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Abstract 
Given its complexity, directional felling is considered one of the most dangerous activities in the exploratory 
phase of forest management projects for timber obtention. Therefore, detailed studies of the variables influencing 
its execution are necessary. The present research was conducted in the Tapajós National Forest, Brazilian 
Amazon, and analyzed 1,075 trees logged using the directional felling technique in a 504.30 ha area. To better 
understand directional felling, the studied variables were subjected to descriptive analyses and principal 
component analysis, a multivariate procedure that enables the simultaneous evaluation of several variables. 
While the diameter, basal area, and stem and branch volume explained most of the variability concerning 
directional felling, the commercial height influenced the least. Trees of the species Hymenolobium petraeum 
(angelim pedra) strongly correlated with the dendrometric variables diameter and stem and branch volume. 
Those of the species Hymenaea courbaril (jatobá) showed a strong correlation with the commercial height. 
Pseudopiptadenia psilostachya (fava timborana), Dipteryx odorata (cumaru), Hymenaea parvifolia (jutai mirim), 
and Astronium lecointei (muiracatiara) had a strong correlation with the basic wood density. Trees of the species 
Couratari guianensis (tauari), Lecythis pisonis (sapucaia), Astronium lecointei (muiracatiara), Mezilaurus itauba 
(itaúba), and Goupia glabra (cupiúba) showed lower correlations with the time needed for planning, cutting, and 
felling. They also had a reduced correlation with the angular differences between the natural and effective and 
the intended and effective felling directions. The latter results suggest that these species do not follow a defined 
pattern concerning the directional felling technique. However, trees of the other species followed a different 
tendency. In general, the logged trees lacked correlation with the directional felling cutting and total operation 
time. The analyses suggest that as the diameter of a tree increases, the chances of completing its directional 
felling decrease. 

Keywords: reduced impact logging, directional felling, natural fall, dendrometric variables, chainsaw operator, 
principal component analysis 

1. Introduction 
An essential component of forest management is adopting careful logging practices planned to reduce damage to 
the remaining forest (Johns et al., 1998; Dykstra & Heinrich, 1996; Sabogal et al., 2009; Nogueira et al., 2011). 
Unplanned forest exploitation dramatically increases the impact on biodiversity and ecosystem functioning 
(Bicknell et al., 2014; Bicknell et al., 2015; Edwards et al., 2013; Edwards et al., 2014) while destroying much of 
the pre-existing regeneration of commercially valuable trees. Therefore, this kind of activity tends to impair 
long-term ecological and economic productivity (Putz & Pinard, 1993; Putz et al., 2012). 

The concept of reduced impact logging (RIL) emerged in the 1990s (Putz & Pinard, 1993). It combines a group 
of techniques aimed at environmental protection within the process of timber production in selectively logged 
tropical forests (Ellis & Putz, 2019). One of these techniques is the planned and directional tree felling, using 
chainsaws. Directional felling is crucial for achieving the goal of sustainable forest management (Nikooy et al., 
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2013) since improper logging can result in severe damage to the remaining forest community (Naghdi et al., 
2016). 

Using chainsaws for semi-mechanized logging is the most widespread technique in Brazil (Santanna & 
Malinovski, 1999). It is a high-risk activity (Nogueira et al., 2011) since handling chainsaws requires specific 
abilities, technical knowledge, practical experience, and physical conditioning. Therefore, labor becomes an 
essential component for forestry work, especially in activities with high physical demand, performed manually 
or semi-mechanically, such as directional felling (Santanna & Malinovski, 2002; Nogueira et al., 2011). 

The ability to use a chainsaw correctly implies the transversal and longitudinal cutting of tree segments (logs) in 
a horizontal position, on the ground or suspended, the complementary cutting of branches and roots, the 
longitudinal and transversal cutting of standing trees to check for hollows in the stem, and finally, the felling of 
the tree. 

The technical knowledge regarding chainsaw functioning is fundamental for the operator to get maximum 
performance and safety during its use. Additionally, it helps optimize fuel use and time while using 
chainsaw-related tools and accessories, such as guide bar, chain, and saw chain files. At the same time, the 
technical knowledge of the operator about RIL guidelines is also desirable. These recommend the procedures 
needed for conducting an efficient and safe logging activity from an operational and ergonomic point of view 
and protecting the remaining forest. 

Practical logging experience is crucial since the empirical knowledge acquired through several timber harvests 
enables the operator to predict tree and species patterns under certain field situations. An example of this is 
applying cutting techniques, which can vary according to the stem cracking tendency and root dimensions 
(Nogueira et al., 2011) to reduce stem cracking during the felling operation. 

The physical conditioning of the operator is another critical aspect to consider. Their workday usually involves 
dislocation among several tree species with varying wood density, volume, and height. Besides that, they should 
carry together the chainsaw and its accessories. Therefore, even with the help of an assistant, the work demands 
good physical condition. Besides that, it requires mental attention from the operator since decision-making 
concerning the tree felling direction is also part of the work. 

Based on the operational procedures, it is necessary to evaluate the tree felling direction and, if necessary, plan 
and modify it. The latter will ensure operational safety and avoid further damage to the forest (Amaral et al., 
1998; Sabogal et al., 2009). Any error involving the tree felling direction can result in serious accidents 
involving the operator or members of the cutting team (Sant’anna, 2014), besides damaging the nearby standing 
timber and possibly altering the planned cutting sequence of the surrounding trees. 

The basic principle of directional tree felling is the natural fall tendency (Nogueira et al., 2011). Naturally, every 
tree has a lean or falling direction dependent on its gravity center. The latter is determined by the crown weight 
distribution, indirectly influenced by the stem inclination, and by its position regarding the other trees. It is worth 
noting that the natural lean of a tree is considered one of the main elements in forest harvest planning (Sant’anna, 
2014). According to d’Oliveira and Braz (1995), the crown shape, distribution, and weight of a tree determine 
the direction it would naturally fall. 

It is possible to change the direction a tree would naturally fall between 10° and 45° (d’Oliveira & Braz, 1995; 
Nogueira et al., 2011). The final direction a tree falls and hits the ground is called the effective fall direction. A 
tree natural lean and the intended and final felling directions improve the analysis regarding the ability of the 
cutting team to conduct the felling (Naghdi et al., 2016). 

Although the damages related to logging are, to some extent, inevitable, there are methods to reduce it (Nikooy 
et al., 2013). According to Whitmore and Burnham (1984), the damage degree is more dependent on the way of 
felling the trees than on the volume of trees felled. Planning the felling direction also affects the steps following 
the fall, such as log hauling, especially for large trees, which might positively or negatively affect the production 
rate of the hauled timber (Nikooy et al., 2013). 

Directional felling consists of cutting a tree in a predetermined direction, avoiding damage to nearby standing 
trees, and facilitating their removal while preventing damage to previously felled trees (Pinard et al., 1995; 
Cedergren et al., 2002). Most studies involving directional felling are generic, focused on disseminating the RIL 
technology (Dykstra & Heinrich, 1996; Braz & d’Oliveira, 1997; Sabogal et al., 2009; Nogueira et al., 2011). 

In Brazil, research on directional felling has been conducted in planted forests. However, these studies have 
limited to observing the economic yield of the felling activity (Santos et al., 2000) or demonstrating the most 
efficient techniques used by chainsaw operators (Fiedler et al., 2000; Lopes et al., 2001).  
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Studies conducted in native forests have also focused on analyzing equipment performance and the economic 
aspects involved in the felling process (Minetti et al., 2000; Behjou, 2012; Behjou et al., 2009) or considering the 
ergonomic elements of chainsaw use during directional felling (Rêgo et al., 2017). 

However, research regarding the variables that interfere in directional felling and the aspects related to its 
execution is still insufficient. Obtaining this information might improve the understanding of directional felling 
and, therefore, subsidize the development of criteria and procedures to avoid damaging the nearby standing trees 
or cracking the felled ones. 

There is a debate regarding the validity and viability of directional felling as a preservation strategy of the 
remaining forest (Cedergren et al., 2002; Jonkers, 2000). Although technically feasible, directional felling has 
limitations driven by the random spatial distribution of the trees in the forest, the poor visibility of very tall 
canopies, and the presence of trees with poorly defined natural leans (Jonkers et al., 2000). There are also 
limitations regarding chainsaw operators, including their experience, abilities, and techniques (Nikooy et al., 
2013). 

More specific aspects that can interfere with the quality of directional felling comprehend felling direction angles 
(Cedergren et al., 2002; Krueger, 2004), the time used in the procedures (Lortz et al., 1997; Câmpu & Ciubotaru, 
2017; Acosta et al., 2018), and dendrometric variables (Koger, 1983; Jourgholami et al., 2013). Identifying the 
most relevant components of directional felling can help execute the operation with accuracy, safety, and control 
(Naghdi et al., 2016). 

In this context, applying techniques of multivariate analyses, such as the principal component analysis, becomes 
appropriate. The latter is especially valid when the researcher intends to reduce the quantity of original data into 
a smaller set and reproduce part of the variability in fewer linear combinations (Abdi & Williams, 2010; Santos 
et al., 2019). 

The principal component analysis simultaneously evaluates more than one variable and order the sample units in 
an n-dimensional hyperspace through a mathematical algorithm. The latter reduces the dimensionality of the data 
while preserving much of its variability. It identifies directions or principal components along which the 
variation of the data reaches its highest level (Ringnér, 2008; Schirmer et al., 2016). 

Meeting the normality assumption is not required for conducting a principal components analysis (Santos et al., 
2019). A common aspect of techniques that use exploratory data analysis is applying nonparametric methods, 
which are less rigorous in their assumptions, sampling, and statistical properties (Kent, 2012). 

In this context, the principal component analysis aims to establish a relationship between the variables and the 
species involved in directional felling to select those that best explain the total variance of the data. While 
rigorous statistical tests and confirmations are fundamental, several authors affirm that a large part of data 
analysis has an exploratory approach and consists mainly of looking for order and patterns in the data (Kent, 
2012). 

The present study pretends to identify the variable or group of variables that mostly correlate with directional 
tree felling.  

2. Material and Methods 
2.1 General Characteristics of the Research Area 

The research area is located within the Tapajós National Forest (FLONA Tapajós), municipality of Belterra, Pará, 
between the coordinates 2°40′-4°10′ South Latitude and 54°45′-55°30′ West Longitude (Figure 1). It is bordered 
to the west by the Tapajós River; to the east by the Cuiabá-Santarém highway; to the north by kilometer marker 
50 (fifty) of the Cuiabá-Santarém highway; and to the south by the right margin of the Tapajós River, the Cupari 
River, and its tributary Santa Cruz, up to the Cuiabá-Santarém highway (Brasil, 1974; Carvalho, 2001; Oliveira 
et al., 2005).  

Inserted in the lower Amazonian region, it presents soils of the type Neossolos Quartzarênicos to the west and 
Latossolos Amarelos on the plateau (Parrota et al., 1995) similar to Arenosols and Xanthic Ferralsols, 
respectively, according to IUSS Working Group/WRB (2015). The vegetation is a dense ombrophilous forest 
(IBGE, 2012), which comprises approximately one-third of the total area of the Tapajós National Forest (Parrota 
et al., 1995).  

The approximate territorial extension of the Tapajós FLONA is 530,000 ha (Andrade et al., 2019), encompassing 
the municipalities of Aveiro, Belterra, Placas, and Rurópolis. The regional climate type is Am or equatorial 
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where, Vc/c = volume with the bark in cubic meters; DBH = diameter at breast height measured in centimeters; 
and Hc = commercial height in meters. 

Vrb/c = 0.211045768114405 + (0.000630439578435079 × DBH²) + (-0.00000805819101964133 × DBH² × Hc) 
+ (-0.0000204270359331579 × DBH × Hc²) + (0.00030907024548338 × Hc)             (2) 

where, Vrb/c = volume of the gross residue with the bark in cubic meters; DBH = diameter at breast height 
measured in centimeters; and Hc = commercial height in meters.  

Nine cutting teams, each integrated by one chainsaw operator and one assistant, applied the directional felling 
techniques. Most of the hollowed trees were discarded from felling once the chainsaw operator applied the 
hollow test. The test consists of the longitudinal insertion of the chainsaw guide bar into the stem of the tree. 
Hollow trees were exceptionally harvested when the relationship of hollowness to commercial volume 
production was compensatory, in association with the chainsaw operator verifying the possibility of adequately 
applying the cutting techniques. 

Workers of the cutting teams received training in the technical guidelines of RIL (Dykstra & Heinrich, 1996; 
Braz & d’Oliveira, 1997; Pereira Júnior, 2003; Sabogal et al., 2009; Nogueira et al., 2011) considering the 
following aspects: 

(1) Field localization of the tree to be felled; (2) confirmation of the identification of the tree based on the 
inventory plate; (3) execution of the test to verify the occurrence of a hollow stem; (4) evaluation of the tree 
natural lean and the intended felling direction; (5) extraction of the identification plate of the tree and its 
respective nail (6) cleaning the base of the tree up to a one-meter radius from the stem; (7) construction of two 
escape routes with a 45° angle between them and opposite to the intended felling direction; (8) directional felling 
and fall of the tree; (9) place the identification plate and its respective nail on the residual stump of the felled tree, 
and; (10) record the actual felling direction on the felling map. 

The chainsaw operator responsible for the specific felling activity defined, in the field, the natural lean and the 
intended felling direction of the tree to be felled. After felling the tree, the landing position at which the tree hit 
the forest ground allowed defining the effective felling direction. For determining the natural lean, intended, and 
effective felling angles, the magnetic north and the direction of tree stem projections were used as references 
(Figure 2), as follows: 

(1) The Natural Lean (QN) considers the inclination of the tree and the distribution of the crown branches. It 
records the location variable in degrees as the difference between the magnetic north and the projection of the 
tree fall. 

(2) The Intended Fall Direction (QP) records the angle in degrees between the magnetic north and the planned 
projection of the tree fall. The planning considered the tree natural lean and the distribution of nearby standing 
trees. The intention is to avoid damaging these trees and operational accidents involving the members of the 
cutting team. Therefore, the alteration of the tree natural lean is planned. 

(3) The Effective Fall Direction (QE) records the angle in degrees between the magnetic north and the final 
projection of the tree stem as it hits the forest ground. 
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(2) The cutting time, in minutes, comprised the time between the cuttings made on the tree and the moment it hit 
the ground.  

(3) The tree felling time, in minutes, was the sum of the planning time and the tree cutting time. 

The registered periods also considered all the events that occurred within pauses dedicated to observation, 
equipment adjustment, tool usage, hydration, and the eventual rest of the team.  

After completing the felling of each tree, the number of trees with DBH (diameter at 1.30 m from the ground) ≥ 
10 cm and the direct damages derived from the directional felling process were quantified. 

The wood density of the analyzed tree species was determined following the methodology described by Carneiro 
et al., (2020). 

2.3 Statistical Analyses 

The Kolmogorov-Smirnov test (α = 0.05) was applied to assess the normality of the data. For the other analyses, 
the data were organized by the mean values of the variables per species.  

The calculus of the absolute differences between the angles of natural and planned, planned and effective, and 
natural and effective falls allowed visualizing the angular variation of the directional felling procedure. While 
difference values near 0° indicated a higher success, those near 180° indicated a higher error in the tree 
directional felling process. 

Converting the data into a percentage scale facilitated the interpretation. For this, a difference of 180° or 0° was 
assumed as 0% or 100% accuracy, respectively. Therefore, the higher the percentage of angular difference (QN%, 
QP%, and QE%), the smaller the difference between the fall directions considered in the directional felling. 

Box diagrams represented the distribution of the values regarding each of the studied variables and species. The 
parameters used were mean, median, quartiles, asymmetry, and kurtosis. 

Given the number of variables involved in directional felling, a Principal Component Analysis (PCA) was 
applied to detect possible relationships between the variables and the species. To conduct the PCA, the scales 
between the variables were standardized (µ = 0, σ = 1) using the mean values of the variables per species. 

The criteria used for selecting the principal components were eigenvalues higher than 1.00 and concentrating 
more than 60% of the accumulated variance.  

Eigenvalues measure the level of variation retained in each dimension of the principal components (Kassambara, 
2017), expressed as the ratio between the eigenvalue and the number of variables in the analysis (Kent, 2012). 
While the first components or dimensions correspond to the highest percentage of the variability present in the 
data (Bernardi et al., 2009), the remaining components account for directions that do not explain much of the 
variability (Hongyu et al., 2015) and are often considered as “noise” in the analysis. The positive or negative 
signs of the eigenvalues denote direct or inverse correlations, respectively (Schirmer et al., 2016). 

The eigenvectors correspond with the loadings of the original variables, which work as a measure of the 
importance of each variable in relation to the dimensions of the principal components and indicate their 
relationships, whether directly or inversely proportional, positive or negative, respectively (Bernardi et al., 2009). 
It is possible to compare each variable to a vector, with the correlation coefficient expressed in cosine values, 
ranging from -1.0 to +1.0, presenting properties of direction, orientation, and length, the latter being directly 
related to its variance, which makes its geometric representation possible (Kent, 2012). 

A Pearson’s correlation analysis (p ≤ 0.05) allowed identifying patterns within the data. The results were 
interpreted according to Dancey & Reidy (2019), who indicate that values equal to 0.0 represent the absence of 
correlation, 0.10-0.39 a weak correlation, 0.40-0.69 a moderate correlation, 0.70-0.99 a strong correlation, and 
1.0 a perfect correlation.  

After this interpretation, variables with correlations higher than 0.7 were classified as significant. Significant 
correlations of the set of variables indicate the adequacy of the sample for the PCA. Low correlations tend to 
imply the recommendation of larger sample sizes (Santos et al., 2019). 

A biplot served to visualize the distribution of the variables and their respective observations. The latter is a 
bi-dimensional graph, where the vectors represent the variables, and the points represent the observations or 
samples. 

The best-represented vectors are those closest to the radius of size 1 (maximum correlation) (Santos et al., 2019). 
The closer a variable is to the circle of correlations, the better to reconstruct it from the first two components. 
Also, the closer to the origin of the axes, the less relevant the variable is for the first two components (Abdi & 
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Williams, 2010). The vector orientation and its length indicate the direction towards which the variable increases 
and the rate of change in that direction, respectively. Thus, a long vector indicates a gradual rate of change, while 
a short vector represents a faster rate of change (Kent, 2012). 

For the graphical interpretation, the following assumptions were considered. The principal components 1 (PC1 
or Dim. 1) and 2 (PC2 or Dim. 2) were represented on the abscissa and ordinate axis, respectively. Thus, 
comparisons involving the PC1 were made horizontally, while comparisons with the PC2 were made vertically 
(Teixeira et al., 2012). 

The highest percentage of the total data variance is usually explained by Dim. 1, followed by Dim. 2 (Fraga et al., 
2015). Therefore, in the present study, only these two components were considered, given that the others do not 
add relevant information (Tobar-Tosse et al., 2015). Most studies only use the first two axes, which besides 
sufficiently explaining the data, can be easily interpreted through a bi-dimensional graph (Gomes et al., 2004). 

The PCA was performed using the statistical packages FactoExtra (Kassambara, 2017) and FactoMiner (Lê et al., 
2008) run within the statistical program R version 4.0.4 (R CoreTeam, 2021) and RStudio version 1.3.1093. 

3. Results 
The sample universe for the directional felling analyses included 1,075 trees represented by 17 species (Table 1). 
Four species accounted for 56.9% of the number of trees sampled: tauari (221), maçaranduba (167), jarana (119), 
and jatobá (105). The diameter of the felled trees ranged from 50.61 to 197.35 cm, and half of them had DBH 
values ≤ 76. Of the felled trees, 75% were in the commercial height, measuring between 7 and 26 m (Table 2). 
On average, the species tauari (24.9 m), jatobá (28.71 m), and muiracatiara (29.02 m) had the highest 
commercial height. The median stem and branch volumes of the trees were 5.44 m3 and 3.07 m3, respectively. 

The analyzed variables presented asymmetry and kurtosis values different from zero, indicating a non-normal 
distribution (Table 2). The Kolmogorov-Smirnov test (α = 0.05) rejected the normality hypothesis confirming the 
data pattern distribution. 

Among the species that were felled and evaluated in this study, the basic wood density varied from 0.48-0.91 g 
cm-3, with the highest and lowest values corresponding to the species quarubarana and cumarú, respectively. The 
median planning and cutting times were six minutes each, while the median tree felling time was 13 minutes. 
Planning and cutting times were as short as nine minutes for 75% of the felled trees. On the other hand, the total 
directional felling time lasted up to 18 minutes. 

In general, a median of two trees was damaged per felling. However, this variable corresponded to a median of 
three damaged trees per felling for the species angelim pedra (AngePedra), quaruba (Quaru), and sapucaia 
(Sapu). On the other hand, the felling of the trees garapeira (Garap), jarana (Jara), and mandioqueira rosa 
(ManRosa) damaged less the nearby standing vegetation, with a median of one tree affected per felling. 

Independently of the tree species, the median values for the variables QPE%, QNP%, QNE% indicated a 
correspondence higher than 80% between the angles (Figure 4). 

The planning and cutting times had median values lower than 15 minutes, with a total median time for the whole 
tree felling process of up to 25 minutes.  

From all the variables involved in the process of directional tree felling, basic density (Db) had the lowest 
correlation value (Figure 5).  
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Table 1. Mean values of variables per species observed in the directional felling of trees in the Tapajós National 
Forest, Belterra, Pará, Brazil. 

Species 
code 

No.  
trees 

Db 
(g cm-3) 

Planning 
(min) 

Cutting 
(min) 

Felling
(min) 

QNP
(%) 

QPE
(%) 

QNE
(%) 

Damage 
(No. ind.)

DBH 
(cm) 

Height
(m) 

Stem Vol. 
(m3) 

Basal 
(m2) 

Branch Vol.
(m3) 

AngePedra 11 0.59 8.09 8.00 16.09 83.03 92.72 89.44 2.64 102.58 22.64 10.27 0.86 6.00 

CedroRa 26 0.49 7.69 7.77 15.46 79.72 85.86 84.17 2.00 99.82 23.31 10.81 0.87 5.99 

Cuia 15 0.80 10.27 8.80 19.07 87.33 85.05 80.67 2.13 83.65 21.73 6.50 0.56 3.89 

Cuma 49 0.91 5.96 8.86 14.82 88.06 85.42 83.62 1.92 77.52 17.37 4.94 0.49 3.67 

Cupiu 15 0.71 7.33 4.73 12.07 83.19 74.27 68.59 1.93 75.97 12.33 3.60 0.46 3.64 

FavaTimb 45 0.69 8.09 7.69 15.78 85.72 85.80 80.32 2.14 76.37 16.71 4.61 0.47 3.54 

Garap 16 0.75 10.25 8.69 18.94 93.54 87.50 85.83 1.38 86.14 18.50 6.20 0.60 4.42 

Itau 69 0.70 6.17 7.17 13.35 85.10 83.95 79.86 1.53 80.93 23.67 6.82 0.53 3.53 

Jara 119 0.85 6.26 6.71 12.97 82.99 85.07 78.73 1.51 71.30 19.18 4.48 0.41 2.93 

Jato 105 0.76 7.03 9.46 16.49 82.97 86.41 82.39 1.82 90.75 28.71 9.91 0.68 4.08 

JutaiMi 65 0.90 6.22 6.97 13.18 84.37 87.56 84.60 1.91 75.65 22.60 5.60 0.46 3.09 

MacaRan 167 0.87 7.06 6.75 13.81 81.78 82.84 77.65 1.84 71.30 19.63 4.60 0.41 2.93 

ManRosa 11 0.54 8.36 6.36 14.73 90.40 86.97 91.01 1.91 80.04 19.64 5.61 0.51 3.67 

Muira 47 0.79 6.91 8.23 15.15 84.82 84.10 80.33 2.04 82.30 29.02 8.17 0.55 3.18 

Quaru 61 0.48 7.38 8.16 15.54 82.81 86.41 79.35 2.68 101.43 19.66 9.14 0.86 6.25 

Sapu 33 0.84 7.61 7.55 15.15 79.11 84.30 77.02 2.24 81.13 17.73 5.57 0.54 3.99 

Taua 221 0.52 6.90 7.70 14.60 81.73 84.63 76.51 1.86 78.38 24.89 6.69 0.50 3.23 

Mean 63.23 0.72 6.98 7.61 14.59 83.27 84.92 79.59 1.88 80.08 22.15 6.45 0.53 3.60 

Total 1075 - - - - - - - - - - - - - 

Note. Species code, vernacular and scientific names: AngePedra: angelim pedra (Hymenolobium petraeum); 
CedroRa: cedrorana (Vochysia maxima); Cuia: cuiarana (Terminalia amazonia); Cuma: cumaru (Dipteryx 
odorata); Cupiu: cupiúba (Goupia glabra); FavaTimb: fava timborana (Pseudopiptadenia psilostachya); Garap: 
garapeira (Apuleia leiocarpa); Itau: itaúba (Mezilaurus itauba); Jara: jarana (Lecythis lurida); Jato: jatobá 
(Hymenaea courbaril ); JutaiMi: jutai mirim (Hymenaea parvifolia); MacaRan: maçaranduba (Manilkara elata); 
ManRosa: mandioqueira rosa (Qualea dinizii); Muira: muiracatiara (Astronium lecointei); Quaru: quaruba 
(Erisma uncinatum); Sapu: sapucaia (Lecythis pisonis); Taua: tauari (Couratari guianensis).  

Variables: No. trees: Number of trees, Db (g cm-3): Basic wood density expressed in g cm-3, Planning (min): 
Time, expressed in minutes, used to plan the felling, Cutting (min): Time, expressed in minutes, used to cut the 
tree, Felling (min): Total time, expressed in minutes, used to complete the tree felling process, QNP (%): Angle 
difference, expressed in percentage, between the tree natural lean and the intended felling direction, QPE (%): 
Angle difference, expressed in percentage, between the intended and the effective felling direction, QNE (%): 
Angle difference, expressed in percentage, between the tree natural lean and the effective felling direction, 
Damage (No. ind.): Number of trees damaged after the conclusion of the felling operation, DBH (cm): Diameter 
at breast height, expressed in centimeters, Height (m): Commercial tree height expressed in meters, Stem Vol 
(m3): Stem volume expressed in m3, Basal (m2): Basal area expressed in m2, Branch Vol. (m3): Branch volume 
expressed in m3. 
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expressed in percentage, between the tree natural lean and the effective felling direction, Damage (No. ind.): 
Number of trees damaged after the conclusion of the felling operation, DBH (cm): Diameter at breast height, 
expressed in centimeters, Height (m): Commercial tree height expressed in meters, Stem Vol (m3): Stem volume 
expressed in m3, Basal (m2): Basal area expressed in m2, Branch Vol. (m3): Branch volume expressed in m3.  

 

Table 3. Variation and proportion of the eigenvalues within the dimensions used to form the principal 
components. Dim.: Dimensions present in the principal components 

Dimension Eigenvalue Variance (%) Cumulative variance (%) 

Dim.1 5.916106E+00 4.550851E+01 45.50851 

Dim.2 2.582603E+00 1.986618E+01 65.37468 

Dim.3 1.714391E+00 1.318762E+01 78.56231 

Dim.4 1.003370E+00 7.718228E+00 86.28054 

Dim.5 7.931747E-01 6.101344E+00 92.38188 

Dim.6 4,298263E-01 3.306356E+00 95.68824 

Dim.7 2.819414E-01 2.168780E+00 97.85702 

Dim.8 2.171935E-01 1.670720E+00 99.52774 

Dim.9 5.574702E-02 4.288233E-01 99.95656 

Dim.10 3.710315E-03 2.854089E-02 99.98510 

Dim.11 1.775584E-03 1.365834E-02 99.99876 

Dim.12 1.605888E-04 1.235298E-03 99.99999 

Dim.13 8.512454E-07 6.548041E-06 100.00000 

 

Table 4. Values of the correlations/coordinates of the variables found in the dimensions of the principal 
components 

Variable Dim.1 Dim.2 Dim.3 Dim.4 

Db -0.5760521 0.3905703 0.3052262 0.2741640 

Planning 0.3884945 0.5216313 -0.6326676 0.2348286 

Cutting 0.6297079 0.4503300 0.3474362 0.4028270 

Felling 0.6363357 0.6176027 -0.2133728 0.3976256 

QNP -0.0094782 0.8348518 -0.2743767 -0.2610988 

QPE 0.7032070 0.3592726 0.2917482 -0.3533211 

QNE 0.5896531 0.4994523 0.1698037 -0.5700969 

Damage 0.5377906 -0.4503199 -0.2308387 0.0616097 

DBH 0.9457188 -0.2431977 -0.1024269 0.0173193 

Height 0.4398519 0.0512934 0.7794778 0.1483198 

Stem Vol. 0.8985885 -0.2273666 0.2925007 0.0744219 

Basal 0.9314890 -0.2966728 -0.0870262 0.0078690 

Branch Vol. 0.8587202 -0.3065087 -0.3177944 -0.0544956 

Note. Dim.: Dimensions of the principal components, Db (g cm-3): Basic wood density expressed in g cm-3, 
Planning (min): Time, expressed in minutes, used to plan the felling, Cutting (min): Time, expressed in minutes, 
used to cut the tree, Felling (min): Total time, expressed in minutes, used to complete the tree felling process, 
QNP (%): Angle difference, expressed in percentage, between the tree natural lean and the intended felling 
direction, QPE (%): Angle difference, expressed in percentage, between the intended and the effective felling 
direction, QNE (%): Angle difference, expressed in percentage, between the tree natural lean and the effective 
felling direction, Damage (No. ind.): Number of trees damaged after the conclusion of the felling operation, 
DBH (cm): Diameter at breast height, expressed in centimeters, Height (m): Commercial tree height expressed in 
meters, Stem Vol (m3): Stem volume expressed in m3, Basal (m2): Basal area expressed in m2, Branch Vol. (m3): 
Branch volume expressed in m3, Correlation: Values of the Pearson’s correlation. 
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Table 5. Variables most significantly associated with a given principal component. 

Dim. Variable Correlation p value 

1 

DBH 0.9457188 1.013670E-08 

Basal 0.9314890 5.572577E-08 

Stem Vol. 0.8985885 9.573546E-07 

Branch Vol. 0.8587202 1.020477E-05 

QPE 0.7032070 1.637501E-03 

Felling 0.6363357 6.027524E-03 

Cutting 0.6297079 6.750034E-03 

QNE 0.5896531 1.273058E-02 

Damage 0.5377906 2.597124E-02 

Db -0.5760521 1.551591E-02 

2 

QNP 0.8348518 3.058955E-05 

Felling 0.6176027 8.248270E-03 

Planning 0.5216313 3.174940E-02 

QNE 0.4994523 4.122614E-02 

Note. Dim.: Dimensions of the principal components, Db (g cm-3): Basic wood density expressed in g cm-3, 
Planning (min): Time, expressed in minutes, used to plan the felling, Cutting (min): Time, expressed in minutes, 
used to cut the tree, Felling (min): Total time, expressed in minutes, used to complete the tree felling process, 
QNP (%): Angle difference, expressed in percentage, between the tree natural lean and the intended felling 
direction, QPE (%): Angle difference, expressed in percentage, between the intended and the effective felling 
direction, QNE (%): Angle difference, expressed in percentage, between the tree natural lean and the effective 
felling direction, Damage (No. ind.): Number of trees damaged after the conclusion of the felling operation, 
DBH (cm): Diameter at breast height, expressed in centimeters, Stem Vol (m3): Stem volume expressed in m3, 
Basal (m2): Basal area expressed in m2, Branch Vol. (m3): Branch volume expressed in m3, Correlation: Values of 
the Pearson’s correlation.  

 

The PCA resulted in the formation of two groups of variables (G1 and G2). The first, G1, consisted of 
dendrometric variables, such as diameter (DBH), basal area (Basal), stem volume (Stem Vol.), and branch 
volume (Branch Vol.). The correlation value between these variables and the principal components surpassed 0.8 
(Table 4), and their proximity evidenced a higher correlation with each other (Figure 6). 
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Correlation values regarding the variable number of nearby trees damaged by the directional felling (Damage) 
were 0.53 and -0.45 in Dim.1 and Dim.2, respectively. The latter suggests an inversely proportional relationship 
with the variables QNP% and Db. However, the opposite pattern occurs between this variable and the 
dendrometric variables of G1 since they share the same quadrant. This implies a higher correlation within the 
same direction, and therefore, covariation with the variables of the group. 

The variable QNE% had an intermediate correlation with the variables QNP% and QPE%, but higher with 
QPE%. This tends to occur when the natural lean of a tree is the only option for directing its fell. 

The variable QPE% was more correlated with the first principal component and, therefore, with the dendrometric 
variables, showing a directly proportional correlation. The larger the dimension of a tree, the better it is for the 
chainsaw operator to achieve the intended felling direction, even if it is in its natural lean. 

The times used for planning (Planning), cutting (Cutting), and felling (Felling) the trees had each correlation 
values of 0.38, 0.62, and 0.63 in Dim.1., and 0.52, 0.45, and 0.61 in Dim. 2, respectively. 

The highest correlation involving the cutting time was with the variable QNE%. On the other hand, the planning 
time showed a direct correlation with the variable QPE%.  

The species jatobá, muiracatiara, itaúba, maçaranduba, jutai mirim, jarana, fava timborana, angelim pedra, 
cedronara, quaruba, and cupiúba were more correlated with the first dimension (Dim.1), while the species 
mandioqueira rosa, cuiarana, garapeira, cumaru, sapucaya, and tauari did so with the second dimension (Dim.2) 
(Figure 7). 

In Dim. 1, the species jatoba was directly influenced by the commercial height. Contrary to this, the species 
muiracatiara was poorly influenced by the variables involved in the analysis. The closer a sample is to the origin 
of the principal component axes, the less influence it will have. The species maçaranduba, itaúba, jutaí mirim, 
jarana and fava timborana were more affected by the variable Db. 

The species cedrorana and quaruba were directly influenced by the dendrometric variables of G1. However, the 
variables Diameter and Volume were closer to the species angelim pedra. The species cupiúba was inversely 
proportional to the operational variables, suggesting probable complications involved in its felling. 

In Dim. 2, the species mandioqueira rosa and garapeira were directly influenced by QNP%. Despite being close 
to this variable, the species cuiarana was more influenced by the operational variable Planning time. The species 
cumaru was more affected by the basic wood density. Finally, tauari and sapucaia had the same pattern as 
cupiúba regarding the operational variables. 
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same direction. On the other hand, variables with opposite signs act inversely, meaning that as the first increases, 
the second decreases (Tobar-Tosse et al., 2015). 

For instance, the dendrometric variables DBH, stem, and branch volume were inversely correlated with the 
variables felling time and direction. The proximity of these variables with the number of trees damaged by 
directional felling (Damage) allows inferring a direct relationship between them. Therefore, the higher the values 
of diameter (DBH), basal area (Basal), and volume (Stem Vol. and Branch Vol.) of the tree species, the greater 
the damage caused by their felling. According to Rocha and Pereira (2015), the distribution of variables by 
principal components allows verifying relationships between variables through the angular distance between 
their vectors, defined as intercorrelation. 

The opposite representation between the variables damage and Db indicates the lack of a direct relationship 
between them. This result shows that the number of trees damaged by directional felling is not related to the 
wood density of the felled trees but their dendrometric characteristics. 

Within G1, the level of damage increased in the same direction as the dendrometric variables, indicating that the 
higher the diameter, basal area, and volume (stem and branches) of a tree, the greater the damage caused by its 
directional felling. Jackson et al. (2002) reported similar results in a survey concerning the damage caused by the 
logging activity in Bolivia. According to the authors, the diameter of the felled trees significantly correlated with 
the number of damaged trees. 

Higher values concerning the dendrometric variables imply a reduced difference between the natural lean and the 
intended felling direction since trees with larger dimensions usually have a smaller amplitude in the felling 
direction. Consequently, it is possible to infer that the larger the tree, the more its intended felling angle will tend 
to its natural lean. Tree dimensions constitute the main characteristic that influences tree felling (Câmpu & 
Ciubotaru, 2017). In Bolivia, Krueger (2004) observed that the error associated with tree felling direction 
increases with diameter classes. However, the latter cannot be completely confirmed since it occurs more 
frequently just in some species. While researching the factors affecting directional felling in a forest in Iran, 
Nikooy et al. (2013) verified that diameter and tree volume influence the error in directional felling given their 
high correlation. 

These authors also observed that the highest errors in directional felling occurred most clearly in two tree species 
with large stem dimensions (diameter and volume) and asymmetric crowns. These characteristics complicate 
evaluating the process of directional felling. In a study involving cutting angles used for directional felling in the 
Appalachian region of the United States, Koger (1983) observed that tree diameter significantly influenced the 
determination of these angles through regression equations. 

Trees with large dimensions tend to have lower QNP% values. Given the high cross-sectional areas, stem and 
branch volumes, and reasonable heights of these trees, they usually have less inclined stems and 
better-distributed branches. 

In a forest, dominant and canopy trees characterize by their large stem and branch dimensions in the crown and a 
robust growth without competition for light. On the other hand, asymmetric crowns respond to changes in the 
canopy level through gaps that open successively above and beside the crown, favoring a faster growth rate 
(Halle et al., 1978). Smaller trees tend to concentrate their branches on a particular side of the crown to optimize 
the use of the luminosity that comes from possible gaps in the forest canopy. Tree crown asymmetry is quite 
common in tropical forests (Young & Hubbell, 1991) and smaller trees. In contrast, emergent trees have crowns 
with more well-distributed branches (Turner, 2004).  

The size of the QNP% vector suggests a good representation of this situation in the principal components 
coordinate system. The correlation value between QNP% and the second principal axis indicates an inversely 
proportional correlation with the G1 and G2 variables. This is especially true for G1 since the distance between 
QNP% and G1 variables surpasses 90°. The angle between the vectors is a measure of the correlation between 
the groups. Accordingly, highly correlated variables tend to be together and in the same direction (Kent, 2012). 
Therefore, small angles between two variables indicate high positive correlations. On the other hand, angles 
close to 90° and 90°-180° define lack and negative correlations, respectively (Santos et al., 2019). 

The vectors of the variables QNE% and QPE% were proximate, indicating a higher correlation when compared 
to the variable QNP%. When it comes to the commercial height, its vector was shorter than those of G1 and G2 
variables. The commercial height measured up to the first bifurcation instead of the total height up to the crown 
possibly affected this correlation. Nevertheless, in general, trees with a diameter of 50 cm or more have reached 
their maximum altitude and, thus, stem height does not vary much among them (d’Oliveira & Braz, 1995). 
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The planning time is highly variable since it includes all the activities that precede the execution of the 
directional felling. However, in the present study, the highest variation corresponded to the felling time and the 
lowest to the planning time. Regarding the correlations, the planning time correlates more with the tree felling 
time than with the cutting time. The felling time considers all the operations until the tree falls to the ground, and 
therefore, the longer the planning time, the longer it takes to cut a tree. Analyzing the time of the tree felling 
activity plays a crucial role in identifying its limiting factors and technical and technological measures that lead 
to an increase in the productivity level (Câmpu & Ciubotar, 2017). 

The variable felling time (Felling), composed of the variables planning time and cutting time, was directly 
influenced by the G1 variables, which indicates that the higher the values regarding the variables diameter 
(DBH), basal area (Basal), and volume (Stem Vol.), the higher the cutting time. 

Previous research aimed at studying productivity costs of chainsaw logging has confirmed the influence of DBH 
on the cutting and total felling time. Some of these studies were conducted in forests of Arkansas (Lortz et al., 
1997), the Appalachian Mountain, USA (Wang et al., 2004), the Caspian Forests, Iran (Behjou, 2012; 
Jourgholami et al., 2013), and the state of Mato Grosso, Brazil (Acosta et al., 2018). However, comparing the 
time involved in directional felling operations is difficult given the differences in the execution methodologies 
(Câmpu & Ciubotaru, 2017). 

The vectors of the variables planning, cutting, and felling time increased in the same direction, proportionally to 
their participation in the directional felling activity. That is, the planning time was shorter than the cutting time. 

The shorter the cutting time of a tree, the more likely it is to fall towards its natural lean. On the other hand, a 
longer cutting time with a more careful execution may favor the tree to fall in the intended falling direction. In 
general, the longer the planning time, the greater the chance of the tree falling in the direction planned by the 
chainsaw operator. These results indicate the wisdom of applying appropriate techniques when felling trees since 
higher planning and cutting times imply increased chances of the tree falling in the desired direction. 

The species cedrorana (CedroRa), quaruba (Quaru), and angelim pedra (AngePedra) were more associated with 
Dim. 1 and, consequently, with the variables diameter (DBH), basal area, and volume (stem and branches). 
Specifically, angelim pedra correlated more with the variables volume (Stem Vol.) and diameter (DBH). The 
position of the variable number of trees damaged by the directional felling (Damage) indicates a direct 
relationship between this variable and the ones previously mentioned. These results confirm that felling these 
tree species, with higher values of diameter (DBH), basal area (Basal), and volume (Stem Vol. and Brach Vol.), 
affect more the nearby standing trees. The opposite position between the variables Damage and basic wood 
density (Db) indicates the absence of a direct relationship between them. The latter shows that the number of 
trees damaged by directional felling is not related to the wood density of the felled trees but rather to their 
dimensions. These results corroborate the findings of Nikooy et al. (2013), who reported that large-sized trees 
increase the error associated with directional felling and consequently imply higher damage values. 

The highest correlation values of commercial height corresponded to the species muiracatiara (Muira) and jatobá 
(Jato). Therefore, the commercial height of these trees influences their directional felling.  

The species mandioqueira rosa (ManRosa), cuiarana (Cuia), and garapeira (Garap) were more correlated with the 
Dim. 2, where the QNP% variable stood out. At the same time, these species correlated with the variable 
planning time, suggesting a possible correspondence between the intended fall direction and the tree natural lean. 

The species fava timborana (FavaTimb), cumaru (Cuma), jutai mirim (JutaiMi), and muiracatiara (Muira) 
correlated more with the Dim. 1. The latter is explained by the direct influence of the wood density on the 
directional felling process. Other species, such as itaúba (Itau), jarana (Jara), maçaranduba (MacaRan), and 
cupiúba (Cupiu), showed a similar pattern, although with less influence of the wood density variable (Db). In 
general, the results confirmed a marked effect of their wood density and smaller dimensions (diameter, volume, 
and basal area) for these species. 

In trees of the abovementioned species, the combination of higher wood density and smaller dimensions implies 
damaging less the nearby standing trees. In this case, achieving the intended felling direction might be less 
complicated. On the other hand, directing the fell of trees with larger diameters and lower wood densities may be 
more challenging given their increased susceptibility to the actions of possible external interferences. 

The species tauari (Taua) and sapucaia (Sapu) correlated more with Dim. 2, and along with the species 
muiracatiara (Muira), itaúba (Itau), and cupiúba (Cupiu) were less correlated with the planning, cutting, and 
felling times. The same occurred for the vectors of the variables QNE% and QPE%, indicating that these species 
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do not follow a defined pattern associated with the application of directional felling techniques. It is important to 
note that, except for itaúba, these species characterize by forming predominant buttress roots. 

5. Conclusion 
The Principal Components Analysis formed two groups of variables: the dendrometric and the operational 
variables. The dendrometric variables include diameter (DBH), basal area (Basal), stem (Stem Vol.), and branch 
volume (Branch Vol) and have high correlation values with the principal components. On the other hand, the 
operational variables include time (Planning, Cutting, and Felling) and the percentages of correspondence 
between the felling angles (QNP%, QPE%, QNE%). Regarding these angles, in more than 50% of the 
observations, the trees are felled towards their natural lean or proximate.  
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