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Abstract 
 

This work investigates the mixed convection radiative heat transfer of electrically conducting Casson 
fluids. The fluid flows past a permeable stretching sheet lying in the porous medium. The heat transfer 
involves variable thermal conductivity and convective boundary conditions. The formulation of the 
problem is primarily in the form of the non-linear partial differential equations. These governing 
equations are transformed to their ordinary differential form by employing similarity transformation. The 
resulting equations are then solved numerically by classical Rung-Kutta method. Computations have been 
made for some representative values of the pertinent parameters to elaborate the physical behavior of 
flow and thermal characteristics.    
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1 Introduction 
 
The study of magneto hydrodynamic (MHD) flow of non-Newtonian fluids in a porous medium has attracted 
many researchers due to its application in the optimization of solidification processes of metals, alloys, the 
geothermal sources investigation and nuclear fuel debris treatment. Magneto hydrodynamics concepts are 
utilized by the engineers in the design of heat exchangers, pumps, thermal protection, in space vehicle 
propulsion, control and re-entry, and in creating novel power-generating systems. The purification of molten 
metals from non-metallic inclusions through the application of magnetic field is another important feature of 
MHD. All such applications of MHD give rise to investigate the problems which involves the magneto 
hydrodynamic effects. The theoretical study of two dimensional non-Newtonian incompressible fluid flow 
over a surface with stretching or shrinking properties has taken the significant attention in the past few years 
due to its wide applications in engineering fields as well as in the industry. Some applications include the 
production of toothpaste, shampoo, custard solution, blood treatment, glass fiber production and design of 
the plastic films. The various non-Newtonian fluids are power-law fluids, micro polar fluids, viscoelastic 
fluids, Jeffrey fluid, Rivlin- Ericksen fluids, Casson fluids, Walter’s liquid B fluids etc. Although various 
types of non-Newtonian fluid models are proposed to explain the different behavior, one of the most 
important types of non-Newtonian fluids is Casson fluid. The Casson fluid is a plastic fluid, which yields 
shear stress in constitutive equations. Some of the examples of Casson fluid model are jelly, soup, honey, 
tomato sauce, concentrated fruit juices, drilling operations, food processing, metallurgy, paints, coal in 
water, synthetic lubricants, manufacturing of pharmaceutical products, synovial fluids, sewage sludge and 
many others. Human blood is also considered as Casson fluid because of the presence of several substances 
like protein, fibrinogen and globin in aqueous base plasma in the blood. Human red blood cells form a chain 
like structure, known as aggregates or rouleaux. Casson [1] introduced this model to predict the flow 
behaviour of pigment oil suspensions of the printing ink type.  Recently, Sulochana et al. [2] discussed the 
influence of non- linear thermal radiation on MHD 3-dimension Casson fluid flow with viscous dissipation. 
Nadeem et al. [3] examined the magnetohydrodynamic (MHD) boundary layer flow of a Casson fluid over 
an exponentially penetrable shrinking sheet. Raju et al. [4] studied the effects of heat and mass transfer on 
MHD Casson fluid flow past an exponentially permeable stretching sheet. Later on, several researchers 
studied Casson fluid pertaining to different flow situations. The unsteady boundary layer flow and heat 
transfer of a Casson fluid over a moving flat plate with a parallel free stream was studied by Mustafa et al. 
[5]. The exact solution for boundary layer flow of Casson fluid over a permeable stretching/shrinking sheet 
with and without external magnetic field was discussed by Bhattacharyya et al. [6-7]. The Casson fluid has 
an infinite viscosity at zero rate of shear and a yield stress below which no flow occurs and a zero velocity at 
an infinite shear rate [8-9]. Nadeem [10] has studied MHD flow of a Casson fluid over an 
exponentially/linearly shrinking sheet. Animasaun [11] has studied MHD dissipative Casson fluid flow with 
suction and nth order of chemical reaction.  Nadeem [12] has discussed on Casson fluid past a linearly 
stretching sheet with convective boundary condition. Akbar [13] has studied Metachronal beating of cilia 
under the influence of Casson fluid and magnetic field.  Akbar [14-15] has investigated the magnetic field 
effects on Eyring- Powell/Casson fluid flow toward a stretching sheet, asymmetric channel and Plumb Duct. 
Benazir et al. [16] have studied unsteady MHD Casson fluid flow over a vertical cone and flat plate with 
non-uniform heat source/sink.  
 
Hassan et al. [17] studied chemical diffusion and radiative heat transfer effects on magnetohydrodynamics 
stagnation point flow of Casson fluid over a porous shrinking sheet. Recently, Hassan et al. and Nadeem et 
al. [18-19] investigated the unsteady magnetic hydrodynamic (MHD) stagnation point flow of Casson fluids 
with radiation. Nadeem et al. [20] presented the Atangana and Baleanu (AB) fractional derivative idea for 
the first time to study the free convection flow of a generalized Casson fluid due to the combined 
gradients of temperature and concentration. Nadeem et al. [21] worked on the Atangana and Baleanu (AB) 
in their recent work and introduced a new version of fractional derivatives which uses the generalized 
Mittag-Leffler function as the non-singular and non-local kernel and accepts all properties of fractional 
derivatives. Farhad et al. [22] considered the effects of magnetohydrodynamics on the blood flow when 
blood is represented as a Casson fluid, along with magnetic particles in a horizontal cylinder.  



The flow through porous media has a bearing in the progress of several applications, such as chemical 
reactors, geology, combustion, drying and liquid com
through a porous wall with convective acceleration was 
flow of a viscous fluid through a saturated porous medium of finite thickness, impermeable and thermally 
insulated bottom and the other side being stress free, at a constant temperature was studied by Mounud
and Pattabhiramacharyulu [24]. Chamkha [25] investigated MHD free convection from a vertical plate 
embedded in a thermally stratified porous medium. MHD mixed convection from a vertical plate embedded 
in a porous medium with a convective boundary condi
Makinde and Mhone [27] considered the temporal stability analysis for hydromagnetic flow in a channel 
filled with a saturated porous medium.
viscous electrically conducting fluid and mass transfer over a vertical porous plate with constant heat flux 
embedded in a porous medium is investigated by Makinde [28].
 
Hayat et al. [29] studied the effects of variable thermal conductivity on the mixed convection flow over a 
porous stretching surface for Newtonian fluids, without radiation. We made a comprehensive mathematical 
and computational analysis of this problem to examine the flow of the Casso
and radiation. 
 

2 Mathematical Model 
 
Consider the mixed convective, steady, two
fluid over a porous stretching sheet located at 

field of uniform strength 0B  is applied perpendicular to the surface. The magnetic Reynolds number is 

taken to be small enough so that the induced magnetic field can be neglected in comparison to the applied 
magnetic field.   
 

 

 
The temperature of the fluid is T 
temperature are linearly proportional but other physical quantities are constant.
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s electrically conducting fluid and mass transfer over a vertical porous plate with constant heat flux 
embedded in a porous medium is investigated by Makinde [28]. 

effects of variable thermal conductivity on the mixed convection flow over a 
for Newtonian fluids, without radiation. We made a comprehensive mathematical 

and computational analysis of this problem to examine the flow of the Casson fluids through porous medium 

Consider the mixed convective, steady, two-dimensional, stagnation point flow of an incompressible Casson 
fluid over a porous stretching sheet located at y = 0. The flow being confined in the region y > 0. A magnetic 

is applied perpendicular to the surface. The magnetic Reynolds number is 

taken to be small enough so that the induced magnetic field can be neglected in comparison to the applied 

 

Fig. 1. Geometry of flow 
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flow through porous media has a bearing in the progress of several applications, such as chemical 
applications. Flow 

studied by Yamamoto and Yoshida [23]. The steady 
flow of a viscous fluid through a saturated porous medium of finite thickness, impermeable and thermally 
insulated bottom and the other side being stress free, at a constant temperature was studied by Mounuddin 
and Pattabhiramacharyulu [24]. Chamkha [25] investigated MHD free convection from a vertical plate 
embedded in a thermally stratified porous medium. MHD mixed convection from a vertical plate embedded 

tion was investigated by Makinde and Aziz [26]. 
Makinde and Mhone [27] considered the temporal stability analysis for hydromagnetic flow in a channel 

The hydromagnetic mixed convection flow of an incompressible 
s electrically conducting fluid and mass transfer over a vertical porous plate with constant heat flux 

effects of variable thermal conductivity on the mixed convection flow over a 
for Newtonian fluids, without radiation. We made a comprehensive mathematical 

n fluids through porous medium 

dimensional, stagnation point flow of an incompressible Casson 
> 0. A magnetic 

is applied perpendicular to the surface. The magnetic Reynolds number is 

taken to be small enough so that the induced magnetic field can be neglected in comparison to the applied 

are velocity components. The thermal conductivity and 
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Here, ijτ  is the stress tensor, ije stand for( , )thi j  component of the deformation rate, cπ denotes critical 

value, yp  is the yield stress of the fluid.Bµ  is plastic dynamic viscosity of the non-Newtonian fluid, and  

So, if a shear stress less than the yield stress is applied to the fluid, it behaves like a solid, whereas if a shear 
stress greater than yield stress is applied, it starts to move. 
 
Under the above assumptions, the governing equations of the conservation of mass, momentum, energy in 
the presence of magnetic field are 
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∂
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∂
∂

y

v

x

u
                                                                                                                              (2) 

 
22
0

2
1

1
1 ( )T

Bu u u
u v v g T T u u

x y y K

σ υβ
β ρ∞

 ∂ ∂ ∂+ = + + − − − ∂ ∂ ∂ 
                                        (3)           

                                 
2

2
( )p

qT T T
c u v k

x y y y
ρ ∂∂ ∂ ∂+ = −

∂ ∂ ∂ ∂
                                                                                             (4) 

 
The appropriate boundary conditions for the velocity components and temperature are given by  
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The continuity Eq. (2) is automatically satisfied.  
 

Where c is constant, and 
*
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Substituting the above appropriate relation, the Eq. (3) to (5) give the following non-linear ordinary 
differential equations. 
 

''' '' 2 '1
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coefficient is
*β , which measure the ratio of momentum diffusivity to the thermal diffusivity. The prime 

denotes the differentiation with respect to η . 

   

3 Results and Discussion 
 
The system of coupled equations (8) to (10) is highly non-linear and involves higher order derivatives. These 
equations are difficult to yield analytical solution. In order to obtain a numerical solution of the problem, the 
order of the derivatives of these equations is reduced to first order.  
 

We let,   
',p f=  ,''fq=  ,'θ=g     

 

2'q Mp p fq Kpλθ= + + − +               (11)    
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And the boundary conditions become: 

 

( )( )(0) 1, (0) 1 0

( ) 0, ( ) 0

p g

p

γ θ
θ

= = − −

∞ = ∞ =
                                                                                                 (13) 



 
 
 

Waqas et al.; BJMCS, 22(6): 1-14, 2017; Article no.BJMCS.33762 
 
 
 

6 
 
 

In order to examine the effects of influential parameters for the flow problem, the set of non-linear ordinary 
differential equations (11 to 13) is solved numerically by using appropriate codes on computational software 
Mathematica. The physical insight of the problem is revealed through graphs of velocity and temperature 
functions.  
 

The Figs. 2 and 3 respectively display the effect of suction injection parameter on velocity'f . It is noticed 

that velocity decreases in magnitude with increase in suction and opposite behavior is seen for injection. The 
effect of Prandtl number on velocity 'f  and temperature function ( )θ η is demonstrated respectively in the 
Figs. 4 and 5. The Prandtl number has decreasing effect on both of the physical quantities. The curves for the 
velocity 'f and temperature function ( )θ η as presented respectively in Figs. 6 and 7, to illustrate the 

impact of the magnetic field. It is seen that increase in the magnetic field parameter M causes decrease in 
flow velocity but an increase in the temperature distribution. 
 

Fig. 8 shows that the velocity 'f  is reduced in magnitude with increase in Casson parameter β . 

 

The curves in the Figs. 9 and 10 respectively indicate the effects of parameter λ on function 'f  and ( )θ η . 

It is noticed that velocity increases but temperature distribution decreases with increase in the value of λ
.The increase in the value of the porosity parameter K causes decrease in horizontal velocity'f as shown in 

Fig. 11. 
 

The Figs. 12 and 13 respectively demonstrate the influence of parameter ε  on horizontal velocity 'f  and 

temperature ( )θ η . The parameter ε  has small increasing effect on 'f  but it has significant increasing 

effect on ( )θ η . Figs. 14 and 15 respectively illustrate the impact of the suction and injection phenomena on 

temperature distribution. It is observed that ( )θ η decrease with increase in suction ( 0)s > but opposite 

result is seen for injection ( 0)s < . The influence of Biot number γ  on temperature function ( )θ η is 

displayed in Fig. 16. The temperature distribution increase in γ . 

 

 
 

Fig. 2. The plot for curves of f ′ under the suction parameter 0( )s s> when 

    0.5, 0.3, 1M λ γ= = = ,,,, 1β = , Κ=0.1, Κ=0.1, Κ=0.1, Κ=0.1    Pr=0.7=0.7=0.7=0.7 
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Fig. 3. The plot for curves of f ′ under the injection parameter 0( )s s<  when 

    0.5, 0.3, 1M λ γ= = = ,,,, 1β = , Κ=0.1, Κ=0.1, Κ=0.1, Κ=0.1    Pr=0.7=0.7=0.7=0.7 

 

 
 

Fig. 4. The plot for curves of f ′ under the effect of Prandtl number when 

    1, 0.5, 0.3, 1s M λ γ= = = = ,,,, 1β = , Κ=0.1, Κ=0.1, Κ=0.1, Κ=0.1 

 

 
 

Fig. 5. The plot for curves of θ under the effect of Prandtl number Pr when 
1, 0.5, 0.3, 1s M λ γ= = = = ,,,, 1β = , Κ=0.1, Κ=0.1, Κ=0.1, Κ=0.1 
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Fig. 6. The plot for curves of f ′ under the magnetic parameter M when 

    1, 0.3, 1s λ γ= = = ,,,, 1β = , Κ=0.1, Κ=0.1, Κ=0.1, Κ=0.1    Pr=0.7=0.7=0.7=0.7    
    

 
 

Fig. 7. The plot for curves of ( )θ η under the magnetic parameter M when 

    1, 0.3, 1s λ γ= = = ,,,, 1β = , Κ=0.1, Κ=0.1, Κ=0.1, Κ=0.1    Pr=0.7=0.7=0.7=0.7    
    

 
 

Fig. 8. The plot for curves of f ′ under the effect of Casson parameter β  when 

    1, 0.5, 0.3, 1s M λ γ= = = = , Κ=0.1,, Κ=0.1,, Κ=0.1,, Κ=0.1,    Pr=0.7=0.7=0.7=0.7 
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Fig. 9. The plot for curves of f ′ under the effect of parameter λ  when 

    1, 0.5, 1s M γ= = = ,,,, 1β = , Κ=0.1, Κ=0.1, Κ=0.1, Κ=0.1    Pr=0.7=0.7=0.7=0.7    
 

 
 

Fig. 10. The plot for curves of ( )θ η under the effect of parameter λ  when 

    1, 0.5, 1s M γ= = = ,,,, 1, 0.2β ε= = , Κ=0.1, Κ=0.1, Κ=0.1, Κ=0.1    Pr=0.7=0.7=0.7=0.7    
  

 
 

Fig. 11. The plot for curves of f ′ under the effect of porosity parameter K when 

    1, 0.3, 0.5, 1s Mλ γ= = = = ,,,, 1, 0.2β ε= = , Κ=0.1, Κ=0.1, Κ=0.1, Κ=0.1    Pr=0.7=0.7=0.7=0.7    
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Fig. 12. The plot for curves of f ′ under the parameter ε ( 0)ε >  when 

    1, 0.3, 0.5, 1s Mλ γ= = = = ,,,, 1,β = , Κ=0.1, Κ=0.1, Κ=0.1, Κ=0.1    Pr=0.7=0.7=0.7=0.7    
 

 
 

Fig. 13. The plot for curves of ( )θ η under the parameter ε  ( 0)ε < when 

    1, 0.3, 0.5, 1s Mλ γ= = = = ,,,, 1,β = , Κ=0.1, Κ=0.1, Κ=0.1, Κ=0.1    Pr=0.7=0.7=0.7=0.7    
 

 
 

Fig. 14. The plot for curves of ( )θ η under the effect of suction parameter s  ( 0)s > when 

    0.3, 0.5, 1Mλ γ= = = ,,,, 1, 0.2β ε= = , Κ=0.1, Κ=0.1, Κ=0.1, Κ=0.1    Pr=0.7=0.7=0.7=0.7    
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Fig. 15. The plot for curves of ( )θ η under the effect of injection parameter s ( 0)s < when 

    0.3, 0.5, 1Mλ γ= = = ,,,, 1, 0.2β ε= = , Κ=0.1, Κ=0.1, Κ=0.1, Κ=0.1    Pr=0.7=0.7=0.7=0.7    
  

 
 

Fig. 16. The plot for curves of ( )θ η under the effect of Biot parameter γ   when 

    1, 0.3, 0.5s Mλ= = = ,,,, 1, 0.2β ε= = , Κ=0.1, Κ=0.1, Κ=0.1, Κ=0.1    Pr=0.7=0.7=0.7=0.7    
 
4 Conclusion 
    
The main findings of this work are summarized as follows: 
 

• The horizontal velocity 'f  decreases in magnitude with increase in suction and opposite behavior 
is seen for injection.  

• The Prandtl number has decreasing effect on velocity 'f  and temperature function. 

• The magnetic field parameter M causes decrease in flow velocity but an increase in the temperature 
distribution. 

• The velocity 'f  reduces in magnitude with increase in Casson parameter β . 

• The velocity increases but temperature distribution decreases with increase in the value of λ . 
• The increase in the value of the porosity parameter K causes decrease in horizontal velocity'f . 

• The parameter ε  has small increasing effect on 'f  but it has significant increasing effect on 

( )θ η . 
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• It is observed that ( )θ η decrease with increase in suction ( 0)s > but opposite result is seen for 

injection ( 0)s <  . 

•  The temperature distribution increase in γ . 
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