« dniees
Reeweareh Sowrwal of

«Martlvenmation

Asian Resear ch Journal of Mathematics

- 5(3): 1-10, 2017; Articleno.ARJOM .33818
ISSN: 2456-477X

Coefficient Boundsfor Bazilevic Functions Associated with
Modified Sigmoid Function

Hamzat Jamiu Olusegun®

'Department of Pure and Applied Mathematics, Ladoke Akittalaersity of Technology, P.M.B. 4000,
Ogbomoso, Nigeria.

Author’s contribution

The sole author designed, analyzed and interpreted and prepi@edanuscript.

Article Information

DOI: 10.9734/ARJOM/2017/33818

Editor(s):
(1) RadoslawJedynak, Computer Science and Mathesn&tézimierz Pulaski University of Technology andrinities, Poland.

(2) Hari Mohan Srivastava, Department of Mathematiab @atistics, University of Victoria, Canada.
(3) Xingting Wang, Department of Mathematics, Templeversity, Philadelphia, USA.
Reviewers:
(1) F. Mlge Sakar, Batman University, Turkey.
(2) Gurmeet Singh, GSSDGS Khalsa College, India.
(3) Francesco Zirilli, Sapienza Universita, Italy.
(4) Mohsan Raza, G. C. University Faisalabad, Pakistan.
(5) Hsiu-Chuan Wei, Feng Chia University, Taiwan.
(6) Abdullah Sonmezoglu, Bozok University, Turkey.
Complete Peer review Historiattp://www.sciencedomain.org/review-history/20106

Received: 30 April 2017

— _ Accepted: 28 June 2017
| Original Research Article Published: 18' July 2017

Abstract

The focus of the present paper is to obtain the sharp upper bofirgder) and a,(g) for functions

belonging to the Bazilevic clad3(a,n );@) associated with modified sigmoid function. The connection
of these bounds to the celebrated Fekete-Szego func@g@,@Lﬂazz (a)‘ follows as simple consequence
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1 Introduction

Let A denote the class of all functions of the form

f(z)=z+> az¢ zOD (1.1)
k=2
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which are analytic in the open unit di§R :{Z;l Z| <]}and normalized by

f(0) = f*(0) —1=0. Also, letSdenote the subclass Afwhich are normalized and univalentin

In 1983, Slagean [1] introduced and studied the following differentigérator:

D°f ()= f(2)
D'f(2)=D(D°f (2)=2f'(2)

D"f(2)=D(D"*f (2)) = 2(D™*f (2)). w2

From equation (1.1), we can write that

f(2)” :(z+iakzkj (1.3)
k=2

Expanding equation (1.3) binomially, then

f(2)7=2z" + i a, (a) 2" (1.4)
k=2

wherea > 0 that is,a is real. Using (1.2) and (1.4), then
D"f(z)" =a"z° +> (@ +k=D"a (@)z""* a>0 z0OD (1.5)
k=2

is obtained. Now, consider the following function:

It+ie

a

@ [PIIE guye dv (L6)
tret] ]
\V; (1+£%)

wherea > 0(a are real)pJP and gDLI—’*. The genesis of the study of the function given above.8) (1
is the discovery in 1955 by a Russian Mathematician @d@azilevic [2]. The family of functions (1.6)
became known as Bazilevic functions and is usually denotdsi(try). Very little is known about this
family of functions defined in (1.6), except that, he Bazdeshowed that each functidn] B(a, &) is
univalent inD . However, by simplifying (1.6) it is quite possible to amstand and investigate the family
better. It should be noted that with special choices of petesr, £ and the functiog(z), the family

B(a, ) cracks down to some well-known subclasses of univalent ansct(see [3] for details)For

instance, if we le€ = Qthen (1.6) immediately yields
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f(2) ={ai¥ g(v)"dv}a. 1.7

By differentiating equation (1.7) we have

zf'(2) f (207"

" = p(2), zOOD (1.8)
9(2)
or equivalently
1 a-1
De{w} >0, zOD (1.9)
9(2)

The subclass of Bazilevic functions satisfying equation) (4t8 called Bazilevic functions of typ@& and
are denoted byB(ar) (see Singh, [4]). In 1973, Noonan [5] gave a plausiblergg®n of functions of the

class B(a) as those functions inW for which eachI >1, and the tangent to the curve

u,(r) :{Ef (re')?, 0<6< 277} never turns back on itself as much Asradian. If@ =1, the class
B(a) reduces to the family of close-to-convex functions; ihat

DE{Zf—} >0 zOD. (1.10)
9(2)

If we decide to choosg(z) = f (2) in inequality (1.10), we have

De{j—'}>0 zOD.
f(2)

This implies that f (z) is starlike. Furthermore, if one replacé<z) by zf '(z), then

De{1+%}>0 z0D.

This shows thatf (Z) is convex. Moreover, ig(z) = z in inequality (1.9), then the family dB, (&) of
functions satisfying

r a-1
De{m} >0, z0OD (1.11)

Za
is obtained.

In 1992, Abdulhalim [6] introduced a generalization of (1.dugh that
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De{%} >0, a>0, zOD. (1.12)
z

where the paramete® > 0 and the operatoD " is the famous 8agean derivative operator [1] defined in
(2.2). Further in 1994, Opoola [7] studied a more geizatidn of (1.12) and denoted it b'pn” »)
(Bazilevic class of order gamma) such that

De{%}>y, y>0, a>0, zOD. (1.13)
Z

Recently, a little modification was made to (1.13) sttt

De{%}m a>0, nON,, zOD . (1.14)

Here, it is noted that

D" f (i) i(‘”k 1) a (@)™ (1.15)

a"z K=
where for convenience we denote the class of functions in (tlle(O’, n) .

Now, the theory of both the analytic functions and special fonst{such as sigmoid function) are of great
importance in addressing many physical problems such lsaiconduction and aerodynamic to mention
but few.

It is generally believed that activation function is aniinfation process that is inspired by the way nervous
system like brain, process information. It is composelhmgfe number of highly interconnected processing
element (neurons) working to solve a specific assignment fiitision works in similar way the brain does.
The human brain can be regarded as an information-progesstity. It receives information from the
external environment through the sense and processes tliermtmternal models of external phenomena.
In particular, the brain is capable of redressing these Isi¢olesuit new situations and then make reliable
decisions.

The most widely used sigmoid function is the logistic actbrafunction which has a lower bound of zero
(0) and upper bound of one (1). It means that the function Yaiuke output) range is [0, 1].

Many sigmoid functions have power series expansion whiehnalte in sign while some have inverse with
hypergeometric series expansion. They can be evaluatecediffeespecially by truncated series expansion.
The logistic sigmoid function is defined as

L =1+12—i23+i25—... (1.16)

1+e* 2 4 48 48C

and has the following properties:

9(2) =
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(i) It outputs real number between 0 and 1

(i) It maps a very large input domain to a small rangeutiuds
(i) It never loses information because it is a one-to-one famcti
(iv) It increases monotonically.

In view of the above properties sigmoid function is highly wisef geometric Function Theory (See [8,9]
for more detail).

However, the investigation of Fadipe-Joseph et al. [8herdgistic sigmoid function has stirred the interest
of both young and old researchers in the field of geometridiumtheory with several interesting results
authenticated diversely in literatures. Motivated by thekwafr Fadipe-Joseph et al. [8], Oladipo and

Gbholagade [9], the author here wishes to investigatecdedficient bounds for certain class of analytic
functions involving modified sigmoid function in the unit disk.

2 Coefficient Bounds

Let P (Caratheodory functions) be the family of all functigmsanalytic in D for which p(O) =1,
D{ p(Z)}> 0 and

p(2) =1+ p,z+ p,z° +... zOD (2.1)
in the unit diskD (see [10]).

Lemma 2.1 [11]: Let PLIP. Then| p, |2 k= 1234,.... Equality is attained by the moebius
function

Lemma 2.2[8,12]: Let g be sigmoid function of the form (1.16). Then, ¢dtz) = 2 g(z) such that

#(2) = 1+; {z (2" Jk (2.2)

Theng(z) OP, |z|<1 whereP is the class of Caratheodory functions ap(iz) denotes the celebrated
modified sigmoid function.

Lemma 2.3[8,12]: Let

@(2) = 1+z(21k) (m r:i) J (2.3)

Then|p(2)| < 2.

Now, let f (2)? of the form (1.4) belong tB (a,n) . Then, fora >0; 0< y <1, nON, = N [J{0}
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and-1<B< A<1

D"f(2)“ - 1+ Az

. 24
a"z"  1+Bz @4
Hence, by the definition of subordination, it follows thi{z)“ CIB(a, N, ¥, @) if and only if
D"f(2)" _1+Az
@ T - ey a2 @)

a"z®  1+B:z
where ¢(z) = 2g(z) and g(2) is as defined in (1.16).

Next is the coefficient bounds for functions in the BaziletassB (a,n, y, ¢) .

Theorem 2.4: Suppose thaf (2)* OB (a,n, ), @) . Then, fora >0; 0< y <1, nON,

a"(4-3y) 2a"(1-y) a" (48— 47y)
[o2() < 2(a+D)" [2a(a) < (@+2)" [oua) < 24(a +3)"
2a"(@1-y) a"(480-47%)
Ia5(0')|S(a+4)“’ (@) < 240(a +5)"

Proof: Let f (2)? OOB(a,n, y,@). Then, there exist, ¢(Z) LIP (class of caratheodory functions) such
that

D@4 pyp@)+y a2). 26)
a Zz

where

¢(z):1+}éz—%423+}é4025—%426+.... 2.7)

Then,
1+ an,z az(a)2+ an,S 3.3(0')22 + an,4 a4 (0’)23 + an,4 a4(0')Z4 + an,5 aS(a')z5 t..

=1+[p1 —LZ/(Z P, —1)Jz+(1— y)p.2° +[p3 —2—’/4 (24 p, —1)J23 +{1-y)p, 2*
(2.8)

y 5
+ - 240p. -1 |2° + ...
[ps 240 240Ps )J
Equating the coefficient of the like powers of Z,Z, 7' and Z in (2.8) above, then

an[2p1_y(2 P, _1)]

az(a): 2(a+1)n

(2.9)
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_a"@l-y)p,
a(@) =2 L1
a"[24p, - y(24p; 1)

L T

(a+4)"

a"[240p; — y(240p; ~1)]

e

Applying Lemma 2.1, then we obtain the desired resulis &nds the proof of Theorem 2.4.

Corollary 2.5: Suppose thaf (2)“ OB (L n, ),@) . Then, fora >0; 0< y <1 nON,

aafs G =20 o=
2, )] < 2((15)ny), |a6(1)|s%.

Corollary 2.6: Suppose thaf (2) OB (L0, ,¢@) . Then, fora >0; 0< y <1, nON,

la, (O] (4_—23” ;@] < 2~ y) : 2, @) < w :
8, @) <20-), 0] s A,

Corollary 2.7: Suppose thaf (2)* OB (L1 ), @) . Then, fora >0; 0< y <1 nON,
4-3 2(1- 48— 47
e X R e

96
2(1 y) (480 479y).

| (1)| 144(

la ()] <

Corollary 2.8: Suppose thaf (2)” OB (1,0,0,¢) . Then, fora >0; 0< y <1 nON,
la,M<2, |a@<2, |a,0<s2, |a@<2, |as@ <2

and in general

a <2 k=234, .

(2.10)

(2.11)

(2.12)

(2.13)
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In the recent time, Fekete-Szego inequality has beewnfdahe fascinating problems beckoning the attention
of both young and old researchers in the field of complejlysisa They have succeeded not only in
obtaining sharp bounds for the first two initial cogifints |al and |g for various subclasses &fbut also in

establishing a close link or connection between these deetficand the function%ﬁ3 —,ua§| (see [13,

12, 14] among others). Here, the author uses the valwgsof g obtained in (2.9) and (2.10) respectively,
to prove the Fekete-Szego result for the function cBééY, ny, ¢) involving modified sigmoid function.

Theorem 2.9: Suppose thaf (2)* OB(a,n, y,¢). Then, ford >0; 0< y <1, nON,.

a,n
Aa+D*"(a+2)"

[as(a) - (a)| < 8(a+1)*" (L-y) - ua" (@ +2)" (9 -12y+16).

Proof: Using (2.9) and (2.10) with Lemma 2.1, the proof is imraedi

Corollary 2.10: Let f(2) OB@LnN, ), @) . Then, fora >0; 0< y <1, nON,

@) - paZ (1) < 8(2°" (1-y) -1 Q" (9y* ~12y+16) .

1
423"
Corollary 2.11: Let f (2 OB (L1, ),¢@) . Then, fora >0; 0< y <1, nON,
1
2 - pa; O] < [320-1) ~3u Oy -12/+16)

Corollary 2.12: Let f(2)” OB (L0, ),@) . Then, fora >0; 0< y <1, nON,

1
a@®-pa; @<, |8 -1 -1 O -12/+16).
Corollary 2.13: Let f (2 OB (L0,0,¢) . Then, fora >0; 0< y <1, nON,

2, @ - pa; 0| <2124

Corollary 2.14: Let f (2 OB (L10,¢) . Then, fora >0; 0< y <1, nON,

1
2 - pa3 )< 2-3u.

Final Remark:

If u=1 in corollary 2.13 and corollary 2.14 respectively, then

la, @) - pal @[ <2.
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and

1

2

B @-pa @<

For some results on Fekete-Szego problem see [13,14] among other

Theorem 2.15: Suppose thaf (2)” OB(a,n, ), ¢). Then, foar >0; 0< y <1, nON,.

a? (a+2)>" (4-3y) (48-47y)
Ha+)"(@+2)"(@+3)" |-192(a +1)" (@ +3)" 1-)?|

2, (@) a, (@) - ual(a)) <

Proof: Using (2.9), (2.10) and (2.11) with Lemma 2.1, the proohisediate.

3 Conclusion

By substituting zero (0) for the value ¢f in all the results obtained in this paper, then we would bimga
the results associated with the class p(z) of Caratimgddoctions defined in (2.1) alone while by letting
y =1, then all the results obtained would be associated vétmtbdified sigmoid functio( z) defined in
(2.7) alone.
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