shown in Fig. 6. The annual absolute change for 
the minimum temperature at T1, T2 and T3 were 
-0.24, 0.025, and 0.774. On the other hand, the 
annual absolute change for the maximum 
temperature at T1, T2, and T3 were 0.209, 0.979, 
and 0.055. Relative changes in total precipitation 

at T1, T2, and T3 were 1.22, 0.917 and 0.093. 
The relative changes in standard deviation for 
total precipitation were 1.65 (T1), 1.21 (T2) and 
0.734 (T3). 
 
In the recent past, Mt Makulu had experienced 
droughts in the seasons 1964/65, 1983/84, 
1987/88, 1991/92, 1994/95 and 1997/98 and a 
high intensity of floods in 2007/08, 2009/2010 
(see Fig. 4). This pattern has also been reported 
by [41,42]. In the past 30 years, rainfall variability 
and droughts have been observed in Zambia 
especially in the southern and central parts of the 
country resulting in reduced maize yields [43]. 
The analysis of rainfall data from 32 
meteorological stations in Zambia by CEEPA 
(2006) indicated that there had been annual 
rainfall anomalies from 1970-2000. The data 
showed that of the 14 years from 1990/1991 to 
2003/2004, at least ten years in each AER had 
below normal rainfall [44]. On the other hand, 
AERI has experienced more severe dry seasons 
than AERII in the last 20 years. However, the 
threat of climate change is characterized mostly 
by floods and droughts, and these have caused 
serious damage to crops and infrastructure [42]. 
Droughts, floods, and extreme temperatures 
have affected both humans, and the ecosystems 
and these have caused damage to crops, energy 
infrastructure, and affected water and its quality. 
Maize yield has reduced by 40% in AERs I and II 
within the past 20 years due to persistent dry 
spells and shorter rainfall seasons [45]. 
 
3.2 Trend Analysis of Temperature and 

Precipitation Using Climpact2 
 
The results of the trend analysis of temperature 
and precipitation using the Clim PACT2 software 
are presented in Table 3. The results on 
Agriculture and Food Security, Water Resources, 
and Hydrology and Health sector indices showed 
significant trends at p<0.05 and exhibited 
significant changes on percentile based indices, 
absolute indices of annual maximum and 
minimum values, duration indices and 
Standardized Precipitation-Evapotranspiration 
Index (SPEI). The SPI index was non-significant 
with positive trends at all levels. Sectors affected 
by climate changes include agriculture, water 
resources, health, energy, transportation, forests, 
and wildlife. While much progress has been 
made in recent decades, the lack of high-quality 
analyses and credible data has been a major 
obstacle to assessing changes in extremes as 
documented by [46].  

 



 
 
 
 

Chisanga et al.; JSRR, 15(4): 1-19, 2017; Article no.JSRR.34815 
 

    

 
10 

 

3.2.1 Percentile-based indices  
 
Percentile-based climate extreme indices were 
calculated using the baseline reference period of 
1963–2012 to make results easily comparable 
with other studies and the results are presented 
in Table 3. It was shown that the percentile-
based thresholds were sensitive to the method of 
computation. The fraction of days with above 
average temperature (TXGT50p) or the 
percentage of days where TX > 50th percentile 
significantly increased for both annual and 
monthly analysis from 1963 - 2012. The monthly 
and annual TX10p (amount of cool days) had 
been decreasing significantly with a negative 
trend. On the other hand, the monthly and annual 
TX90p (amount of hot days) and TN90p (amount 
of warm nights [annual]) had increased at the 
90th percentile. The daily very warm days (TX95t) 
had also increased significantly. The analysis 
indicated that TX10p, TX90p, TN90p, and TX95t 
had increased in magnitude. In contrast, the 

TN10p (annual and monthly) was non-significant 
and negatively correlated. These percentile-
based temperature indices are part of the suite of 
indices developed by the WMO 
CCl/CLIVAR/JCOMM Expert Team on Climate 
Change Detection and Indices [24,25]. They 
have been used to analyze changes in 
temperature extremes for Mt Makulu Station. 
Percentile based temperature indices are 
calculated by counting the number of days in a 
year, or season, for which daily values exceed a 
time-of-year-dependent threshold. According to 
[47], such a threshold is usually defined as a 
percentile of daily observations in a fixed base 
period that fall within a few Julian days of the day 
of interest. Indirectly, extreme temperatures 
increase plant water stress, which if not 
addressed results in cessation of photosynthesis 
and possibly death [48]. For wheat, maize, and 
barley, there is a clear negative response of 
global yields due to increased temperatures as 
reported by [48].  

 

 
 

Fig. 3. Annual precipitation and temperature trends  for Mt Makulu 
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Table 3. Annual trends of the extreme indices of da ily temperature and precipitation for Mt Makulu Sta tion 
 

  Indices StartYr EndYr Slope Slope STD P Sign  Indices StartYr EndYr Slope slope STD P Sign 
1 cdd (A) 1963 2012 0.403 0.302 0.188 + 46 rx5day (A) 1963 2012 -0.256 0.447 0.570 + 
2 cdd (M) 1963 2012 0.007 0.18 0.7 + 47 rx5day (M) 1963 2012 0.005 0.044 0.665 + 
3 cddcold22 (A) 1963 2012 3.789 0.931 0.000 *** 48 sdii (A) 1963 2012 0.036 0.024 0.135 + 
4 csdi (A) 1963 2012 -0.029 0.041 0.478 - 49 spei.12.month 1963 2012 -0.001 0.000 0.000 *** 
5 csdi5 1963 2012 -0.01 0.049 0.833 - 50 spei.3.month 1963 2012 -0.002 0.000 0.000 *** 
6 CWA-ECF 1963 2012 0.082 0.049 0.104 + 51 spei.6.month 1963 2012 -0.001 0.000 0.000 *** 
7 cwd (A) 1963 2012 -0.01 0.03 0.73 - 52 spi.12.month 1963 2012 0.001 0.000 0.048 + 
8 CWF-ECF 1963 2012 -0.205 0.093 0.032 ** 53 spi.3.month 1963 2012 0.000 0.000 0.826 + 
9 CWM-ECF 1963 2012 0.005 0.019 0.802 + 54 spi.6.month 1963 2012 0.000 0.000 0.262 + 
10 CWN-ECF 1963 2012 -0.031 0.014 0.037 ** 55 su (A) 1963 2012 0.009 0.002 0.000 *** 
11 dtr (A) 1963 2012 0.03 0.007 0.000 *** 56 su (M) 1963 2012 1.141 0.246 0.000 *** 
12 dtr (M) 1963 2012 0.003 0.001 0.000 *** 57 tmm (A) 1963 2012 0.023 0.005 0.000 *** 
13 gddgrow22 (A) 1963 2012 3.789 0.931 0.000 *** 58 tmm (M) 1963 2012 0.002 0.001 0.003 *** 
14 gsl (A) 1963 2012 0.003 0.006 0.646 + 59 tn10p (A) 1963 2012 -0.049 0.051 0.336 - 
15 hddheat15 1963 2012 -0.453 0.207 0.036 - 60 tn10p (M) 1963 2012 -0.001 0.002 0.583 - 
16 HWA-EHF 1963 2012 0.127 0.081 0.127 + 61 tn90p (A) 1963 2012 0.150 0.56 0.011 *** 
17 HWA-Tn90 1963 2012 0.044 0.028 0.133 + 62 tn90p (M) 1963 2012 0.010 0.002 0.000 *** 
18 HWA-Tn90 1963 2012 0.008 0.018 0.676 + 63 tnm (A) 1963 2012 0.008 0.005 0.165 + 
19 HWA-Tx90 1963 2012 0.066 0.03 0.037 ** 64 tnm (M) 1963 2012 0.001 0.001 0.470 + 
20 HWD-EHF 1963 2012 0.072 0.041 0.087 + 65 tnn (A) 1963 2012 0.013 0.017 0.440 + 
21 HWD-Tx90 1963 2012 0.036 0.024 0.144 + 66 tnn (M) 1963 2012 0.001 0.001 0.635 + 
22 HWD-Tn90 1963 2012 0.008 0.018 0.676 + 67 tnx (A) 1963 2012 0.016 0.01. 0.128 + 
23 HWF-EHF 1963 2012 0.164 0.071 0.025 ** 68 tnx (M) 1963 2012 0.001 0.001 0.026 ** 
24 HWF-Tn90 1963 2012 -0.002 0.049 0.970 - 69 tr (A) 1963 2012 0.000 0.001 0.620 + 
25 HWF-Tx90 1963 2012 0.245 0.07 0.001 *** 70 tr (M) 1963 2012 0.052 0.066 0.430 + 
26 HWM-EHF 1963 2012 0.029 0.028 0.319 + 71 tx10p (A) 1963 2012 -0.236 0.045 0.000 *** 
27 HWM-Tn90 1963 2012 0.014 0.019 0.465 + 72 tx10p (M) 1963 2012 -0.020 0.002 0.000 *** 
28 HWM-Tx90 1963 2012 0.032 0.021 0.144 + 73 tx90p (A) 1963 2012 0.210 0.079 0.012 *** 
29 HWN-EHF 1963 2012 0.025 0.012 0.052 + 74 tx90p (M) 1963 2012 0.022 0.003 0.003 *** 
30 HWN-Tn90 1963 2012 -0.002 0.012 0.882 - 75 tx95t 1963 2012 0.011 0.001 0.000 *** 
31 HWN-Tx90 1963 2012 0.056 0.016 0.001 *** 76 txge30 (A) 1963 2012 1.041 0.273 0.000 *** 
32 prcptot (A) 1963 2012 1.706 2.362 0.474 + 77 txge30 (M) 1963 2012 0.009 0.002 0.000 *** 
33 prcptot (M) 1963 2012 0.013 0.023 0.555 + 78 txge35 (A)  1963 2012 0.266 0.056 0.000 *** 
34 r10mm (A) 1963 2012 0.000 0.001 0.695 + 79 txge35 (M)  1963 2012 0.002 0.000 0.000 *** 
35 r10mm (M) 1963 2012 0.049 0.07 0.494 + 80 txgt50p (A) 1963 2012 0.652 0.126 0.000 *** 
36 r20mm (A) 1963 2012 0.000 0 0.491 + 81 txgt50p (M) 1963 2012 0.054 0.004 0.000 *** 
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  Indices StartYr EndYr Slope Slope STD P Sign  Indices StartYr EndYr Slope slope STD P Sign 
37 r20mm (M) 1963 2012 0.036 0.048 0.455 + 82 txm (A) 1963 2012 0.037 0.007 0.000 *** 
38 r30mm (A) 1963 2012 0.000 0 0.129 + 83 txm (M) 1963 2012 0.003 0.001 0.000 *** 
39 r30mm (M) 1963 2012 0.042 0.033 0.207 + 84 txn (A) 1963 2012 0.030 0.019 0.111 + 
40 r95p (M) 1963 2012 1.928 1.398 0.175 + 85 txn (M) 1963 2012 0.003 0.001 0.000 *** 
41 r95ptot (M) 1963 2012 0.178 0.118 0.138 + 86 txx (A) 1963 2012 0.053 0.014 0.001 *** 
42 r99p (A) 1963 2012 0.106 0.898 0.907 + 87 txx (M) 1963 2012 0.004 0.001 0.000 *** 
43 r99ptot 1963 2012 0.010 0.083 0.900 + 88 wsdi (A) 1963 2012 0.113 0.110 0.309 + 
44 rx1day (A) 1963 2012 -0.102 0.423 0.844 - 89 wsdi7 (A) 1963 2012 0.102 0.083 0.227 + 
45 rx1day (M) 1963 2012 0.004 0.006 0.513 +         

Note: A: annual; M: monthly; P: p-value; sign: significant; indices in bold were significant 
 

 
 

Fig. 4. Annual precipitation and temperature anomal ies for Mt Makulu 
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Fig. 5. Seasonal precipitation and mean temperature  for Mt Makulu – 1963-2011 
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Fig. 6. Absolute and relative changes in precipitat ion and temperature for Mt Makulu 
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The R95pTOT (monthly and annual) and 
R99pTOT (monthly and annual) were non-
significant with a positive trend. The lack of trend 
in precipitation time series data does not support 
the conclusion that annual rainfall in Zambia              
has decreased by 1.9 mm per month (2.3%               
per decade) since 1960 particularly in the  
months of December, January and February 
[15,48]. The authors did not state the      
statistical significance level they used when 
concluding. [17] also found non-significant trend 
in several rainfall indices derived from daily 
precipitation using meteorological stations in 
Zimbabwe. 
 
Heatwave amplitude (HWA) as defined by either 
the EHF, 90th percentile of TX or the 90th 
percentile of TN increased significantly (p = 
0.035). This signified that the peak daily value in 
the hottest heatwave (defined as the heatwave 
with highest HWM) increased from 1963 to 2012. 
Heatwave number (HWN) as defined by the 
Excess Heat Factor (EHF), the 90th percentile of 
TX or the 90th percentile of TN also increased, 
the mean annual temperature being 17.30°C. 
This indicated that the number of individual 
heatwaves that occurred at Mt Makulu during 
summer (November – March in the southern 
hemisphere) increased. Heatwave frequency 
(HWF-EHF) defined by Excess Heat Factor (EHF) 
and heatwave frequency (HWF-Tx90) defined by 
the 90th percentile of TX had increased 
significantly at p<0.05. This meant that the 
number of days contributing to heatwave events 
had increased significantly. The results showed 
that the number of days (frequency) that 
contributed to heatwaves as identified by HWN 
had also increased. Heatwave number (HWN-
Tx90) defined by the number of discrete 
heatwave events had increased significantly at 
p<0.05. The cold-wave number (CWN-ECF) and 
cold-wave frequency (CWF-ECF) had reduced 
significantly with negative trends. [49] reported 
that heat is the leading weather-related killer in 
the United States of America.  
 
Evidence based studies indicate that the human 
induced climate change had already doubled the 
probability of extreme heat events [49] and these 
agree with the findings of this study. On the other 
hand, Mt Makulu experienced heat stress during 
DJF, MAM, JJA and SON with probability 
occurrence of 0.783, 0.001, 0.060 and 0.976 at 
p<0.05. There were a much higher heat spell 
events during DJF and SON. [50] argued that the 
warming of the climate can have consequences 
corresponding to percentage changes in the 

occurrence of climate extremes that include 
increased probability of observed heat extremes. 
[47] acknowledged that heatwave impacts are 
widespread and severe, human damage health, 
infrastructure, and natural ecosystems and 
decrease workplace performance and 
agricultural productivity. Additionally, the direct 
effect of excessive heat is through damaging the 
reproductive parts of crops responsible for 
producing grain and thus, reducing grain yield. 
 
3.2.2 Absolute indices represented by 

maximum or minimum values within a 
season or year  

 
The maximum warmest daily temperature (TXx) 
index showed a predominant increase in the 
monthly and annual maximum value of daily 
maximum temperature at Mt Makulu (see Table 
3). The minimum warmest daily temperature 
(TXn) showed a similar trend for the annual value. 
The annual warmest daily TN and coldest daily 
TX had increased significantly at p<0.05. The 
annual warmest TX increased significantly 
(p<0.05) for both monthly and annual analyses 
during the period 1963-2012. The annual number 
of days when the maximum temperature was at 
least 30°C or 35°C also increased significantly 
during the period 1963-2012. The monthly 
coldest daily TX (coldest day) increased 
significantly (p<0.05) resulting in a linear slope of 
0.003. The monthly warmest daily TN (hottest 
night) significantly increased during 1963-2012 
(p<0.05). As expected in a warming climate, 
researchers such as [49] agree with the findings 
of this study. [49] reported that recent climate 
change trends show that extreme heat is 
becoming more common, while extreme cold is 
becoming less common.  
 
The mean annual and monthly difference 
between daily TX and daily TN (DTR) 
significantly increased at p<0.05 resulting in a 
linear slope of 0.031 and 0.003, respectively. 
This is indicative that the monthly mean 
difference between the maximum and the 
minimum temperature had increased at Mt 
Makulu. Similarly, the mean daily temperature 
(TMm) and mean daily maximum temperature 
(TXm) had increased from 1963-2012 as 
presented in Table 3. There is a significant 
increase in absolute indices represented for the 
maximum and minimum temperature. The past, 
present and future climate impacts as reported 
by [51] could be documented and adaptation and 
mitigation options adopted by policy-and-decision 
makers.  
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The RX1day and RX5day had a non-significant 
positive trend at p<0.05. Contrary to the study 
results, increasingly frequent of extreme 
precipitation and associated flooding can                
lead to injuries and increases in waterborne 
diseases [52]. Some extreme weather and 
climate events have increased in recent decades, 
and new and stronger evidence confirms that 
some of these increases are related to human 
activities [49]. 
 
3.2.3 Threshold indices  
 
The number of days when TX > 25°C (SU) for 
both annual and monthly trend had increased 
significantly at p<0.05 with a slope of 0.009 and 
1.204, respectively as shown in Table 3. This 
indicated an increase in the month and an annual 
number of days when the maximum air 
temperature was higher than 25°C. The annual 
occurrence of tropical nights (TR) was non-
significant with positive trends. Mt Makulu did not 
experience any seasonal frost (FD) and ice days 
(ID) from 1963-2012. The R20mm was non-
significant with positive trends. Climate extreme 
indices assist in describing the past, present, and 
the future climate change scenarios [51]. They 
have been used for a long time by assessing 
days with temperature or precipitation 
observations are above or below specific 
physically-based thresholds [44]. They are 
closely related to possible impacts and are, 
therefore, more illustrative to planners, 
researchers and policy makers than simple 
climate means. Climate indices are widely used 
across sectors, and they have become important 
impact parameters in climate change studies and 
impact assessment.  
 
3.2.4 Duration indices  
 
Cooling Degree Days (CDDcoldn) [a measure of 
the energy demand needed to cool a building] 
and Growing Degree Days (GDDgrow) [a 
measure of heat accumulation to predict                
plant and animal developmental rates] had 
increased significantly (p<0.05) during the                
year 1963 to 1995 and decreased onward from 
1995 to 2012 with a linear slope of 3.789                 
and 3.789, respectively. GSL, WSDI, CDD, and 
CWD were not significant at p<0.05.                   
Changes in extreme weather events are the 
primary way that most people experience                      
climate change. Human-induced climate               
change has already increased the number                
and strength of some of these extreme       
events [49]. 

3.2.5 Other indices  
 
Meteorological, agricultural, and hydrological 
drought incidences are often presented as 
drought indices. Drought occurrence as 
measured by the Standardized Precipitation 
Evapotranspiration Index on time scales of 3, 6 
and 12 months are presented in Table 3. The 
results indicated significant (p<0.05) changes in 
annual trends with linear slopes of -0.002, -0.001 
and -0.001 for time-scales of 3, 6 and 12 months, 
respectively. Drought monitoring trends indices 
are usually applied at seasonal (6 months), 
annual (12 months) or even inter-annual (24 or 
48 months) time-scales as reported by [53]. The 
mean temperature increased at Mt Makulu from 
1963 - 2012 and this increased water 
evaporative demand of the atmosphere during 
1990 and 2012 as the SPEI use precipitation and 
temperature normalized for simplified water 
balance. Changes in frequency and intensity of 
weather events often result in more frequent and 
intensive disasters such as flash floods and 
persistent droughts [52]. 
 
4. CONCLUSION 
 
The Mann-Kendall test did not identify any trend 
in the precipitation and minimum temperature for 
Mt Makulu. However, the Mann-Kendall tests for 
the maximum and mean temperature were 
statistically significant. Climate indices provide 
valuable information contained in daily time 
series data, without the need to transmit the data 
itself. This study analyzed changes in ET-SCI 
indices at Mt Makulu based on daily minimum, 
and maximum temperature and precipitation time 
series from 1963–2012. Climate extreme indices 
are widely used across some disciplines and 
have become a significant impact parameter in 
climate change impact assessment studies. 
Climate indices computed based on temperature 
and precipitation can be used as a means of 
communicating climate change impact on 
agricultural production systems and hydrological 
risk such as exposure time, threshold levels of 
event intensity, etc. The TXx, TNx, TXn, DTR, 
GDDGrowing, TMm, TXGT50p, TX90p, TN90p, 
TXGE30, TXGE35, TX95t, TX90.HWA, 
TX90.HWN, TX90.HWF, EHF.HWD and 
EHF.HWF indices showed non-significant 
positive trends for 1963-2012. On the other hand, 
TX10p and SPEI indices showed a negative 
linear trend for the same period. The highest 
value for the Growing Degree Days, TMm, 
TX90.HWN, TX90.HWF and TX90.HWA was 
observed between 1995 and 2000. Four indices 
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(PRCPTOT, R30 mm, RX5day, and R95p) of 
extreme precipitation were non-significant with 
the positive linear trend. The extreme climate 
indices could be used for forecasting outbreaks 
of tropical diseases under the present and future 
climate scenarios. To have a better appreciation 
of the extreme climate indices, another study 
should focus on gridded datasets. 
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