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Abstract 
 

In this article, an analytical technique is provided to solve partial differential equations with variable 
coefficients. This technique is a combination of the integral transform known as Ramadan group integral 
transform with the reduced differential transform. The method can easily be applied to many nonlinear 
problems and is capable of reducing the size of computational work to overcome the deficiency that is 
caused by of the nonlinear terms that can not be handled using the known integral transforms alone.  
Illustrative examples are examined to support the proposed method. The results reveal that the suggested 
method is simple and effective. 
 

 

Keywords: Ramadan Group Transform (RGT); reduced differential transform; partial differential                  
equations with variable coefficients. 
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1 Introduction 
 
Different scientific and Physical problems have been modeled mathematically by systems of Ordinary 
Differential equations.  Many authors have solved system of Ordinary Differential equations using different 
methods and techniques, see [1-4].  Among these physical problems which have received much attention are 
heat and wave equations. Wazwaz [5] applied the Adomian method for solving such problems with variable 
coefficients. The main analytical approach in literature is Adomian method [6] and Ramadan group 
transform method [7,8]. Momani and Qaralleh [9] applied the method to the time fractional heat-like and 
wave-like equations with variable coefficients. In the literature there are numerous integral transforms and 
widely used in physics, astronomy as well as in engineering.  In order to solve the differential equations, the 
integral transform were extensively used and thus there are several works on the theory and application of 
integral transform such as the Laplace, Fourier, Mellin, and Hankel, to name but a few. In this paper, a 
combination of the new integral transform known as Ramadan group integral transform with the reduced 
differential transform is proposed to solve partial differential equations with variable coefficients. This paper 
is organized as follows. In section 2, definition of Ramadan group integral transform and its application to 
function derivatives is presented. Projected differential transform (PDTM) with its basic operations of 
PDTM is introduced in section 3. In section 4, the application of the incipient analytical technique to solve 
partial differential equations with variable coefficients is illustrated by solving several examples.  
 

2 Ramadan Group Integral Transform (RGT) [7,8] 
 
A new integral RG transform defined for functions of exponential order, is introduced. The proposed integral 

transform is a generalization of both Laplace and sumudu transforms. We consider functions in the set A , 
defined by: 
 

                                          

 

The RG transform is defined by 
 

  

 

where uands are complex variables with s and u are the transform variables for x and t , respectively. 

 
This transform which is introduced by  Raslan et al. [7] which is coupled with projected differential 
transform to solve nonlinear partial differential equations, see Ramadan and Hadhoud [8]  is considered to be  
generalization to  Laplace integral transform  [10] and Sumudu integral transform introduced by Watugala 
[11].  
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2- If we set 
1s

, we get the special case of Sumudu transform 
  

   210 ,,)();()(    udteutfutfSuG t
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The Ramadan Group Integral Transform of function derivatives: 
 
 The following relations can be easily verified. 
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Table 1. Ramadan group, Laplace and Sumudu transforms of some functions 
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3 Projected Differential Transform Method (PDTM) 
 

The definitions and operations of projected differential transform that can be avilabe in some papers see for 
example [12,13] is introduced as follows: 
 
Definition 3.1 
 

Assume the function ),( txu  is both analytic and continuously differentiable with respect to time t and space 

x, then  
 

,                                                                                                      (3.1)                            
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Definition 3.2 
 
The projected differential inverse transform of   ),( kxU   is defined as follows: 
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Then combining equation (3.1) and (3.2) we write  
 

 .                                                                                          (3.3) 

 
Table 2. Some operations of PDTM 
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4 Applications to the RGTM Coupled with PDTM 
   

In order to show the effectiveness of the RGTM coupled with PDTM for solving the nonlinear partial 
differential equations, several examples are demonstrated. For all illustrative examples, we choose examples 
that have exact solutions. 
 
Example 1 
 
Consider the initial boundary value problem [5].  
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 Taking Ramadan Group transform to both sides of equation (4.1) we have 
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 Using the initial condition (4.3), we get 
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That is, 
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Applying the inverse Ramadan Group transform of Eq. (4.4) implies that 
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Using the reduced differential transform method, this leads to the recursive relation 
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And so on, then the analytical solution of the problem (4.1 - 4.3) is given as: 
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Example 2 
 
Consider the two-dimensional heat-like model [5]. 
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,0,1,0),(
2

1 22  tyxfxfyf yyxxt                                                                        (4.6) 

 
Subject to Neumann boundary conditions 
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and the initial condition 
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Taking Ramadan Group transform to both sides of equation (4.6) we get 
 

 

 
 Which can be rewritten further as 
 

)]],,([)],,([[
2

)],,([ 22
2

tyxfRGxtyxfRGy
s

u

s

y
tyxfRG yyxx                                 (4.8) 

 
Applying the inverse Ramadan Group transform of Eq. (4.8) implies that 
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Using the reduced differential transform method, this leads to the recursive relation 
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And so on, then we have 
 

 

 

which is the analytical solution of equation (4.6 – 4.7).  
 

Example 3  
 
Consider the boundary value problem [5]. 
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where  are the 

reduced differential transform of  respectively. 
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And so on, then the solution of equation (1) is the following  
 

)1(...]
!4!3!2

[),,,( 444
432

444 tezyx
ttt

tzyxtzyxf    

 
which is the exact solution of the considered problem. 
 
Example 4  
 
We consider the one-dimensional initial boundary value problem [5]. 
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 .                                                               (4.18) 

 
Applying the inverse Ramadan Group transform of Eq. (4.18) implies that 
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which is the analytical solution of equation (4.16 – 4.18).  
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Consider the boundary value problem [5], 
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which can be rewritten as 
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Subject to boundary conditions 
 

          (4.27)      

                                         
and the initial condition 
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                                                 (4.29) 

 
Applying the inverse Ramadan Group transform of Eq. (4.29) implies that 

 
Using the reduced differential transform method, this leads to the recursive relation 
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And so on, then the solution of equation (4.26 – 4.28) is the following 
 

 

 
Example 7  
 
 Consider the linear Klein-Gordon equation in the form [6].  
 

,0),(),(),(  txytxytxy xxtt                                                                                              (4.31) 

 
with the initial conditions 
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Taking Ramadan Group transform to both sides of equation (1).   
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Applying the inverse Ramadan Group transform of Eq. (4.31) implies that 
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Using the reduced differential transform method, this leads to the recursive relation. 
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And so on, then the solution of equation (4.31, 4.32) is the following 
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which is the exact solution for the considered problem. 
 
Example 8 
 
Consider the nonlinear partial differential equation 
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with the initial condition 
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Taking Ramadan Group transform to both sides of equation (4.35) we obtain 
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Applying the inverse Ramadan Group transform of Eq. (4.35) implies that 
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Using the reduced differential transform method, this leads to the recursive relation. 
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And so on, then the solution of equation (4.35- 4.36) is the following 
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which is the analytical solution of the considered problem.   
 

Remark: Behaviour of parameters of Ramadan Group Transform 
 

Ramadan Group Transform is a generalization of both Laplace and Sumudu transforms: if 1u  , the 

transform is reduced to Laplace transform and if 1s , it reduces to Sumudu transform. 
 

5 Analysis of the Proposed Hybrid Method 
 
The method is simple, effective, efficient and easy to use where the main benefit of it is to offer the 
analytical approximation. Using this proposed method in many cases the exact solution can be obtained in a 
rapid convergent series.  The method is much simpler than other similar methods as Laplace- Adomian or 
Sumudu – Adomian methods.  
 

6 Concluding Remarks 
 

A combined form of Ramadan group integral transform with the reduced differential transform is effectively 
used to handle eight examples of nonlinear PDEs. The exact solution has been obtained even with just the 
first few terms, which indicates that the proposed method needs much less computational work. The 
proposed scheme can be applied for other nonlinear PDEs. 
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