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Abstract

The characterization of interstellar chemical inventories provides valuable insight into the chemical and physical
processes in astrophysical sources. The discovery of new interstellar molecules becomes increasingly difficult as
the number of viable species grows combinatorially, even when considering only the most thermodynamically
stable. In this work, we present a novel approach for understanding and modeling interstellar chemical inventories
by combining methodologies from cheminformatics and machine learning. Using multidimensional vector
representations of molecules obtained through unsupervised machine learning, we show that identification of
candidates for astrochemical study can be achieved through quantitative measures of chemical similarity in this
vector space, highlighting molecules that are most similar to those already known in the interstellar medium.
Furthermore, we show that simple, supervised learning regressors are capable of reproducing the abundances of
entire chemical inventories, and predict the abundance of not-yet-seen molecules. As a proof-of-concept, we have
developed and applied this discovery pipeline to the chemical inventory of a well-known dark molecular cloud, the
Taurus Molecular Cloud 1, one of the most chemically rich regions of space known to date. In this paper, we
discuss the implications and new insights machine learning explorations of chemical space can provide in
astrochemistry.

Unified Astronomy Thesaurus concepts: Astrochemistry (75); Chemical abundances (224); Interdisciplinary
astronomy (804)

1. Introduction

In the interstellar medium, molecules act as sensitive probes
of their local environment. Their relative abundances can be
used to infer myriad physical properties of the target system
ranging from the thermal history of the source (Lis et al. 2002)
to the kinematic structure of the gas (Pinte et al. 2018; Disk
Dynamics Collaboration et al. 2020), the passage of recent
hydrodynamic shock (Schilke et al. 1997), or the presence of
various radiation fields (Cleeves et al. 2017). The chemical
inventories—and abundances—are also deeply tied to the
environment itself, from carbon- and silicon-rich evolved stars
(Gong et al. 2015) to organic-rich star-forming cores (Belloche
et al. 2019) to the salty disks around massive stars (Ginsburg
et al. 2019). Thus, the utility of molecules as tracers of the
chemical and physical properties and evolutionary history of
astrophysical sources increases with the completeness of
chemical inventories in these regions: the more knowledge
we possess of the inventory, the more astrophysical informa-
tion we can derive.

Detecting new molecules in space and using these detections
to infer astrophysics has underpinned the foundation of
astrochemical research for over half a century, although the
pace of discovery truly exploded with the advent of molecular
radio astronomy in the 1960s (McGuire 2018). Growing
alongside laboratory and observational efforts to identify new
molecules in space, astrochemical models were developed to
attempt to reconstruct the network of chemical reactions
occurring in the environments that were being studied (see,
e.g., Wakelam et al. 2015 and Garrod et al. 2008). The analysis
and refinement of these models, from relatively simple

networks focusing on just a few molecules (Herbst &
Klemperer 1973; Guzmán et al. 2015) to very large holistic
approaches attempting to replicate the observed abundances in
a source (van Dishoeck & Black 1986; Garrod 2013), provide a
small window into the complex processes occurring toward a
diverse set of environments (Schilke et al. 1997). Often, these
models are descriptive rather than predictive: while they
replicate many of the abundance ratios seen in an observation
and provide substantial insight into the associated chemistry
and physics, they can also struggle to predict abundances of
other species that have not yet been observed (see, e.g.,
McGuire et al. 2015). For each newly detected molecule, we
must contemplate a host of related species and reaction
pathways necessary to describe its chemistry. To date, this
aspect of astrochemistry has solely depended on chemical
intuition: we draw on subjective expertise to determine what
may be important areas in which to dedicate computational,
laboratory, and observational efforts. As the complexity of
molecules grows beyond a few carbon atoms, however, the
number of possible isomers grows combinatorially and
inference based on human intuition becomes neither tractable
nor exhaustive.
Interestingly, fields such as drug and materials discovery

face a similar problem; open source tools in the cheminfor-
matics and machine-learning space have transformed how
novel molecules are discovered and/or designed (e.g., David
et al. 2020; Janet et al. 2020; Kulik 2020). By exploiting the
scalability of chemically descriptive computer representations
of molecules, we can systematically and exhaustively identify
attractive candidates for astrochemical study. In this work, we
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demonstrate the feasibility and accuracy of such an approach
on a well-characterized chemical inventory, the cyanopolyyne
peak of the Taurus Molecular Cloud 1 complex (TMC-1).
Combining unsupervised machine learning of chemical embed-
dings with “classical” supervised machine learning regressors,
we are not only able to successfully reproduce observed
molecular abundances, but recommend and predict the
abundances of thousands of chemically related molecules.
Perhaps most importantly, our approach does not require prior
knowledge of the physical/chemical conditions, contrasting
with conventional chemical modeling, which can rely on
parameters that are not always known and/or cannot be directly
determined.

In this paper, we provide a verbose discussion of the
workflow, theory, and implications of applying unsupervised
machine learning for astrochemical inference; given the
relatively niche intersection of cheminformatics, machine
learning, and astrophysics, this paper is written with particular
emphasis on the interpretation and reconciliation of machine
learning predictions with chemical intuition. We begin by
introducing machine representations of molecules, followed by
details on the overall workflow and descriptions of various
regressors. From there, we discuss and provide visualizations
of the learned vector representations, contextualizing them in
the broader scopes of chemical inventories and networks, and
finally discuss the use of these embeddings for recommenda-
tion and regression.

2. Computational Methods

2.1. Molecule Representation Learning

In order for quantitative comparisons to be made with
machine-learning methods, molecular features need to first be
encoded into vector representations. A common approach
is to hand pick features appropriate for the task at hand, for
example, the length of hydrocarbons or the number and types
of functional groups, and express properties using additivity
schemes (Benson & Buss 1958). While these approaches are
simple to implement, they are subject to the choice of features
and as certain features may only occur in certain groups of
molecules, hand-picked features are neither scalable nor
balanced in their approach to representations. Alternatively,
more systematic (e.g., Coulomb matrices Rupp et al. 2012) and
unsupervised approaches such as MOL2VEC (Jaeger et al. 2018)
provide means to generate molecule vectors without the
need to choose descriptors. For this work, we have chosen
the MOL2VEC approach as it does not require molecular
structures—instead, MOL2VEC repurposes the WORD2VEC
algorithm (Mikolov et al. 2013) developed for natural language
processing and operates on linear string representations of
molecules, specifically in the simplified molecular-input line-
entry system (SMILES) format (Weininger 1988; O’Boyle
2012) commonly enumerated in large data sets.

The MOL2VEC algorithm decomposes the representation task
into two aspects; unique atom environments defined by a radius
hyperparameter are hashed with the Morgan algorithm
(Morgan 1965) to form a dictionary/corpus of substructures,
which are subsequently used to train a multilayer perceptron—
a continuous bag of words architecture (Mikolov et al. 2013)—
to learn a context-aware, unsupervised mapping of substruc-
tures (words) to molecule (sentences) vectors. Thus, for every
canonical SMILES string that encodes every functional group

and connectivity in a molecule, MOL2VEC generates n-
dimensional vectors (in our case, 300 dimensions) as a sum
of substructure vectors, capturing every molecular feature. This
model description of chemistry has been successfully used for a
number of predictive tasks, for example, drug activity screen-
ing (Das et al. 2021), property prediction and rationalization
(Zheng et al. 2019), and chemical space exploration and
visualization (Shibayama et al. 2020).
By training the model on a diverse set of SMILES strings—

as with many unsupervised approaches—the resulting embed-
dings become more holistic in their description of chemical
properties. Developing a data set for astrochemical purposes,
however, requires striking a balance between descriptiveness
and utility: cheminformatics data sets typically comprise large,
biological molecules whereas those detected in the interstellar
medium are smaller and oftentimes transient and unstable.
Given that data set bias is currently a well-known problem in
word embeddings used for natural language applications
(Bolukbasi et al. 2016; Basta et al. 2019), we were mindful
not to bias toward terrestrial chemistry albeit only qualitatively
so. For this reason, we curated a comparatively small data set of
molecule SMILES balanced in its emphasis on molecules
relevant to interstellar chemistry (KIDA, NASA PAH data-
base), and small to medium-sized molecules from several
generalized data sets (QM9, ZINC, Pubchem, PCBA). For
some data sets, SMILES notations for the molecules are not
provided, for example, the NASA PAH database and KIDA;
the former provides Cartesian coordinates and the latter InCHI
notation. In both cases, OPENBABEL (O’Boyle et al. 2011) was
used to convert these formats into SMILES strings. The sources
of data are summarized in Table 1 and correspond to a total of
6,883,279 entries that are filtered for duplicates, resulting in
3,316,454 unique canonical SMILES strings that constitute the
training data for MOL2VEC and for molecule recommendations.
While we have not performed a systematic analysis into the
influence of each public data set on the resulting embeddings,
from Table 1, it is easy to conclude that the number and
diversity of molecules contained in astrochemical data sets like
KIDA and the NASA PAH database alone would not be
sufficient for an adequately descriptive embedding. We note
also that this data set comprises radicals and ions, however, we
have chosen not to include isotopologues although they can be
readily encoded in SMILES strings.

2.2. Model Pipeline

Figure 1 illustrates the computational flow: molecular
structures encoded as SMILES strings are passed to the trained

Table 1
Composition of the Data Set Used for This Work: Sources and Number of

Entries within Each Data Set

Source
Number of
Entries References

ZINC 3,862,980 Sterling & Irwin (2015)
PubChem A 2,444,441 Kim et al. (2021)
PCBA 437,929 Wang et al. (2012)
QM9 133,885 Ramakrishnan et al. (2014)
NASA PAHs 3139 Boersma et al. (2014), Bauschlicher et al.

(2018), Mattioda et al. (2020)
KIDA 578 Wakelam et al. (2015)
TMC-1 87 See Table A2
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MOL2VEC embedding model, generating 300-dimension feature
vectors. Subsequently, we carry out a dimensionality reduction
with principal components analysis (PCA) followed by
clustering with k means. Of the regression algorithms surveyed
here, Gaussian processes (GPs) are the most memory and
computationally intensive due to the factorization of large
matrices, which, for a naive implementation, scales with O(n3).
Reduction with PCA decreases the memory usage substantially
and k-means clustering attempts to include only molecules that
are of immediate relevance to those found in the astrophysical
source under investigation. For details on the PCA dimension-
ality reduction, see Appendix A. Prior to regression, we also
perform feature standardization by scaling the feature values by
their mean and variance, determined during training. In
conjunction with the regressor-specific regularization methods,
standardization attempts to preserve sparsity in the model
which in turn contributes toward mitigating overfitting and
improving accuracy. The code—including software environ-
ment specification—can be found at https://github.com/
laserkelvin/umda.

2.3. Model Specification and Selection

The final step of the pipeline shown in Figure 1 is to perform
supervised machine learning to predict column densities of
molecules detected in TMC-1. To establish a baseline for
performance, we tested a variety of commonly used machine-
learning algorithms, chosen for their simplicity, and some for
their well-documented performance and interpretability.
Table 2 organizes the methods used and in Appendix B we
provide a short overview of advantages and disadvantages of
each. Each method is classified into whether there are learnable
parameters or not; as we will discuss in subsequent sections,
this will motivate the choice of method to apply.

The primary goal of each regressor is to accurately reproduce
the observed column densities in TMC-1; for our purposes, this
corresponds to the column densities of 87 molecules spanning
from methylidyne CH to cyanonaphthalene (c-C10H7CN), with
model accuracy measured by the mean squared error of the
log10 column densities. To briefly summarize the data used for

this work: 3.3 million molecules constitute the data set for
training the embedding and PCA model; 455,461 molecules
form the subset which is considered astrochemically relevant to
TMC-1 through k-means clustering. For column density
prediction, the data comprises 87 molecules with observed
column densities toward TMC-1, bootstrapped (randomly
sampled with replacement) with Gaussian noise (σ= 0.5)
added to the log column densities to yield an effective data set
of 800 observations—see Appendix C for more details.
For all models except LR and BR, we perform hyperpara-

meter optimization using grid search combined with ten-fold
cross-validation, whereby the bootstrapped data set is split into
ten subsets of training and validation data and 20% of the
species (17 molecules per split) are not used to fit the regressor.
Table 2 summarizes the hyperparameters that are tuned as part
of the exhaustive grid search. All models used in this work are
implemented in SCIKIT-LEARN (Pedregosa et al. 2011). The
hyperparameter and test scores for each model are summarized
in Table A1. To assess the degree of overfitting, we perform
learning curve analyses, whereby the trained model perfor-
mance is evaluated as a function of data set size based on ten-
fold cross-validation; these details can be found in Appendix C.

3. Results and Discussion

3.1. Vector Representations of Chemistry

The first step in the proposed pipeline is the generation of
vector representations of molecules via unsupervised machine
learning using the MOL2VEC method, which in turn is adapted
from the WORD2VEC algorithm from the natural language
processing domain. In this section, we explore a few properties
of the learned embedding including the possible manipulations
and information compression.
To infer how chemical intuition is encoded in the MOL2VEC

vectors, Figure 2 shows how the similarity, or conversely
distance, changes over chemical space defined as a spectrum
between two extremes: small molecules like methyl cyanide
(CH3CN) and monolithic structures such as buckminsterfuller-
ene (C60). The two metrics, Euclidean distance and cosine

Figure 1. Proposed workflow for unsupervised training and prediction of molecular properties. Molecular structures can be encoded in a number of ways, ranging
from atomic Cartesian coordinates to internal coordinate (or Z-) matrices. Structures are standardized with canonical SMILES, ensuring uniqueness in the data set, and
transformed into molecule vectors using MOL2VEC. The dimensionality of the vectors is reduced via principal components analysis (PCA) and is used by various
models to predict target properties.

Table 2
Summary of Models Used in This Work, Their Types, and Respective Optimized Hyperparameters during Cross-validation

Model Abbreviation Category Hyperparameter Space

Linear regression LR P
Ridge regression RR P α

Bayesian ridge regression BR P
Support vector regression SVR P L2 and ε regularization, γ
k-nearest neighbors kNN NP Num. neighbors, distance metric
Random forest RFR NP Num. trees
Gradient boosting GBR NP Learning rate, num. estimators, subsample fraction, min. samples
Gaussian process GPR NP α, kernel
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similarity, provide slightly different insight into how the
vectors behave—the latter is scale invariant as it simply
measures the alignment of two vectors, while the former is not.
This is particularly important in differentiating between
molecules that are highly similar; for example, the margin
between CH3CN and methyl acetylene (CH3CCH), and glycine
(NH2CH2COOH). Intuitively, the two methyl chains should be
much more similar/closer in distance than CH3CN and
NH2CH2COOH in terms of molecule size and functionalization
(i.e., the former have methyl groups).

To better understand the learned representation as well as the
chemical inventory of TMC-1, we applied the Uniform
Manifold Approximation and Projection (UMAP) method
(McInnes et al. 2020) to visualize the embeddings of molecules
detected toward TMC-1. This approach attempts to learn an
approximation to the manifold of the embedding space, and
produces a mapping between the approximate manifold and a
lower dimensional representation in an unsupervised fashion.
For our purposes, the goal is to visualize the two-dimensional
chemical space comprised by molecules in TMC-1, while
preserving the topology of the PCA reduced 70-dimensional
vectors.

As shown in Figure 3, the UMAP method provides a unique
perspective on chemical inventories and validates some assertions
of what is contained in the embeddings. For example, chemically
similar molecules such as the cyanopolyynes and their methylated
variants are located in the same region (left side of Figure 3) and
trends within these families are also observable (i.e., chain
elongation). Near the center-right of Figure 3 we see clusters of
smaller species, which constitutes the other extreme of molecules
detected toward TMC-1, contrasting the large carbon chains. This
dichotomy illustrates how chemical inventory characterization to
date has largely followed a linear progression in chemical space—
from right to left, as shown by the dashed line. The recent
detections of large aromatic species such as indene (C9H8,
Burkhardt et al. 2021) and cyanonaphthalenes (C11H7N,

McGuire et al. 2021) intuitively correspond to a different type
of chemistry, and is indeed identified in the UMAP projection
as a cluster of molecules as somewhat orthogonal to the rest of
the detections, progressing from c-C3H2 through to C11H7N
toward the top.
Taking the inventory of TMC-1 into a broader context,

Figure 4 shows a UMAP projection of molecules detected in
TMC-1 and species contained in the KIDA network. The main
observations here are that by in large, the KIDA network
overlaps well with the inventory of TMC-1, corroborating the
current intuition of which species are important in the
description of chemistry in dark molecular clouds. Where the
KIDA points in chemical space are sparse, however, pertain to
the recently detected aromatic molecules, which are clustered
toward the center of Figure 4. This naturally indicates that, for
the proper description of aromatic chemistry, a network such as
KIDA would need to increase coverage of aromatic species, to
“fill in the gap” in the embedding space.

3.2. Targets for Astrochemical Study

One aspect in astrochemistry that is currently poorly defined
is the identification of potential molecules of interest for
laboratory, observational, and/or modeling efforts. Using the
chemical embeddings, likely targets for study can be readily
identified simply by proximity in the latent space: molecules
discovered in a given source or survey can be used as cluster
centers, and molecules from the full data set within an arbitrary
distance threshold can be proposed for study in a systematic
fashion. The basis for this is chemical similarity, in a way
similar to how isomers and conformers of detected species are
viable targets; we have simply vectorized this process.
Here, we provide recommendations for viable candidates of

targeted efforts by selecting 100 nearest neighbors for each of the
87 non-isotopologue species detected in TMC-1, and using
quantum chemistry to estimate their rotational constants and
dipole moments as to assist in their discovery. The list is filtered
for: (1) duplicates; (2) heavy elements outside of C, N, O, Si, P, S;
and (3) van der Waals complexes, leading to 1510 unique
molecules. From this list, Cartesian coordinates for each structure
were generated and optimized with the UFF force field Rappe
et al. (1992) implemented in OPENBABEL (O’Boyle et al. 2011).
The generated 3D structures are then refined at the ω B97X-D/6-
31+G(d) level of theory (Rassolov et al. 1998; Chai & Head-
Gordon 2008, chosen as a suitable compromise between
computational expense and accuracy, in addition to well-known
uncertainties and scaling factors (Lee & McCarthy 2020). For
open-shell species, an unrestricted reference was used; results for
these molecules should be taken conservatively—here we assume
that the performance of the electronic structure method and basis
provides the same systematic errors in the predicted structure as
for the closed-shell case. It is likely that these species will require
substantially more sophisticated treatments for desirable accuracy,
including estimation of their fine-structure properties. Geometry
optimization was performed using the GEOMETRIC package
(Wang & Song 2016) with gradients calculated using PSI4 (Parrish
et al. 2017). Out of the 1510 molecules, 148 were non-convergent
either at the self-consistent field or geometry optimization steps.
The full list of molecules can be found in the Zenodo repository

doi:10.5281/zenodo.5146276; for brevity, we highlight and
rationalize a few recommendations. Some general observations
of the candidates include:

Figure 2. Similarity of arbitrarily chosen molecules with respect to methyl
cyanide, given as a function of Euclidean distance (top) in log space and cosine
similarity (bottom).
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1. The majority of molecules are unsaturated, containing at
least one double or triple bond (1183 molecules, or 78%);

2. The vast majority of candidates are not pure hydro-
carbons, with an average of at least 1.3 heteroatoms (338
pure hydrocarbons, 12%);

3. Most contain nitrogen, particularly as a −C≡N group
(508 cyanides, 33%);

4. Relevant to aromatic/ring species, molecules with up to
three rings are recommended. A substantial number of
recommended species (436, 29%) contain at least one
ring. On a similarity basis, molecules with the same
number of rings are typically recommended, although
molecules with more or fewer rings are also identified in
the search.

These observations reflect the state of the data set and the
molecules currently detected in TMC-1: the majority of the
molecules detected are indeed highly unsaturated, most are
tagged with cyanides, and to date, only six aromatic species
have been detected. Given the fact that a nearest-neighbors
approach was used to identify potential candidates, it is not
surprising that the recommendations closely resemble those
already detected.

To understand how the recommended molecules using this
nearest-neighbors approach is complimentary to chemical
inventories and model networks like KIDA, Figure 5 provides
another UMAP learned visualization, trained on the TMC-1
detections, KIDA species, and recommendations. In the case of
the former, the group of molecules to the left corresponds to the
aromatic molecules detected in TMC-1, with a large number of
new recommendations contributing significantly toward three
subclusters comprising C9H8, C11H7N, and C5H5CN/C6H5CN,
respectively. For KIDA, we see that the recommended species
act to fill in large gaps in chemical space, particularly in the
regions concerning larger species—between HC3N and HC9N.
In both instances, the main observation is that the recom-
mended molecules add to regions in chemical space that were
previously sparse, particularly toward larger molecules.
Viewed in this way, there are substantially fewer recommenda-
tions for smaller molecules as the inventory is relatively
complete, compared to the number of isomers and conformers
possible for larger species.

3.3. Machine Learning of Chemical Inventories

From the prior sections, it is clear that our embedding
successfully captures aspects of chemical intuition. The aim

Figure 3. Visualization of the TMC-1 inventory, where the axes represent the UMAP learned two-component projection of the 70 dimensional vector molecule
representation. Colors represent arbitrary classification of molecules and were not used for UMAP training. The size of each scatter point corresponds to the molecular
column density. The dashed line corresponds to a linear fit to the projection as a visual guide.

Figure 4. UMAP projections conditioned on the combined TMC-1 and KIDA
molecule embeddings. Points with the shaded squares near the center of the
image correspond to the aromatic ring molecules detected in TMC-1. Several
molecules are annotated to represent the local region of chemical space.

Figure 5. UMAP projection of the combined TMC-1 inventory (blue), KIDA
network (peach), and the recommended molecules for study (green). Squares
denote aromatic molecules detected in TMC-1.
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now is to relate the chemical features with physical parameters
—the goal of chemical modeling—in a way that links
molecules to directly and non-directly observable aspects of
the interstellar medium. Here, we demonstrate the approach for
column densities.

Figure 6 compares the true observed column densities with
model predictions following model selection. We see that most
algorithms—with the exception of linear regression, which
drastically overfits without regularization—are able to repro-
duce the observed column densities remarkably well. In the
case of linear regression, the coefficients become unrealistically
large and severely underfits three molecules (vinyl cyanide,
thioformaldhyde, and butatrienylidene) by several thousand
orders of magnitude (these are excluded from Figure 6),
highlighting a significant need for heavily regularized models
owing to the relatively small data sets and chemically simple
molecules relevant to astrochemistry.

The ridge regression models (frequentist and Bayesian)
provide the necessary regularization to linear models, while
performing qualitatively well and provide evidence that, at least
locally, the abundance is approximately linear in the chemical
space comprised by molecules detected in TMC-1 and that
there are no specific classes of molecules that demonstrate
peculiarities in their abundance. This observation is reinforced
by the fact that kNN performs extremely well even with only a
few neighbors (Table A1). Were the opposite true, there would
be systematic effects in the residuals, however, the errors in the
linear models appear normally distributed. As each molecule is
or can be represented in the same embedding basis—regardless
of whether they are ions, radicals, pure hydrocarbon or not—
the linear function should be able to readily interpolate between
molecules detected in TMC-1 and extrapolate to molecules not

yet seen as simple extensions of the vector space they
comprise. We note that in some sense, this is an intuitive
result given the observed trends for hydrocarbon chains such as
the cyanopolyynes and their methylated analogues, however,
here we generalize this trend beyond the one-dimensional slices
in chemical space (i.e., the length of carbon chains). A short
discussion regarding this aspect can be found in Appendix E.
From Figure 6, the bottom row comprises models with the

lowest bias, namely kNN, RFR, GBR, and GPR. The case of
kNN is particularly important as it demonstrates that column
densities can be expressed as smooth functions of local distance
and that learnable parameters are not necessary to describe this
behavior. For the ensemble methods RFR and GBR, we see
that both regressor types provide approximately the same
degree of excellent performance—both methods are able to
estimate feature importance, although in the current imple-
mentation we are unable to interpret the features directly as
they are learned with unsupervised methods. However, future
applications could correlate the embedding dimensions with
hand-picked features, which in turn could provide a means to
translate which aspects of molecules are most critical to the
chemistry of an environment.
The two probabilistic models, BR and GPR, warrant some

extra discussion. In particular, BR provides a highly attractive
approach to modeling chemical inventories as it provides an
extremely simple and regularized method to not only obtain
abundances but also uncertainties. For the vast majority of
molecules, we are able to accurately reproduce the observed
abundances within an order of magnitude, and certainly within
2σ uncertainty. In the case of GPR, we substantially increase
the modeling flexibility as well as having a significantly more
interpretable prediction uncertainty: two outlier points are

Figure 6. Observed column densities plotted against the corresponding model predictions. The size of each point is proportional to the molecular weight, as an
approximate measure for molecular complexity. Three molecules that are underfit by several thousand orders of magnitude by the LR model are excluded from the plot
and from the metric calculation (see text). For probablistic models, 1σ uncertainty is given as error bars.
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ascribed much larger uncertainties than others, one of which is
consistently overpredicted by each regressor (NCCNH+). This
provides a reason to revisit the column density estimate by
Agúndez et al. (2015) as to investigate whether there are
anomalies in the chemistry or in the embeddings.

Having established the data set performance of each
machine-learning method, we can now use them for extrapola-
tion, predicting column densities for unseen molecules. For the
sake of brevity, we utilized the trained GPR model to predict
column densities of the 1510 recommended molecules from
Section 3.2. Figure 7 illustrates the result in three dimensions:
the horizontal plane represents the UMAP learned 2D
projection of the chemical space spanned by the TMC-1 data
set and the recommended molecules and the vertical axis is the
GPR predicted column density. In the left cluster of points,
which contain the majority of detected molecules, we see that a
significant number of recommended species are predicted to
have column densities (1010–12 cm−2) comparable to those
already detected—laboratory and computational efforts would
likely enable their detection or at least derivations of upper
limits that can be used to refine machine-learning and chemical
models.

3.4. Comparisons with Chemical Models

In the preceding sections, we have evaluated the performance
of various machine-learning methods for predicting molecular
column densities. A natural comparison to be made is with state-
of-the-art kinetic chemical models of TMC-1, which have been
the main method of choice for predicting abundances of
molecules a priori. Here, we utilize the three-phase chemical
model NAUTILUS (Ruaud et al. 2016) with the latest chemical
network, elemental abundances, and physical conditions used to
describe the formation of aromatics by Burkhardt et al. (2021).
Figure 8 compares the predicted/observed ratios for five chosen
molecules as samples across molecular complexity. Ridge
regression is chosen as the baseline algorithm for comparison
and we see that it reproduces the abundance of each molecule
within an order of magnitude of the observations. For chemical
models the molecular abundance is time-dependent and for the
purposes of discussion we have chosen the time slice where the

cyanopolyynes have their peak abundances. Under these condi-
tions, the relatively simple species H2CO, H2CS, and HC11N can
be seen to agree with the observed abundances to within one to
two orders of magnitude. For the aromatic rings, representing
more complex species, the chemical model significantly under-
predicts their abundance; for cyanonaphthalene, this discrepancy
is nearly six orders of magnitude, as originally discussed in
McGuire et al. (2021).
Beyond abundances, however, the current machine-learning

approach shares little to no similarities with chemical modeling.
While Figure 8 shows quite definitively that ridge regression is able
to reproduce observed abundances accurately, chemical models are
an avenue for inferring physical information about an astrophysical
source by reproducing abundances, albeit a complex and difficult
process (Herbst & Klemperer 1973; van Dishoeck & Black 1986;
Agúndez & Wakelam 2013). With each new interstellar molecule
detection, the chemical network must be updated with new species
hypothesized to be important in its formation and destruction, along
with reaction rates measured, or more commonly, approximated
(Wakelam et al. 2010). In contrast, the allure of the machine-
learning approaches is the ease of extension: new molecules can be
added simply using SMILES strings, and as we have demonstrated
in this work, can readily scale up from hundreds to millions of
molecules. As we have alluded to in the previous section, a natural
extension of this work is to connect physical parameter inference
from chemical models with the generalizability of machine-learning
models: the latter informs the former by providing abundances and
constraints on unobserved species as well as providing recom-
mendations for new molecules to add to chemical networks.
Imputation through machine learning thereby results in a self-
consistent and systematic approach to the astrochemical inference
—we intend to explore and expand upon these ideas in
forthcoming work.

3.5. Generalizations beyond TMC-1

The approach we have detailed here essentially comprises
two distinct machine-learning parts: an unsupervised molecule
embedding learning and compression task, followed by
supervised training of regressors on molecular inventories.

Figure 7. Scatter plot of the UMAP space for the 1510 recommended
molecules (blue circles) and molecules detected toward TMC-1 (red crosses),
and the corresponding GP predictions of column density. Locations of aromatic
molecules are annotated.

Figure 8. Comparison of molecular abundances predicted by the ridge
regression model (blue) and the current state-of-the-art chemical model,
NAUTILUS (Ruaud et al. 2016), for TMC-1 (red), given as the magnitude for the
predicted and observed ratio.
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The former creates general purpose vectors in a latent chemical
space, and is not limited to the study of chemical inventories or
regression—indeed, MOL2VEC vectors have been used for a
range of machine-learning tasks such as drug activity
prediction. For the latter, chemical inventory regressors can
be applied in two ways. First, the pre-trained TMC-1 model can
be used to quantitatively assess chemical differences between
sources (particularly dark molecular clouds) as a form of
“chemical baseline.” For example, the TMC-1 regressors can
be used to identify systematic offsets (bias) and specific
deviations (variance) in chemical abundances without re-
training, which could be used to infer dynamics/kinematics
unique to a given source, for example core collapse (e.g.,
L1521E Hirota et al. 2002) and protostar/warm carbon chain
chemistry (e.g., L1527 Sakai et al. 2007).

The second application we foresee with machine-learning
regressors pertains to other well-characterized chemical
inventories outside of TMC-1. Molecule-rich, prototypical
sources such as VY Canis Majoris and IRC+10216 make
excellent candidates for quantitative inventory analysis, albeit
with significantly more complicated dynamics such as shock
chemistry and photoinduced processes. For these applications,
the simpler regressors reported here are unlikely to model
considerations such as radial and angular extent or time-
dependence; rather, more sophisticated parametric models such
as neural networks will be required.

4. Conclusions

In this work, we have demonstrated the viability for simple
machine-learning models to learn and predict entire chemical
inventories. Combining the MOL2VEC model embeddings with
algorithms as simple as linear regression, we are able to
reproduce the column densities of 87 molecules detected
toward TMC-1 to well within an order of magnitude without
the need for prior knowledge pertaining to the physical
conditions of the source. With this, we show that the molecule
embeddings can be used to identify new likely candidates for
interstellar detection and study, based on quantitative measures
of chemical similarity between molecule vectors as in a nearest-
neighbors approach, and using the machine-learning models to
predict their expected column densities as one way to assess
detectability. The attractiveness of our approach is the ability to
systematically infer the presence of astrophysically important
molecules that are not directly observable, for example, those
without a rotational spectrum, or where conditions are
unfavorable (e.g., partition functions), and to provide a baseline
for determining the role of dynamical effects, such as grain-
surface chemistry. In this way, predictions from machine-
learning models can be used to impute chemical networks used
in conventional chemical modeling, from which we can
confidently and comprehensively derive astrophysical insight.
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Appendix A
Dimensionality Reduction

The PCA model is trained on the full 3.3 million molecules
to identify an adequate number of dimensions required to
explain variation in chemical space, while providing computa-
tional benefits. Ultimately, we chose to use 70 principal
components, corresponding to a 0.96 explained variance ratio
(Figure A1), or just over 2σ of variation accounted for by the
components.

Figure A1. Cumulative explained variance ratio as a function of the number of
components in the incremental PCA. The dashed lines represent the number of
components that approximately correspond with 2σ, 2.5σ, and 3σ variation.
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Appendix B
Supervised Machine Learning Regressors

The simplest parametric and non-parametric models con-
sidered in this work are linear regression and k-nearest
neighbors (kNN), respectively, which represent the two types
of model abstraction. The former makes the assumption that the
column density varies linearly on a global scale in chemical
space, while the latter expresses the column density as a
distance weighted function. Thus, LR parameterizes a function
that dictates the abundance of molecules decreases linearly
from small to large molecules (i.e., chemical complexity),
whereas for kNN the focus is local chemical similarity.

As we have seen in the results, however, linear regression
results in significant overfitting, whereby the linear coefficients
become extremely large in order to fit the majority of the data
set. To alleviate this, ridge regression includes an L2 coefficient
norm penalty to the loss function, which encourages the linear
coefficients to be small. A variation of this is a probabilistic
treatment of the model coefficients, defined in Bayesian ridge
regression, where predictions are linear coefficients sampled
from gamma distributions whose parameters are determined by
maximizing the log-marginal likelihood during fitting.

The remaining models are more sophisticated in their use of
embedding space. First, ε-support vector regression (SVR;
Drucker et al. 1996; Platt 1999) builds on top of linear
regression by applying an ε regularization term and a kernel
transformation to the features prior to regression: in doing so,
the model is capable of capturing nonlinearity in the
embeddings while maintaining a simple linear mapping onto
the column densities. For this work, we consider a radial basis
function kernel with width γ. The ensemble learning methods
we employ include random forest (RFR; Liaw & Wiener 2002)
and gradient boosting (GBR; Friedman 2002); these often
substantially improve upon linear models in both bias
(boosting) and variance (forests) performance by aggregating
the results of multiple weak models that collectively form an
ensemble. The former comprises submodels that are based on
randomly selected features with replacement, with the result
given as an error-weighted average of all submodel predictions.
The latter sequentially trains predictors with weighted data,
where the weights are given by the gradient of the error from
the prior predictor; a large number of estimators thus tend to
yield results with very low bias, and as an ensemble, low
variance.

The last method we consider are GPs, which treat functions
of molecular properties as a stochastic process collectively
defined by mean and covariance/kernel functions which—
similar to kNN—expresses the column density as a function of
distance in the embedding space. Among the regression models
considered here, GPs are unique in their probabilistic nature
and in being the most flexible, given the ability to design kernel
functions that optimally suit the embedding space. Given,
however, that the embeddings are not directly interpretable, we
provide here only a simple mixture kernel comprising three
subkernels: the sum of rational quadratic, dot product, and
white noise kernels. This covariance function was formulated

assuming two components: the rational quadratic kernel
describes short ranged, smoothly variability in the latent space,
while the dot product kernel explicitly models pairwise, linear
contributions between molecules. The former dominates for
molecules that are chemically very similar (e.g., HC5N and
HC7N) and the latter contributes for molecules that are at
different scales of chemical complexity or size but share
common features such as functional groups (e.g., HC5N and
benzonitrile C6H5CN). Finally, the white noise kernel provides
modeling flexibility in describing uncertainty/noise in the
observed column densities.
For each of the models, we perform hyperparameter tuning

using grid search with cross-validation; the optimal hyperpara-
meters are shown in Table A1.

Appendix C
Data Set Bootstrapping

One aspect that became apparent over the course of this
work was the susceptibility of supervised regressors overfitting
the TMC-1 observations. Given that the PCA vectors constitute
70 dimensions, and that the true data set only constitutes 87
observations, even linear models can be considered as over-
parameterized. To alleviate this, we used the bootstrap method
to effectively generate “new data,” whereby the original data
set is resampled and Gaussian noise (σ= 0.5) is added to the
log column densities, yielding an effective data set of 800
points. As seen in Figure A2, more training examples improve
the performance of each model, as measured by the mean
squared error with respect to the observed TMC-1 column
densities.

Table A1
Tuned Hyperparameters Based on Grid Search with Ten-fold Cross-validation

Method Hyperparameter Value Validation MSEa

LR 2 × 1021
RR αb 1. 0.54
BR αb 1.7 0.51
SVR C 100 0.48

ε 10−1 0.58
kNN Distance cosine 0.22

N 30
RFR N 50 0.53
GBR Learning rate 0.01 0.48

Samples per leaf 0.3
Samples per split 0.1
Number of estimators 100
Subsampling fraction 0.8

GPR αc 3 × 10−5 0.28

Notes. For all other omitted hyperparameter values, the default values in
SCIKIT-LEARN were used.
a Mean squared error based on the non-bootstrapped observations.
b L2 penalty term.
c Noise added to the diagonal of the kernel matrix for numerical stability.
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Appendix D
Comparison of Hand-picked Descriptors and Unsupervised

Embeddings

In this work, we utilize molecule embeddings that are learned
via unsupervised machine learning. While the main allure of this
approach is a scalable method for featurization, it is important to
compare with hand-picked features of molecules for supervised
regression. To make this comparison, we arbitrarily chose 15
molecule descriptors to constitute the feature vectors to perform
regression as was done with the MOL2VEC vectors. The
descriptors we chose are implemented in RDKit (Landrum 2020),
which include: number of atoms, number of bonds, molecular
weight, average bond order, number of aromatic rings, number of
valence electrons, FpDensityMorgan(1, 2, 3), and the number of
atoms for carbon, oxygen, nitrogen, sulfur, and phosphorus. The
descriptors should comprise what is necessary to describe the
various radicals, charge states, and molecule complexity asso-
ciated with molecules in TMC-1. Unlike the “production”
workflow, we did not perform feature normalization and ridge
regression was used to make the comparison; both choices were
intended to establish a baseline in the expected performance, and
ridge regression was chosen given to its relative model simplicity
and its L2 regularization term to prevent overfitting.

Figure A3 compares the training and test errors for ridge
regressors using hand-picked and MOL2VEC vectors, based on a
0.8/0.2 train/test split of the bootstrapped data set. We see that for
very small values of α—corresponding to minute regularization—
the MOL2VEC vectors tends to overfit and yield a large error with
respect to the true column densities. In the range of α = 1–30, the
MOL2VEC model yields better performance than the hand-picked
alternative and at larger values of α both models begin to be over-
regularized. The regression performance for hand-picked features

stays relatively constant for the range of α values used in
comparison to the results seen for the MOL2VEC features, which
shows a large degree of variability.
As an alternative visualization of model performance,

Figure A4 (top row) shows the prediction errors and
corresponding R2 values (measured with respect to the true
column densities) based on both featurization methods when fit
to the full bootstrapped data set, with α= 5. The motivation
here is to test the performance of features, given the same
nominal modeling flexibility and to mitigate variance across
cross-validation sets. We see that the hand-picked features
display a significant degree of bias (i.e., in the predictions
owing to the fact that many molecules are not adequately
described). In contrast, the MOL2VEC has significantly less bias

Figure A2. Learning curve analysis using the bootstrapped data set for each supervised regressor. The abscissa corresponds to the number of training examples, while
the ordinate represents the mean squared error based on the non-bootstrapped, true column density values. The shaded regions represent 1σ variation in the error,
estimated with ten-fold cross-validation.

Figure A3. Performance of ridge regressors using hand-picked (red) and
MOL2VEC (blue) vectors as a function of regularization term α. The dashed line
represents the value of α used in Figure A4. Increasing regularization strength
goes from left to right. The shaded region corresponds to 1σ based on twenty-
fold cross-validation.
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and variance, seen both in the scatter as well as the mean
squared error and R2 metrics.

Finally, Figure A5 shows the performance of a ridge
regression model with an amount of regularization (α= 5)

where both models perform well as a function of the number of
PCA feature dimensions in the MOL2VEC embeddings,
compared to hand-picked features as an effective baseline.
We see that for a comparable number of dimensions to the
hand-picked features (∼15–20 dimensions), the MOL2VEC
features actually result in poorer performance: this is not
surprising as the PCA model was trained on the full 3.3 million
molecules, which substantially biases the components toward a
general description of chemistry not necessarily relevant to that
of TMC-1; in particular, highly reactive species do not
constitute a significant part of typical public databases. For
specific tasks, such as comparisons between dark molecular
clouds, one could perform the PCA on the TMC-1 data set
specifically to obtain the transformations that best describe
dark-cloud chemistry, which would likely then decrease the
number of dimensions required for better model performance.
Nonetheless, this result makes the distinction that for a small
number of dimensions, features chosen by human intuition can
potentially provide better performance than embeddings
obtained via unsupervised learning.

Appendix E
Abundance and Molecular Complexity

To more quantitatively assess model performance as a
function of molecular complexity, we can perform linear
interpolation between two arbitrary molecules as one-dimen-
sional slices in chemical space and look for systematic errors in
the predicted column densities. Figure A6 interpolates between
formaldehyde (H2CO) and 2-cyanonaphthalene (c-C10H7CN)
and identifies the nearest detected molecule to each interpolated
point, with the distance from H2CO providing a naive, relative
representation of chemical complexity—the larger the distance,
the more “complex” the molecule is. From a modeling
perspective, it is important to highlight that there is no
individual metric that best describes complexity in a way that
reflects the common intuition that abundance is anticorrelated
with molecular complexity. Figure A6 highlights this well, as
the number of atoms—which is partially encoded in the
distance and a common metric used in astrochemistry—barely
correlates with column density. However, we see that all
methods are able to predict the abundance of molecules within
this small subset to well within an order of magnitude, and in
particular, the linear models show that the abundance can be
expressed as linear functions of 70 PCA dimensions, even if the
mapping between individual descriptors and the abundance
is not.

Figure A5. Performance of ridge regression models (α = 10−5) using the
MOL2VEC embeddings as a function of the number of PCA dimensions used for
regression. The red horizontal lines correspond to train (dashed) and test
(dotted) errors when using hand-picked features with the same ridge regression
model.

Figure A4. Comparison of R2 plots (top row) and learning curves (bottom row)
between hand-picked features (left column) and MOL2VEC embeddings (right
column). Shaded regions in the learning curves represent the ±1σ in model
performance, as estimated with twenty-fold cross-validation.
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Appendix F
Molecule Data Set

Table A2 summarizes the molecules detected toward TMC-1
and their respective references, totaling 87 unique species.

Based on our current knowledge of the chemical inventory of
TMC-1, the size and complexity of this structure—and on
grounds of chemical similarity with the remaining seven—
would intuitively lead to a vanishingly small “true” column
density.

Figure A6. Predicted column densities for select molecules (ordinate) vs. Euclidean distance from H2CO (abscissa). The black lines represent observed column
densities.
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Table A2
Regression Data Set Comprising Molecules Detected toward TMC-1

Formula SMILES Column Density References
(log10 cm

−2)

CH3C6H CC#CC#CC#C 12.4914 Remijan et al. (2006)
CH3C4H CC#CC#C 13.4771 MacLeod et al. (1984)
CH3C5N CC#CC#CC#N 11.9243 Remijan et al. (2006)
CH3C3N CC#CC#N 12.2553 Remijan et al. (2006)
N2H

+ N#[NH+] 12.6990 Choi et al. (2017)
NH3 N 14.6998 Gratier et al. (2016)
CH3OH CO 13.1614 Gratier et al. (2016)
C3H C1 = C=[C]1 13.4800 Gratier et al. (2016)
C3H [CH+]=C=[C-] 12.7497 Gratier et al. (2016)
C3H2 C1 = C=C1 11.7701 Gratier et al. (2016)
C3H2 C1C#C1 13.2695 Gratier et al. (2016)
C3H2 C = C=[C] 12.3979 Cernicharo et al. (1991)
CH3CCH CC#C 14.0607 Gratier et al. (2016)
C2O [C+]#C[O-] 12.5705 Gratier et al. (2016)
CH2CN [CH2]C#N 13.5798 Gratier et al. (2016)
CH3CN CC#N 12.6096 Gratier et al. (2016)
HNCO N = C = O 13.0294 Gratier et al. (2016)
CS [C-]#[S+] 13.4594 Gratier et al. (2016)
CH3CHO CC=O 12.4298 Gratier et al. (2016)
HCS+ C#[S+] 12.7597 Gratier et al. (2016)
H2CS C = S 13.6201 Gratier et al. (2016)
SO S = O 13.6702 Gratier et al. (2016)
C4H [C]#CC#C 13.4298 Gratier et al. (2016)
C4H2 C = C = C=[C] 13.3365 Gratier et al. (2016)
C3N [C]#CC#N 13.5502 Gratier et al. (2016)
HNC3 [C-]#C-C#[NH+] 11.6803 Gratier et al. (2016)
C3O [C]#C[C]=O 11.9201 Gratier et al. (2016)
HC3NH

+ C#CC#[NH+] 11.8698 Gratier et al. (2016)
CH2CHCN C=CC#N 12.8102 Gratier et al. (2016)
HCCCHO C#CC=O 11.2601 Gratier et al. (2016)
C2S [C+]#C[S-] 14.0086 Gratier et al. (2016)
OCS O = C = S 13.2601 Gratier et al. (2016)
C5H [CH+]=C = C = C=[C-] 12.2695 Gratier et al. (2016)
C3S [C-]#CC#[S+] 13.1399 Gratier et al. (2016)
C6H [C]#CC#CC#C 12.7404 Gratier et al. (2016)
HC3N C#CC#N 14.2430 Xue et al. (2020)
HCCNC C#C[N+]#[C-] 12.5821 Xue et al. (2020)
HC5N C#CC#CC#N 13.8254 Xue et al. (2020)
HC4NC C#CC#C[N+]#[C-] 11.5172 Xue et al. (2020)
HC7N C#CC#CC#CC#N 13.5623 Xue et al. (2020)
HC6NC C#CC#CC#C[N+]#[C-] 11.6064 Xue et al. (2020)
HC9N C#CC#CC#CC#CC#N 13.3345 Loomis et al. (2021)
HC11N C#CC#CC#CC#CC#CC#N 12.0170 Loomis et al. (2021)
C5H5CN C1C=CC=C1C#N 11.9191 Lee et al. (2021b)
C5H5CN C1C=CC(=C1)C#N 11.2788 Lee et al. (2021b)
C11H7N C1=CC=C2C(=C1)C=CC=C2C#N 11.8663 McGuire et al. (2021)
C11H7N C1=CC=C2C=C(C=CC2=C1)C#N 11.8482 McGuire et al. (2021)
C6H5CN C1=CC=C(C=C1)C#N 12.2380 McGuire et al. (2021)
HCCCH2CN C#CCC#N 11.9643 McGuire et al. (2020)
H3C5N C#C/C = C/C#N 11.3874 Lee et al. (2021a)
H3C5N C=CC#CC#N 11.0719 Lee et al. (2021a)
H3C5N C#C/C=C\C#N 11.3032 Lee et al. (2021a)
C8H [C]#CC#CC#CC#C 11.6628 Brünken et al. (2007)
C8H- C#CC#CC#CC#[C-] 10.3222 Brünken et al. (2007)
C6H- C#CC#CC#[C-] 11.0792 Brünken et al. (2007)
C4H- C#CC#[C-] 10.9294 Brünken et al. (2007)
H2CCO C=C=O 12.7118 Soma et al. (2018)
CN [C]#N 12.8899 Pratap et al. (1997)
HNC [C-]#[NH+] 12.6201 Pratap et al. (1997)
HC7O C#CC#CC#C[C+]=O 11.8921 Cordiner et al. (2017)
HC5O C#CC#C[C+]=O 12.2304 McGuire et al. (2017)
H2CN C=[N] 11.1761 Ohishi et al. (1994)
H2CO C=O 13.0792 Soma et al. (2018)
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Table A2
(Continued)

Formula SMILES Column Density References
(log10 cm

−2)

HC3O
+ C#CC#[O+] 11.3222 Cernicharo et al. (2020)

HOCO+ O=C=[OH+] 11.6021 Cernicharo et al. (2020)
H2COH

+ C=[OH+] 11.4771 Cernicharo et al. (2020)
H2NCO

+ NC#[O+] 10.6021 Cernicharo et al. (2020)
HCNO C#N[O] 10.8451 Cernicharo et al. (2020)
HOCN OC#N 11.0414 Cernicharo et al. (2020)
C4O [C]#CC#[C]=O 11.0792 Cernicharo et al. (2020)
HCOOH C(=O)O 12.1461 Cernicharo et al. (2020)
HC2O C#[C]=O 12.0000 Cernicharo et al. (2020)
HC3O C#C[C]=O 11.3010 Cernicharo et al. (2020)
HC4O C#CC#[C]=O 11.4771 Cernicharo et al. (2020)
H2C3O C=C=C=O 11.0414 Cernicharo et al. (2020)
H2C3O C1=C(=O)=C1 11.6021 Cernicharo et al. (2020)
CH [CH] 14.1461 Sakai et al. (2013)
CNCN [C]#NC#N 11.9542 Agúndez et al. (2018)
NCCNH+ N#CC#[NH+] 10.9345 Agúndez et al. (2015)
C6H2 C=C=C=C=C=[C] 10.3284 Langer et al. (1997)
CH3CHCH2 CC=C 13.6021 Marcelino et al. (2007)
CH2C2HCN C=C=CC#N 11.6532 Lovas et al. (2006)
HCN C#N 12.3892 Hirota et al. (1998)
C9H8 c1ccc2c(c1)CC=C2 12.9823 Burkhardt et al. 2021
CH2CHCCH C=CC#C 13.0792 Cernicharo et al. (2021)
HCCN N#C[CH+] 11.6435 Cernicharo et al. (2021)
CH3CH2CN CCC#N 11.0414 Cernicharo et al. (2021)

Note. The references provided correspond to the source used for the column density, not initial detection.
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