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Abstract

We establish an inequality of a weight coefficient by introducing a parameter λ and using the
Euler-Maclaurin expansion. Using this inequality, we derive a reverse of the Hilbert’s type
inequality. As an applications, an equivalent form is obtained.
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1 Introduction and Main Result
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p
+ 1

q
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, (1.1)

and
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, (1.2)

where the constant π
sin π

p
and pq is best possible for each inequality respectively. Inequality (1.1) is

Hardy-Hilbert’s inequality. Inequality (1.2) is a Hilbert’s type inequality [1].

In [2], Yang gave a reinforcement of inequality (1.1):
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, (1.3)

In [3], [4] and [5], Krnic, Pecaric and Yang gave some generalization and reinforcement of inequality
(1.1). In [6], Kuang and Debnath gave a reinforcement of inequality (1.2):
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where G(r, n) =
r+ 1

3r
− 4

3

(2n+1)
1
r

> 0 (r = p, q).

In [7] and [8], Xi gave a generalization and reinforcement of inequalities (1.2) and (1.4):
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, (1.5)

where κ(λ) = p qλ
(p+λ−2)(q+λ−2)

> 0, 2−min{p, q} < λ ≤ 2.
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, (1.6)

For the reverse Hardy-Hilbert’s inequality, Yang [9] gave a reverse form of inequalities (1.3). In [10]
, Xi and Wang gave a reverse Hilbert’s type inequality:

2



Xi and Zhang; ARJOM, 5(4): 1-7, 2017; Article no.ARJOM.35514
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In this paper, by introducing a parameter λ and using the Euler-Maclaurin expansion, we establish
an inequality of a weight coefficient. Using this inequality, we derive a reverse of the Hilbert’s
type inequality (1.5) and a generalization of inequalities (1.7). The main result of this paper is the
following inequality.

Theorem 1. If 0 < p < 1, 1
p
+ 1

q
= 1, λ > 1, an ≥ 0, bn ≥ 0 and 0 <

∞∑
n=1

ap
n < ∞, 0 <

∞∑
n=1

1
n
bqn < ∞,
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q

. (1.8)

Before we give the proof of the theorem, we need the following expression of the Euler-Maclaurin
(see [11])

m∑
k=n+1

f(k) =

∫ m

n

f(x)dx+
1

2
[f(m)− f(n)] +

∫ m

n

P1(x)f
′(x)dx, (1.9)

where f(x) ∈ C1[0, ∞), m,n ∈ N0(m > n), N0 is the set of non-negative integers, Pi(x)(i = 1, 2, ···)
are Bernoulli function (P1(x) = x − [x] − 1

2
). When

∑∞
k=n f(k),

∫∞
n

f(x)dx are convergences, we
have

∞∑
k=n

f(k) =

∫ ∞

n

f(x)dx+
1

2
f(n) +

∫ ∞

n

P1(x)f
′(x)dx, (1.10)

and(see [9]) ∫ ∞

n

P1(x)g(x)dx = −1

8
g(n)ε(0 < ε < 1), (1.11)

where g(x) ∈ C1[0, ∞), g′(x) < 0(or g′(x) > 0), x ∈ [n,∞), g(∞) = 0.

2 A Lemma

Lemma 1. Let N be the set of positive integers. The weight coefficient ω(n) is defined by

ω(n, λ) =
∞∑

k=1

1

max{kλ, nλ} , n ∈ N,λ > 1.

Then we have

λ

(λ− 1)nλ−1

[
1− (λ− 1)(λ+ 2)

4λn

]
< ω(n, λ) <

λ

(λ− 1)nλ−1
. (2.1)

Proof. If n ∈ N , let f(x) = 1
max{xλ,nλ} , x ∈ [0, ∞), we have

f(x) =
1

max{xλ, nλ} =


1
nλ , x < n,

1
xλ , x ≥ n,

and

f ′(x) =


0, x < n,

− λ
xλ+1 , x ≥ n.
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By (1.10), we obtain
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Since we find

λ
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− 1
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.

Then we have (2.1). The lemma is proved.

3 The Proof and Application of Theorem

In this section, we use (2.1) to prove Theorem 1. As applications, an equivalent form is obtained.

Proof. By the reverse Hölder ’s inequality [12], we have

∞∑
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.

Since 0 < p < 1 and q < 0, remove by (2.1), we obtain (1.8). Theorem 1 is proved.

Theorem 2. If 0 < p < 1, 1
p
+ 1

q
= 1, λ > 1, an ≥ 0, bn ≥ 0 and 0 <
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Inequalities (3.1) and (1.8) are equivalent.

Proof. Let

bn =

(
1

nλ−1

)1−p
[

∞∑
m=1

am

max{mλ, nλ}

]p−1

, n ∈ N.

By (1.8), we have
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Then we obtain
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Hence we obtain (3.1).

On the other-hand, by the reverse Hölder ’s inequality [12], we have
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From (3.1), it follows that
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Then, (3.1) and (1.8) are equivalent. Theorem 2 is proved.
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4 Conclusion

Inequality (1.2) is Hilberts type inequality, and is important in analysis and its application. Kuang
gave a strengthened version of (1.2); Yang considered a refinement of another Hilberts type inequality.
For the reverse Hardy-Hilbert’s inequality, Yang gave a reverse form of inequalities. Xi and Wang
gave a reverse Hilbert’s type inequality:

∞∑
n=1

∞∑
m=1

ambn
max{m2, n2} > 2

[
∞∑

n=1

(
1− 1

2n

)
1

n
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n

] 1
p
[

∞∑
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1

n
bqn

] 1
q

. (4.1)

By introducing a parameter λ and using the Euler-Maclaurin expansion, we establish an inequality
of a weight coefficient. Using this inequality, we derive a reverse of the Hilbert’s type inequality
and is a generalization of inequalities (4.1).
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