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Abstract 
 

This paper discusses the trend and pattern of money circulation in Nigeria. Its relevance lies in the fact 
that it could assist in monitoring the level of money circulation in the economy. Data on monthly records 
of money in circulation obtained from the central bank of Nigeria web database from January, 2000 to 
December, 2016 was analysed using the Box-Jenkins (ARIMA) methodology. The series was logarithmic 
transformed to normalise the series and stabilize the variance and thereafter differenced to achieve series 
stationarity. The Seasonal ARIMA (2, 1, 0) (0, 1, 1)12 model was found to be appropriate in describing 
the patterns observed in the series. The model having passed the basic ARIMA diagnostic test was used to 
forecast for the next three years. This model is recommended for use until further analysis proves 
otherwise. 
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1 Introduction 
 
Money in circulation is the total amount of coins and naira banknotes issued, subtracting the amount that had 
been removed from the country’s economy by the central bank [1]. The major determinant of money in 
circulation is the money demanded by both the public and banking systems in Nigeria. It is wise to note that 
the share of money circulation in money supply and the ratio in nominal Gross Domestic Product (GPD) 
reveals its relative importance in any country’s economy [2,3]. The Nigeria central bank defines money 
supply in two ways: Narrow money includes currency in circulation plus current account deposited with 
commercial banks while broad money is defined as narrow money plus savings and time deposits with banks 
including foreign denominated deposits and basically measures the total volume of money supply in the 
economy. The basic problem is when money supply exceeds the level the economy can efficiently absorb, 
leading to variation in money circulation; it could dislodge the stability of the price system, leading to 
inflation or higher prices of goods and the inability of banks to make loans available for investment within 
Nigeria [4]. Hence, the purpose of this study is to use the well-established ARIMA methodology to look at 
the pattern and growth of money circulation in Nigeria. Furthermore, the study revelation will greatly assist 
the central bank of Nigeria in making appropriate financial policies in the nearest future. An umpteen of 
studies have been carried out by researchers using autoregressive integrated moving average modelling 
procedure. Albert et al. [5], modelled the monthly currency in circulation in Ghana using Seasonal 
Autoregressive Integrated Moving Average (SARIMA) model, O. Adubisi and C. Okorie [6] used ARIMA 
procedure in modelling the growth pattern of reserve currency in Nigeria. Dheerasinghe R. [7] modelled the 
currency in circulation in Sri-Lanka using the times series decomposition method, Iwueze et al. [8], 
modelled the Nigeria external money reserves with Autoregressive Integrated Moving average model. 
Obinna Adubisi and E. T. Jolayemi [9] estimated the impact of the global financial crisis on the Nigeria 
crude oil export with ARIMA-Intervention Analysis. Also, Albertho et al. [10] modelled the daily banknotes 
in circulation, the context of liquidity management of European Central bank using the ARIMA 
methodology. 
 

2 Methodology 
 
2.1 Box-Jenkins methodology 
 
The multiplicative ARIMA ),,)(,,( QDPqdp model which contain both the non-seasonal and the seasonal 

parameters is expressed as 
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The observed series is tY , )(B  represent the Backshift operator, t  is the time, 
d)B1(  is the regular 

differencing which is applied to remove the stochastic trend in the series, 
DS )B1(   is the seasonal 

differencing applied to remove the series seasonal effects and t is the white noise error i.e. 
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The non-seasonal and seasonal moving-average parameters ),( Qq   with the roots within the unit circle 
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The Box-Jenkins procedure involve three modelling stages: The model identification stage uses the ACF and 
PACF plots to check for stationarity and seasonality in the observed time series data. The model parameter 
estimation stage involves estimation of the parameters after identifying the tentative models. In this study the 
criteria used in selecting the best fitted model are the Akaike information criterion (AIC), Corrected Akaike 
information criterion (AICC), and Schwarz Bayesian information criterion (BIC). The diagnostic stage 
checks the selected model to make sure it satisfies the basic Box-Jenkins modelling procedure assumptions 
using the Ljung-Box serial correlation test, Shapiro-Wilk normality test and the Lagrange Multiplier (LM) 
conditional heteroscedasticity test. For more details on Autoregressive moving average modelling procedure 
and the information criteria see Box and Jenkins [11], Box et al. [12], Pankratz [13], Akaike [14], Yang [15]. 
 

2.2 Unit root test 
 
The Augmented Dickey-Fuller (ADF) test is based on the assumption that the time series data 

tY  follows a 

random walk. The Augmented Dickey-Fuller (ADF) test, corresponding to modelling a random walk pattern 
with drift around a stochastic trend   
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iti1t yy  is the augmented part, 1ty  is the lagged term, ity  shows the 

lagged change, t  and   represent the deterministic trend and drift components respectively, the t  is the 

error term and ,  are coefficients to be estimated. The time series data has a unit root if the estimated

 0 . Hence, given a p-value greater than %5  level of significance the null hypothesis (Unit-root) will 

not be rejected. The Kwiatkowski-Phillip-Schmidt-Shin (KPSS) test proceed by testing for the presence of a 

random walk t  in the regression equation 

 

tttt dY                                                               (7) 

 

The deterministic component is denoted by 
td  and 

t  is a stationary )0(I  error process. The test has a null 

hypothesis of a stationary series in the level or trend. Hence, a p-value less than the level of significance 
would lead to the null hypothesis being rejected. For more details see Dickey and Fuller [16] and 
Kwiatkowski, et al. [17]. 
 

3 Results and Discussion 
 
3.1 Descriptive statistics 
 
The data on Nigeria monthly money in circulation obtained from the Central Bank of Nigeria [18] web 
database over the periods of January, 2000 to December, 2016 was used in this study. The descriptive 
statistics in Table 1 shows the data is not normally distributed with a constant variance based on the 
coefficient of variation (CV), skewness and kurtosis values. 
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Table 1. Descriptive statistics 

 
Mean Min Max CV (%) Median Skewness Kurtosis 
901179.20 193939.3 1857932 53.53 866306.3 0.23 -1.40 

 
The money in circulation series plot shown in Fig. 1(a) depicts an increasing trend with non-constant 
variability including high peaks at specific periods in each year, suggesting the series require some sort of 
transformation to stabilize the variance. The logarithmic transformation was applied in other to stabilise the 
variance and normalise the series for further examination. Fig. 1(b) depicts the logarithmic transformed 
series with the variance looking stable across the periods used in the study. 
 

 
Fig. 1. Money in circulation series Plot (a) and Log transformed series plot (b). 

 

A critical observation of the log transformed series correlogram plots in Fig. 2(a), shows high significant 
positive spikes which does not die out to zero in the autocorrelation function (ACF) plot and a significant 
spike at lag 1 in the partial-autocorrelation function (PACF), indicating that the series is not stationary. 

 

 
 

Fig. 2. The transformed series correlogram Plots (a) and the first order non-seasonal & seasonal 
differenced series corrologram plots (b) 

Year Year 
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The seasonally adjusted series in Fig. 3(a), depicts no stability in the series while the series in Fig. 3(b), 
fluctuates about the zero line confirming series stationarity after first-order non-seasonal and seasonal 
differencing. 
  

 
Fig. 3. Seasonally adjusted series plot (a) and the first-order non-seasonal & seasonal differenced 

series plot (b) 
 

The unit-root tests shown in Table 2(a), confirms the existence of a unit root in the transformed series. The 
series was first-order non-seasonally and seasonally differenced to achieve series stationarity. The results in 
Table 2(b) confirmed that the differenced series is stationary. 
 

Table 2. Unit-root and Stationary tests 
 

(a) Transformed (MIC) series (b) N&S differenced (MIC) series 
Test type Test 

statistics 
Lag order P-value Test type Test 

statistics 
Lag order P-value 

ADF -3.5739 5 0.037 ADF -4.8800 5 0.01 
KPSS 0.7664 3 0.01 KPSS 0.0550 3 0.1 

N&S means first-order non-seasonal and seasonal differenced money in circulation (MIC) series 
 

3.2 Model identification and estimation 
 
The behaviours of the autocorrelation (ACF) and partial autocorrelation (PACF) were used to identify some 
tentative models which were further subjected to model selection procedure in other to determine the best 
parsimonious model for the series.  We noticed that the ACF plot displayed significant spikes of 0.241 at lag 
2 and -0.352 at lag 12 while the PACF plot likewise had significant spikes of lag 2 (0.238), lag 12 (-0.340) 
and lag 24 (-0.185). Table 3, presents the summaries of possible tentative models observed from the 
correlogram plots in Fig. 2(b). 
 
The seasonal ARIMA structures 2 and 3 seem to be the completing models with significant parameter 
estimates and minimum model standard deviation estimates. Based on the selection criteria, the Seasonal 
ARIMA structure 2 seem to provide the appropriate fit that best describe the log transformed series with 
minimum AIC, AICc and BIC compared to other seasonal ARIMA structures considered in Table 3. The 
estimated coefficients of the seasonal ARIMA structure 2 using the maximum likelihood estimation method 
are significantly different from zero based on the t-values. The chosen Seasonal ARIMA (2, 1, 0) (0, 1, 1)12 

model using the Backshift operator )(B is expressed as: 
 

ttxBBB  )1()1)(1)(1( 12
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The seasonal ARIMA model in equation (8), is rewritten as 
 

1212221112
1

  ttttt xxx                                 (9) 

 

The estimated parameters 21 ,  and 12  are presented in Table 3, t  is the white noise and tx  is the log 

transformed data series.  
 

Table 3. Tentative seasonal ARIMA models 
 

S/N SARIMA 
structure 

Parameter estimates 
(Standard error) 

t-value Selection 
criteria 

STD of 
model 

1 ARIMA (2, 1, 2) 
(1, 1, 0)12 

AR(1) = 0.0726 (0.2295) 
AR(2) = 0.4942 (0.1912) 
MA(1) = -0.1716 (0.2524) 
MA(2) = -0.2598 (0.2021) 
SAR(1) = 0.4263 (0.0676) 

0.316 
2.585* 
-0.680 
-1.285 
6.306* 

Log-likelihood = 
403.42£ 
AIC = -794.85 
AICc = -794.39 
BIC = -775.33 

0.0291 
 

2 ARIMA (2, 1, 0) 
(0, 1, 1)12 

AR(1) = 0.1066 (0.0503) 
AR(2) = 0.2346 (0.0701) 
SMA(1) = -0.7551 (0.0637) 

2.119* 
3.347* 
-11.854* 

Log-likelihood = 
417.42 
AIC = -826.83^ 
AICc = -826.62+ 
BIC = -813.82@ 

0.0265 

3 ARIMA (2, 1, 1) 
(0, 1, 1)12 

AR(1) = 0.4109 (0.2288) 
MA(1) = 0.2859 (0.0696) 
MA(2) = -0.5572 (0.2391) 
SMA(1) = -0.7689 (0.0629) 

1.796 
4.108* 
-2.330* 
12.224* 

Log-likelihood = 
418.22 
AIC = -826.43 
AICc = -826.11 
BIC = -810.17 

0.0263$ 
 

4 ARIMA (1, 1, 2) 
(0, 1, 1)12 

AR(1) = -0.2319 (0.3879) 
MA(1) = 0.1153 (0.3871) 
MA(2) = 0.196 (0.080) 
SMA(1) = -0.7582 (0.0638) 
 

0.598 
0.298 
2.450* 
11.884* 

Log-likelihood = 
416.75 
AIC = -823.51 
AICc = -823.18 
BIC = -807.25 

0.0266 
 

* denote parameters significant at 5% level of significance. 
^, +, @ and £ denotes the minimum AIC, AICc, BIC and log-likelihood values respectively. 
$ denote the minimum model standard deviation estimate (STD means Standard deviation). 

 

 
 

Fig. 4. Residuals diagnostic plots 
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3.3 Model diagnostic tests 
 
In this section, the seasonal ARIMA structure 2 residuals are subjected to the Box-Ljung test [19] for 
residuals serial correlation, Shapiro-Wilk Normality test [20] for residuals Normality and ARCH-Lagrange 
Multiplier test [21] for residuals homoscedasticity to confirm its adequacy. The p-values for all the tests 
shown in Table 4 are statistically insignificant at 5% level of significance which proves that the residuals of 
the fitted seasonal ARIMA model are Normality distributed, homoscedastic and do not suffer from 
autocorrelation effects. Fig. 4 depicts the model residuals diagnostic plots which were used to assess whether 
the selected seasonal ARIMA model appropriately captures the dependence structure of the series.  
 
In the first panel, the standardized residuals do not exhibit any obvious pattern as observed and their 
empirical ACF in the second panel shows no individually significant autocorrelation at lags > 1. Finally, the 
p-values for the Ljung-Box statistic in the third panel all clearly exceed 5% for all orders, indicating that 
there is no significant departure from white noise. The fitness of the selected Seasonal ARIMA structure as 
shown in Fig. 5 reveals that the actual and fitted series of the log-transformed series strongly agree.  
 

Table 4. Model adequacy tests 
 

Type Test statistic Degree of freedom p-value 
Box-Ljung test 937.172   16 0.3276 

ARCH-LM test 533.202   12 0.06 

Shapiro-Wilk test 98852.0w   - 0.1003 
 

 
 
 

Fig. 5. Seasonal ARIMA Model fitness plot 
 

3.4 Forecasting 
 

In modelling researchers are motivated by the desire to produce forecasts with minimum error as much as 
possible. In this section, we assess the forecasting performance of the seasonal ARIMA model. The Box-
Jenkins approach can handle effectively many time series datasets. Besides, previous researchers have 
demonstrated that the Box-Jenkins approach outperformed the Stepwise auto regression and Holt-Winters 
exponential approaches in terms of forecasting performances, Newbold and Granger [22]. We assumed that 
the condition(s) under which the seasonal ARIMA model was constructed would persist in the periods for 
which the forecasts are made. The computation of the forecast values was carried out with forecast estimate 
function: 

Year 
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T12hT12T2hT2T1hT1ThT
ˆx̂x̂x̂                              (10) 

 

The forecast error )h(ˆ
t at lead time (h) is given by 

 

 ThThTt x̂xˆ
                                                            (11) 

 

Where hTx  is the actual value at hT  . 

 
The fitted model monthly forecasts and their 95% confidence interval for 3 years after conversion to the 
actual currency (Naira) are presented in Table 5. 
 

Table 5. Forecasted values with fitted model 
 

Year Month Forecast 95% confidence intervals 
Lower Upper 

2017 Jan ₦2,010,975 ₦1,909,248 ₦2,118,100 
2017 Feb ₦1,9810,15 ₦1,847,807 ₦2,123,827 
2017 Mar ₦2,080,419 ₦1,898,814 ₦2,279,394 
2017 Apr ₦2,046,231 ₦1,837,874 ₦2,278,209 
2017 May ₦2,009,105 ₦1,776,756 ₦2,271,839 
2017 Jun ₦1,947,681 ₦1,699,611 ₦2,231,958 
2017 Jul ₦1,964,032 ₦1,692,606 ₦2,278,983 
2017 Aug ₦1,955,429 ₦1,666,090 ₦2,295,015 
2017 Sep ₦2,022,713 ₦1,705,024 ₦2,399,594 
2017 Oct ₦2,040,387 ₦1,702,724 ₦2,445,035 
2017 Nov ₦2,113,255 ₦1,746,772 ₦2,556,654 
2017 Dec ₦2,403,004 ₦1,968,318 ₦2,933,715 
2018 Jan ₦2,213,930 ₦1,790,598 ₦2,737,348 
2018 Feb ₦2,179,051 ₦1,742,184 ₦2,725,439 
2018 Mar ₦2,287,706 ₦1,807,382 ₦2,895,678 
2018 Apr ₦2,249,728 ₦1,757,671 ₦2,879,566 
2018 May ₦2,208,800 ₦1,706,986 ₦2,858,164 
2018 Jun ₦2,141,206 ₦1,637,629 ₦2,799,636 
2018 Jul ₦2,159,160 ₦1,634,831 ₦2,851,655 
2018 Aug ₦2,149,681 ₦1,611,958 ₦2,866,780 
2018 Sep ₦2,223,649 ₦1,651,839 ₦2,993,399 
2018 Oct ₦2,243,079 ₦1,651,195 ₦3,047,158 
2018 Nov ₦2,323,186 ₦1,695,113 ₦3,184,004 
2018 Dec ₦2,641,718 ₦1,911,044 ₦3,651,797 
2019 Jan ₦2,433,862 ₦1,740,634 ₦3,403,143 
2019 Feb ₦2,395,518 ₦1,694,944 ₦3,385,628 
2019 Mar ₦2,514,966 ₦1,759,711 ₦3,594,373 
2019 Apr ₦2,473,216 ₦1,712,132 ₦3,572,621 
2019 May ₦2,428,222 ₦1,663,343 ₦3,544,863 
2019 Jun ₦2,353,914 ₦1,596,046 ₦3,471,648 
2019 Jul ₦2,373,651 ₦1,593,431 ₦3,535,941 
2019 Aug ₦2,363,230 ₦1,571,058 ₦3,554,873 
2019 Sep ₦2,444,546 ₦1,609,703 ₦3,712,366 
2019 Oct ₦2,465,906 ₦1,608,737 ₦3,779,832 
2019 Nov ₦2,553,971 ₦1,651,080 ₦3,950,647 
2019 Dec ₦2,904,146 ₦1,860,768 ₦4,532,572 
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A critical look at the forecasts table above, we can deduce that the money in circulation increased gradually 
all through the period from the year 2017 –2019.  
 

4 Conclusion 
 
The paper examined the appropriate model that fits the monthly record of Nigeria Money in circulation for 
the periods January 2000 to December 2016 obtained from the Central Bank of Nigeria web database. It was 
discovered that the seasonal ARIMA (2, 1, 0) (0, 1, 1)12 model is the most suitable model for the series with 
the smallest information criteria. The purpose of this study is to look at the pattern and growth of money in 
circulation in Nigeria. The study result reveals that the money in circulation are rising steadily given the 
years considered. A critical look at the forecast values also shows the same trend and stead rise in the growth 
of the Nigeria money in circulation. Having modelled and forecasted the money circulation in the Nigeria 
economy, we recommend the need to increase central bank independence in order to reduce the effect of 
fiscal pressure on monetary policy and also create better strategies in managing money supplies in the 
economy.  
 

Furthermore, we also recommend that the issues of policy transparency and accountability should be 
addressed. These will provide an implicit commitment mechanism on the part of the central bank. 
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