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Abstract

This paper deals with one of the most prominent problems in industrial prognostics, namely the
estimation of the Remaining Useful Life (RUL) of the most popular industrial battery, viz., the
lithium-ion battery. The paper presents a state-space model of the battery, and then estimates
the dynamic behavior of seven of its process variables and two of its sensor variables. The
estimation is achieved via two well known estimators, the Unscented Kalman Filter (UKF) and
the Particle Filter (PF) when noise of various levels and types is injected. Numerical and chart
comparisons of these two computing estimators are reported and discussed.
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1 Introduction

The lithium-ion battery is the most prominent kind of batteries in modern applications. Constant
improvement to the battery efficiency, lower cost of production and increased power density led to
spread and advancement of many systems such as electric cars, smart-phones, aircraft and satellites
communications. The aforementioned systems are an essential part of our contemporary lives.
Hence, it was necessary to develop means of predicting when the battery will cease operation and
stop working. Therefore, predicting the Remaining Useful Life (RUL) (also known as the Mean
Residual Life (MRL)) became a major concern to various industries that rely on batteries [1]. This
has motivated many scientists to develop an accurate model of the battery and its capabilities [2].
For years, industry kept a good record of these batteries capabilities [3] to predict the End-of-
Discharge (EOD) and End-of-Life (EOL) precisely [4, 5].

It is very crucial to accurately monitor the health of batteries, especially for battery-powered
vehicles, as they could cause a lot of damages if they go bad during operation [6, 7]. For example,
the Boeing Dreamliner (B787) aircraft Auxiliary Power Unit (APU) caught a fire causing the whole
fleet to be grounded [8]. A thermal runaway condition was not detected by the battery monitoring
system. In 2006, the National Aeronautics and Space Administration (NASA) has lost significant
amount of its Mars Global Surveyor capacity due to battery overheating. Both the Mars Viking
II Lander as well as the Air Force Research Laboratory (AFRL) Advanced Research and Global
Observation Satellite (ARGOS) had their batteries failed, which led to the termination of the
mission of each satellite.

The aforementioned anomalies could have been prevented should we have had a good and advanced
health monitoring system [9]. In order to implement a good battery health monitoring system,
an accurate understanding of its function should be captured in the form of a model which can
be used by the monitoring and prognostics algorithms. Once an accurate model is developed, it
will be fairly easy to predict and detect all pertinent battery events, including its State-of-Charge
(SOC) [10, 11], State-of-Health (SOH), End-of-Discharge (EOD) and End-of-Life (EOL). The EOD
event, in particular, is determined directly by the battery age. An old battery will discharge faster
than a new one because its capacity is diminished over time [4, 9]. Few researchers have studied
the battery underlying process and dynamics [12, 13]. However, only few attempts were made to
perform battery estimation online and in real time [4]. In [9], the authors measured the capacity
of the battery over a sequence of reference discharge cycles, and fitted some empirical formulas on
them. Once fitting is achieved, capacity is measured by determining the time t the battery takes
to reach a voltage threshold which defines the EOD. The battery capacity is calculated in Ampere
hour (Ah) by multiplying the reference discharge current by the time t [14]. This whole method
of measuring the battery capacity relies on the reference current. The battery Ah rating will be
low when the reference current is increased and high when the reference current is decreased. This
means that the relationship between the discharge current and discharge time is non-linear; in fact,
as inverse one. The apparent capacity will increase if the battery is allowed enough time to rest
between discharge cycles. Therefore, there are two fundamental issues with this approach.

1. The measurement of the capacity in such a way is not an accurate representation or indication
of the battery age because the Ah rating depends on the current, temperature and other
factors which can not be held constant in practical life.

2. In real life, the reference discharge is rather complex and is not readily available.

This paper presents a state-space model of the battery, and then estimates the dynamic behavior of
seven of its process variables and two of its sensor variables. The estimation is achieved via two well
known estimators, the Unscented Kalman Filter (UKF) and the Particle Filter (PF) when noise
of various levels and types is injected. The Unscented Kalman Filter (UKF) is an improvement
to the Extended Kalman Filter (UKF) which does not require using a differentiation as it is the
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case with EKF. In addition to that, the UKF provides superior performance to the EKF in a
similar computational environment. The UKF consists of model forecast and data assimilation.
The idea behind the UKF is its ability to use probability distribution approximation rather than
the approximation of an arbitrary nonlinear function or transformation [15, 16, 17].

The Particle Filter is a sequential Monte Carlo statistical simulation technique which can provide a
very accurate approximation of the sequential Bayesian estimator [18]. The basic concept of particle
filters as in [19] are described next. We use a set of weighted particles as follows:{

w
(i)
k−1,x

(i)
k−1

}N

i−1
(1.1)

Where x
(i)
k−1 is the state of the particle i and w

(i)
k−1 is its weight. These are used to approximate

the posterior density at a time k − 1. The weights are normalized, i.e.,
∑N

i=1 w
(i)
k−1 = 1. The filter

approximation, then, can be expressed as:

p (xk−1|z1:k−1) ≈
N∑
i=1

w
(i)
k−1δx(i)

k−1

(xk−1) (1.2)

Where δa(x) is the Dirac delta function or distribution that is concentrated at a and z1:k−1 is
available measurements up to time k− 1. Prognostics using Particle filtering and particle filters are
described in detail in [20, 21, 9, 22, 23].

In passing, we stress that we deliberately limited the scope of our comparison by restricting it to
just two types of model-based estimation algorithms. However, there are many other prominent
such algorithms including Luenberger observers, sliding-mode observers, Extended Kalman Filters
and Sigma-point Kalman Filters [24]. Other candidate algorithms include well-known heuristic
algorithms, such as artificial neural-network (ANN) algorithms, genetic algorithm (GA), particle
swarm optimization (PSO), tabu search (TS), and simulated annealing (SA), as well as meta-
heuristic algorithms such as improved particle swarm optimization (IPSO), improved harmony
search (IHS), improved harmony search-based simulated annealing (IHSBSA), and artificial bee
swarm optimization (ABSO) [25]. There are many excellent expositions and reviews on the current
topic of this paper and related issues [26, 27, 28, 29, 30].

The organization of the remainder of this paper is as follows. Section 2 reviews the concept and
equations of the dynamical or state-space model with a stress on that of a Li-ion battery. Section 3
explains the setup of our simulations, and then reports and discusses their results. Section 4
concludes the paper.

2 State-Space Model

A state-space model, also known as a dynamical model, is a mathematical representation of a set of
differential equations or difference equations. These equations represent a process x which is then
expressed by a numerical vector. Two models represent the state-space model: the process model
and the measurement model. The process model x characterizes the propagation in time based on
external influences such as input and noise. The measurement model y simulates measurements
which might be noisy and/or inaccurate. Although the battery model is non-linear, we begin our
work by defining the general model of a linear time varying system:

x[k + 1] = A[k]x[k] +B[k]u[k] +w[k], (2.1a)

y[k] = C[k]x[k] +D[k]u[k] + v[k], (2.1b)
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where x ∈ ℜn is the process state vector, A is the state transition matrix with dimensions of n×n,
B is the control matrix with dimensions of n× p, u ∈ ℜp is the input vector, w ∈ ℜn is the process
noise vector, y ∈ ℜm is the measurement output vector such that m ≤ n, C is the output matrix
with dimensions of m× n, D is the feed through matrix with dimensions of m× p and v ∈ ℜm is
the measurement noise vector.

Generally, the nonlinear continuous time system can be represented by Equations (2.2) and (2.3)
where f and h are nonlinear functions:

ẋ = f(x,u,w), (2.2)

y = h(x,u,v). (2.3)

The Lithium-ion battery model can be represented as [4, 3, 14]:

Ėo = (Vo − Eo)/τo, (2.4)

Ėηn = (Vηn − Eηn)/τηn, (2.5)

Ėηp = (Vηp − Eηp)/τηp, (2.6)

q̇bn = −q̇bsn, (2.7)

q̇sn = −i+ q̇bsn, (2.8)

q̇bp = −q̇bsp, (2.9)

q̇sp = i+ q̇bsp, (2.10)

where Ėηp and Ėηn are the positive and negative voltage drops due to surface overpotential, Ėo is the
solid-phase ohmic-resistance voltage and the subscripted q symbols denote amounts of charge in the
electrodes (positive p and negative n) where each is split into two volumes, surface layer s and bulk
layer b. The overall voltage (output) of the system (battery) is characterized by Equation (2.11):

V (t) = VUp − VUn − Eo − Eηp − Eηn (2.11)

In the state-space Equations (2.4) to (2.10) and the output Equation (2.11), i is the applied current
and the following are the description and derivation of the related equations.

q̇bsp =
1

D

(
qbp
vbp

− qsp
vsp

)
, (2.12)

q̇bsn =
1

D

(
qbn
vbn

− qsn
vsn

)
, (2.13)

where q̇bsp and q̇bsn describe bulk to surface diffusion for the positive and negative electrodes and
D is the diffusion constant.

The output Equation (2.11) is the sum of several electrochemical potentials and can be described
as follows:

VUp = U0 +
RT

nF
ln

(
1− xsp

xsp

)
+

1

nF

(
Np∑
k=0

Apk

(
(2xp − 1)k+1 − 2xpk(1− xp)

(2xp − 1)1−k

))
, (2.14)

VUn = U0 +
RT

nF
ln

(
1− xsn

xsn

)
+

1

nF

(
Nn∑
k=0

Ank

(
(2xn − 1)k+1 − 2xnk(1− xp)

(2xn − 1)1−k

))
, (2.15)
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where VUp and VUp are the equilibrium potential at the positive and negative current collectors.

Vo = iRo, (2.16)

Vηp =
RT

Fα
sinh−1

(
i

Spkp(1− xsp)α(xsp)1−α

)
, (2.17)

Vηn =
RT

Fα
sinh−1

(
i

Snkn(1− xsn)α(xsn)1−α

)
, (2.18)

3 Simulation and Results

In this section, we simulate and validate the performance of the Unscented Kalman Filter (UKF)
[15, 31, 32, 33, 34] and Particle Filter (PF) [19, 20, 21, 22, 23] used to state estimate Lithium-ion
Battery in [4] in the presence of noise in both the process (state) and the sensor (input) variables.
The injected noise is listed in table 1.

Table 1. Four groups of noise injections

Process (State) Group 1 (dB) Group 2(dB) Group 3 (dB) Group 4 (dB)

Ėo –60 –70 –80 –90

Ėηn –60 –70 –80 –90

Ėηp –60 –70 –80 –90
q̇bn 10 0 –10 –20
q̇sn –10 –20 –30 –40
q̇bp 10 0 –10 –20
q̇sp –10 –20 –30 –40

Sensor (Input)
Tb 10 0 –10 –20
V 10 0 –10 –20

We inject three different types of process and sensor noise (Gaussian, Uniform and Laplacian)
as shown in Table 1. The four groups of noise injections are arranged in descending orders of
magnitudes for each of the seven process variables Ėo, Ėηn, Ėηp, q̇bn, q̇sn, q̇bp and q̇sp and each of
the two sensor variables Tb and V . This means group 1 of injections represents the highest noise
considered, while group 4 stands for the lowest noise.

The output estimated (by either the UKF or PF estimator) is denoted by ŷi. The performance
measure of good estimation is the Root Mean Squared Error given by Equation (3.1):

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (3.1)

We summarize our simulation results in Table 2 to 4 for Gaussian, uniform and Laplacian noise
injections, respectively. Each of these tables reports results for each of the aforementioned seven
process variables and the two measurement variables and for each of the four groups of noise
injections. For convenience we include in each of these tables the dB values of Injected Noise (IN).
The tables are used to report the RMSE (in dB) for estimation via the Unscented Kalman Filter
(UKF) and the Particle Filter (PF). Two observations are in order:

• For specific process or measurement variables, and a specific method of estimation, the RMSE
decreases as one shifts from leftmost entires to rightmost ones, i.e., from highest noise to
lowest noise.
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• The UKF estimation is definitely superior to the PF estimation in case of Gaussian noise
and the Ėηp variable. The PF estimator is more likely to perform better than the UKF
estimator in case of uniform noise while for the Laplacian noise, the PF estimator dominantly
outperforms the UKF estimator. We highlight in bold cases where the RMSE due to the
PF is less than that of the UKF in Tables 3 and 4.

Tables 2 to 4 aggregate a performance measure (RMSE) for all pertinent variables. By contrast,
Figs 1 to 12 detail the time behavior for the actual (measured), UKF estimation and PF estimation
values of our most important variable, namely, the battery output voltage V . Figs 1 to 4 consider
Gaussian noise, while Figs 5 to 8 explore uniform noise and Figs 9 to 12 demonstrate Laplacian
noise. Each set of four figures for a specific noise type consider the four values of 10dB, 0dB,
–10dB, and –20dB pertaining to the values of injected noise for the variable V in Groups 1, 2, 3
and 4, respectively, according to Table 1. Both estimators work very well and yield time functions
indistinguishable from measured ones for all cases of the Gaussian noise (Table 1 to 4) and for
the lower noise cases of uniform noise (Figs. 6 to 8) or Laplacian noise (Figs. 11 to 12). The
deviations of the estimated curves from the measured one in Figs 5, 9 and 10 indicate that the
PF estimator is generally better than the UKF estimator for uniform and Laplacian noise. These
deviations are less pronounced for uniform noise than for Laplacian one. In fact, Fig. 9 (which has
the most significant discrepancies of all figures) demonstrate a run-away divergent behavior of the
UKF estimator, indicating instability for this estimator.

Table 2. Root mean squared error due to gaussian noise

Highest Noise Lowest Noise

Group 1 Group 2 Group 3 Group 4

IN UKF PF IN UKF PF IN UKF PF IN UKF PF

Ėo –60 –27.39 –25.43 –70 –41.63 –36.99 –80 –50.60 –41.60 –90 –59.50 –46.93

Ėηn –60 –18.71 –16.51 –70 –31.39 –27.82 –80 –40.37 –30.45 –90 –50.15 –35.98

Ėηp –60 –38.17 –26.86 –70 –49.27 –36.42 –80 –59.98 –41.29 –90 –68.44 –45.67
q̇bn 10 15.25 21.49 0 1.31 8.49 –10 –8.23 2.87 –20 –18.62 –1.55
q̇sn –10 5.86 11.90 –20 –8.08 –1.00 –30 –17.61 –6.62 –40 –27.96 –11.05
q̇bp 10 17.49 21.31 0 2.84 13.86 –10 –6.59 5.72 –20 –16.92 –0.46
q̇sp –10 8.05 11.79 –20 –6.59 4.33 –30 –16.01 –3.76 –40 –26.31 –10.00
Tb 10 1.22 0.35 0 –9.60 –9.10 –10 –19.21 –18.93 –20 –29.30 –25.91
V 10 –17.46 –15.24 0 –30.29 –26.84 –10 –39.35 –29.44 –20 –49.40 –35.44

Table 3. Root mean squared error due to uniform noise

Highest Noise Lowest Noise

Group 1 Group 2 Group 3 Group 4

IN UKF PF IN UKF PF IN UKF PF IN UKF PF

Ėo –60 –17.88 –23.32 –70 –27.45 –29.05 –80 –37.13 –38.36 –90 –47.14 –44.91

Ėηn –60 –7.77 –12.71 –70 –17.81 –20.17 –80 –27.76 –26.17 –90 –37.82 –36.45

Ėηp –60 –31.01 –30.02 –70 –39.91 –35.85 –80 –49.54 –41.63 –90 –59.53 –46.34
q̇bn 10 26.39 23.03 0 16.70 14.69 –10 6.81 10.23 –20 –3.25 0.97
q̇sn –10 16.97 13.40 –20 7.28 5.27 –30 –2.60 0.63 –40 –12.66 –8.62
q̇bp 10 29.17 20.11 0 18.96 19.04 –10 9.08 4.33 –20 –1.00 2.09
q̇sp –10 19.70 10.73 –20 9.50 9.55 –30 –0.38 –5.24 –40 –10.46 –7.40
Tb 10 7.00 6.95 0 –3.08 –3.11 –10 –13.05 –13.03 –20 –23.05 –22.96
V 10 –6.66 –12.28 0 –16.36 –18.09 –10 –26.13 –26.48 –20 –36.17 –34.90
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Table 4. Root mean squared error due to laplacian noise

Highest Noise Lowest Noise

Group 1 Group 2 Group 3 Group 4

IN UKF PF IN UKF PF IN UKF PF IN UKF PF

Ėo –60 –11.83 –23.08 –70 –21.78 –25.91 –80 –31.19 –34.34 –90 –41.08 –42.11

Ėηn –60 –1.98 –12.73 –70 –11.90 –16.29 –80 –21.69 –24.49 –90 –31.76 –33.92

Ėηp –60 –26.10 –25.27 –70 –34.59 –33.60 –80 –43.59 –41.16 –90 –53.46 –46.48
q̇bn 10 32.15 20.75 0 22.45 16.64 –10 12.85 12.38 –20 2.82 2.79
q̇sn –10 22.74 11.31 –20 13.03 7.29 –30 3.44 2.91 –40 –6.60 –6.64
q̇bp 10 37.20 18.47 0 24.63 20.61 –10 15.09 7.37 –20 5.06 5.87
q̇sp –10 27.70 9.13 –20 15.17 11.15 –30 5.62 –1.95 –40 –4.40 –3.63
Tb 10 12.96 12.70 0 2.89 3.03 –10 –6.95 –6.96 –20 –16.96 –17.03
V 10 1.19 –12.21 0 –10.59 –14.93 –10 –20.15 –23.45 –20 –30.11 –31.901
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Fig. 1. Battery output voltage with gaussian noise of 10dB
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Fig. 2. Battery output voltage with gaussian Noise of 0dB
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Fig. 3. Battery output voltage with gaussian noise of –10dB
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Fig. 4. Battery output voltage with gaussian noise of –20dB
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Fig. 5. Battery output voltage with uniform noise of 10dB
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Fig. 6. Battery output voltage with uniform noise of 0dB
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Fig. 7. Battery Output Voltage with Uniform Noise of –10dB
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Fig. 8. Battery Output Voltage with Uniform Noise of –20dB
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Fig. 9. Battery output voltage with laplacian noise of 10dB
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Fig. 10. Battery Output Voltage with Laplacian Noise of 0dB
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Fig. 11. Battery output voltage with laplacian noise of –10dB
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Fig. 12. Battery output voltage with laplacian noise of –20dB

4 Conclusion

This paper compared the detailed and aggregate dynamic performance for two estimators, viz.,
the Unscented Kalman Filter (UKF) and the Particle Filter (PF), when applied to the state-space
analysis of a noise-injected lithium-ion battery. The UKF outperformed the PF in the case of
Gaussian noise injection. However, the PF was more or less better in the case of uniform noise,
and even dominantly better in the case of Laplacian noise. The performance of both estimators
deteriorated as the level of noise is increased, and a case of instability was identified with UKF
estimation when high Laplacian noise is injected, wherein the UKF estimation exhibited a runaway
divergent behavior. For future work, we hope to extend this work to cover other types of filters
such as the Extended Kalman Filter (EKF), and also to include some heuristic or meta heuristic
methods.
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