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Abstract

There are 19 densities involved in the hierarchical Bayes model with two conditional levels, in
which the 3 densities, that is, the likelihood function, the first level prior density, and the second
level prior density, are known densities. We have written the 16 unknown densities in terms
of the 3 known densities in a theorem which is very handy for practitioners and researchers
interested in the hierarchical Bayes model with two conditional levels. Finally, we apply the
theorem to a specific hierarchical normal Bayes model with two conditional levels and obtain the
functional forms of the 16 unknown densities. Moreover, we figure out the exact distributions of
the 16 densities, which are one-, two-, or three-dimensional normal distributions.
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1 Introduction

Bayesian approaches are continually developing, with [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] being some
of the most important works. There is an ambivalent aspect of Bayesian analysis: It is sufficiently
reductive to produce an effective decision, but this efficiency can also be misused. A pertinent
criticism is that the prior information is rarely rich enough to define a prior distribution exactly.
The empirical Bayes analysis, see [13, 14, 15, 16, 17, 4, 18, 19, 20] among others, is based on a
perception of imprecision over the prior information, but at a more pragmatic level. The empirical
Bayes analysis relies on a conjugate prior modeling, where the hyperparameters are estimated
from the observations and this “estimated prior” is then used as a regular prior in the subsequent
inference. However, the empirical Bayes analysis is out of the Bayesian paradigm. Alternatively,
the hierarchical Bayes analysis (see [21, 22, 23, 4, 24, 8, 12]) considers that the imprecision over the
prior information can be done within the Bayesian paradigm, according to which, uncertainty at
any level is incorporated into prior distributions. In the simplest cases, the hierarchical structure
is reduced to two prior levels. The first level (or lower level) prior distribution is generally a
conjugate prior, owing to the computational tractability of these distributions. The second level
(or upper level) prior distribution is usually a noninformative prior due to lack of information. The
hierarchical Bayes modeling has many applications in real life, such as medicine, biology, animal
breeding, economics, and so on. In meta-analysis, several experiments about the same phenomenon
undertaken at different places with different subjects and different protocols are pooled together
(see [25, 26]).

The author in [8] has listed several justifications for the hierarchical Bayes analysis. It is also
pointed out that it is seldom necessary to go beyond two conditional levels in the hierarchical
decomposition. For the hierarchical Bayes model with two conditional levels, Lemma 10.2.9 in
[[8], pg.466] has calculated 7 (6|z) in terms of m (6|z,61) and 7 (61]|z), which in turn depend on
the 3 known densities 7 (z|0), 7 (0]01), and 7 (61). In fact, there are 19 densities involved in the
hierarchical Bayes model with two conditional levels, and they can be concisely written in Fig. 1.
Inspired by the lemma, we have calculated the remaining 16 densities in terms of the 3 known
densities, and the result is summarized in Theorem 2.1.

The rest of the paper is organized as follows. In the next Section 2, we have written the 16 unknown
densities in terms of the 3 known densities in Theorem 2.1. In Section 3, we apply Theorem 2.1
to a hierarchical normal Bayes model with two conditional levels and obtain the functional forms
of the 16 densities. Moreover, we figure out the exact distributions of the 16 densities. Section 4
concludes.

2 Main Results

We consider the following hierarchical Bayes model with two conditional levels:

|0 ~ 7 (z]6) ,
9|91 ~ T (9|01)7
91 ~ T (91) .

In [8], the 3 densities are written as m (z|0) = f (z|0), 7 (0]01) = 71 (0|61), and 7 (61) = w2 (61).
Here, we intentionally write all the densities as 7 () to lighten notations and also to focus on the
arguments. Let x € X, 0 € O, and 61 € ©:. We will use [ f(z)dz, [g(0)df, and [h(61)do:
to represent [, f (z)dz, [g g(6)df, and f(_)l h (61) db1, respectively, that is, we omit the domain of
integration to lighten notations. The 19 densities involved in the hierarchical Bayes model with two
conditional levels, can be concisely presented in Fig. 1.
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Fig. 1. The 19 densities of the hierarchical Bayes model with two conditional levels

In the hierarchical Bayes model with two conditional levels, we usually assume that the 3 densities
7 (x]0), 7 (0]61), and 7 (01) are known densities. Our goal is to write the other 16 densities in terms
of the 3 known densities.

We have the following lemma which states an equivalence relationship between two equations.
Lemma 2.1

7 (z]0,6,) = 7 (z]0) (2.1)

is equivalent to

m(x,0,01) =7 (x]0) 7 (0]01) 7 (01) . (2.2)
Proof. Assume that relation (2.1) holds. Then

m(x,0,61) = w(x|0,01)7(0,01) = w(x|0)m(0|61)7(61).
Conversely, if relation (2.2) holds, we derive that
m(x]0,01)7(0,601) = (x,0,01) = w(x|0)7w(0|01)7(61) = w(x|0)7(6,61),

and thus 7(z|0,60,) = 7(z|9). O
To calculate the other 16 densities in terms of the 3 known densities, we make the following
assumptions.

(A1). (2.1) or (2.2) holds true.

(A2). All the 19 densities are positive proper densities, that is, they are positive and integrate to
1.

(A3). (z,0,01) € X x © x ©1, so that changing the order of integration is allowed.

With the preparations of Lemma 2.1 and the three assumptions, we have the following theorem, in
which we have written the 16 unknown densities in terms of the 3 known densities.

Theorem 2.1 Let the assumptions (A1), (A2), and (A3) hold. Then we can calculate the other 16
densities in terms of the 3 known densities w (z|0), w (0|61), and 7 (01) as follows. The following 5
densities are related to x.

77(23)://ﬂ(m|9)7r(9\91)7r(91)d9d91,
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7 (x]601) :/71'(2:|9)7T(9\91)d9
7 (210,01) = m (2[0) ,

7 (2|0) 7 (0]61) 7 (61)
7 (0,0:|x) = T T (l6) 7 (0101) = (6) oo o 7 (x]0) w (0]61) 7 (61)

(0, 01) =T (0|91) s (01) .
The following 5 densities are related to 6.

wwy:/wwwnwwgwh

fﬂ' 9|91)7r(61)d91
T [ (2]0) 7 (0161 7 (61) dOd,
m (]0) 7 (0]61)
S (=|0) 7 (0]61) df
_ w(x]0) 7 (6]61) ™ (61)
7 (x,01]0) = T (0102) (61 doy x 7 (x]0) 7 (0|01) ™ (61)

7 (x,01) = /ﬂ' (z|0) 7 (0)601) 7 (61) dO.
The following 5 densities are related to 6.

[ (x]60) 7 (8]61) 7 (61) O
J [ (2]0) w(0]01) w (01) dOdb: . /W(l’\@)w(ewl)w(@l)d&

7 (0]x) =

oc/w(:v|0)7r(0|01)7r(01)d91,

7 (0|z,61) = 7 (z|0) 7 (0|61)

™ (61]x) =

_ 7w (0]61) 7 (6h)
7 (61]0) = T (016:) = (61) b o m(0|61) 7 (6:1),

_ _ 7w (0]61) 7 (01)
7 (01]x,0) = 7 (0:10) = fﬂ(9|91)7r(91)d91 x 7 (0]61) 7 (61),
7 (x,0001) = 7 (|0) 7 (0]61) ,

m(x,0) :/ﬂ(m|0)7r(0|91)7r(91)d01.

Finally, the joint density
m(x,0,01) =7 (x]0) 7 (0]01) 7 (01) .

Note that in the above theorem the observation x can be replaced by the sample x. If the random
variables x, 0, or 0; are discrete, then the integrals can be replaced by the sums.

Proof. Note that 4 of the 16 densities are obviously represented by the 3 known densities. They
are 7 (z|0,01), 7 (0,01), (), and 7 (x,0,6,). Apart from the 4 obvious densities, the other 12
densities need to be calculated. We find that some of the 12 densities can be calculated by the 3
known densities and the 4 obvious densities, and they should be calculated first. So their calculation
order is 1, and we refer them to order 1 densities. Some of the remaining densities depend on the
order 1 densities, and we refer them to order 2 densities. Finally, order i densities depend on
order ¢ — 1 densities for ¢ = 2,3,4,5. The 12 densities, their dependence densities, and the order
of calculation is summarized in Table 1. In the table, M;, i = 1,2,3, represents Method ¢, and
O;, 1 =1,2,3,4,5, represents Order i. In Table 1, note that 7 (6, 01|z) can be calculated by three
methods. By method 1, 7 (6, 61|z) depends on 7 (z) which is an order 3 density, so in this case
7 (0, 61|x) is called an order 4 density. By method 2, 7 (6, 60:1|z) depends on 7 (0|, 01) and = (61|z),
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which are order 3 and order 4 densities, so in this case 7 (6,0:1|z) is called an order 5 density. By
method 3, 7 (0, 01|z) depends on 7 (01|x,0) and 7 (|z), which are order 1 and order 4 densities, so
in this case 7 (0, 61|z) is called an order 5 density. We call 7 (0, 61|z) an order 5 density because we
use the highest order of the density of the three methods. The order of the density is useful only
to facilitate the calculations by orders.

Table 1. The 12 densities, their dependence densities, and the order of calculation

Target densities | Dependence densities Order of calculation
w(x) M;i: w(0); Ma: w(x]61) (O2) O3
7 (x|61) w(x,0]61) (O1) 02
Mi: 7 (x) (Os);
T (9,91|$) M2: ™ (0|x,01) (03), 7T(01|17) (04); 05
Ms: w(01|x,0) (01), 7 (0|z) (O4)
7 (0|x) w(0), w(x) (O3) on
7 (0|x,01) 7 (x]61) (O2) O3
w (x,01|0) M;i: w(0); Ma: w(0:]0) (O1) 0>
7 (x,01) 7w (x|61) (O2) O3
7 (61]z) 7 (z) (Os), (x]61) (O2) O4
s (91‘9) 01
7 (01]z,0) 01
7 (x,0]01) O1
7 (z,0) Os

Now we calculate the order 1 densities 7 (61]6),

is easy to show that

m (61]x,0),

7 (x,0]01), and 7 (z,0) sequentially. It

m(0]61)m(01)  w(0]61) m(61)
w(61]0) = (0 _f7r(0|91)7r(01)d€1O(W(G‘al)ﬁ(gl)'
For 7 (61]z,0), we have
7 (01]|z,0) 7 (x|0) 7 (0) = 7 (61]2,0) 7 (z,0) = 7 (x,0,01) = 7 (x|0) 7w (0|61) 7 (6:1)

and therefore,
7 (01]z,0) =

For 7 (z,0]61), we have

m(x,0]01) 7 (61) =

and thus,

It is easy to show that

m(z,0) =m(x|0) 7

After that, we calculate the order 2 densities 7 (z|61) and 7 (x,61]|0) sequentially.

m(001) 7 (61) _

@) =m

m (0]61)  (01)

Sy =) =

7w (x,010,) =

7 (x]601) depends on w (x, 6]61), and thus

w (x|601) :/ﬂ'(w,ﬁ\el)dﬂz/ﬂ(m|6’)7r(6’|91)d9

fﬂ' 9|01

m(x,0,01) =7 (x|0) 7

(z|0) 7

7 (01) do; o (0]61) 7 (1) -

(0161) 7w (61)

(0101) .

(x\e)/w(awl)w(al)del - /71(35|9)7r(9|91)7r(91)d01.

The density
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The density 7 (z,601|0) can be calculated by two methods. Method 1: We have
7 (@,601]0) w (0) = 7 (2,0,01) = 7 (x]0) 7 (0161) 7 (61) ,
and thus

o (z _ m (x]0) 7 (8]61) w (61) _ 7 (z|0) 7 (0|61) 7 (61) o 7 (210 7 (6,
(z,0110) = (0) T (0101)  (61) doy (z]0) 7 (6]61) 7 (61) -

Method 2: As before, we have
(2, 01]0) = 7 (z|0) 7 (0]61) 7 (61)  w(x|0) 7 (61]0) 7 (0) — o (w]6) 7 (61]0)

7 (0) a 7 (6)

_ ”fﬁ'(ﬂﬁ;})ﬂ'ﬁg&?%f o 7 (]0) 7 (0]01) 7 (61) -

Next, we calculate the order 3 densities 7 (z), 7 (6|z,61), and 7 (z, 61) sequentially. The density
7 (x) can be calculated by two methods. Method 1 is by exploiting the expression of 7 (), so

7 (z) = /w(a;w)w(e) o = /7r(x|0)/7r(0|91)7r(01)d91d9

://7r(x\0)7r(9|01)7r(01)d01d6://7r(x|0)7r(0|01)7r(01)d0d01.

Method 2 is by exploiting the expression of 7 (z|01), so

m(z) = /W(az|91)7r(01)d01 = //Tr(x|9)7r(€\01)d97r (01)do, = //7r(x|0)7r(0|91)7r(01)d9d01.
For 7 (6|z, 61), we have
7w (0|x,01) 7 (x|01) 7 (61) = 7w (0|z,01) 7 (x,61) = 7 (2,0,61) = 7 (z|0) 7 (0161) 7 (61),

and thus (z0) 7 (0]61) (x]0) 7 (0]61)
7 (0|x,01) = T (2]01) = [ (x]0) 7 (0]61) db

m (z]0) 7 (6]61) .

For 7 (x,01), we have

7 (2,00) = 7 (2]01) 7 (61) = /ﬂ(x|9)7r(9|91)d07r (01) = /n(mw)n(awl)w(al)de.
Then, we calculate the order 4 densities 7 (0|z) and 7 (61|x) sequentially. For 7 (0|z), we have
w(@lo)7(6) o (xl6) [ 7 (0100) 7 (61) oy
7r(a:) ff (x]0) 7 (0]61) 7 (61) dOdo,
ff7r ‘0 9|91) (01)d6’d91 0(/71'(:6|9)7T(9|91)7r(01)d91.

For 7 (61]z), we have

7 (0]x) =

7T(a:|91)7r(91) B f (m|0) (0|91)d97r (61)

[T @) n (91> de /

= 77 @lf) = (0161) = (6r) dodor x [ 7 (x|0)m (0|61) 7 (61)db.
Finally, we calculate the order 5 density 7 (6,61 |x) by three methods. Method 1: We have

m(0,601|x) 7 (x) = 7 (x,0,601) = 7 (x]0) 7 (0|61) 7 (61)

m (Or|z) =




Zhang et al.; ARJOM, 6(1): 1-19, 2017; Article no. ARJOM.35481

and thus

o) = T @l0) w010 7 (01) _ 7 (]0) 7 (0]01) 7 (61) o 7 (210) 7 (010, 7 (6
7 (0, 01x) = m(x) - ff7r(x|9)w(9\91)w(91)d0d01 (@16) 7 (8162) m (61) -

Method 2: We have

m (2(6) m (0]61) J 7 (x|0) 7 (6]61) 7 (61) dO
[ (210) 7 (0]62) dO [ [ 7 (x0) 7 (0]6+) 7 (6+) dOd6,

7 (z]0) 7 (0]61) 7 (61)
=[x (z]0) 7 (0]61) 7 (61) dOdO o< 7 (2]0) 7 (0]61) 7 (01) .

7 (0,01|x) =7 (0]z,01) 7 (01|x) =

Method 3: We have
7 (6]61) 7 (61) Jm(x]0) ™ (|9) (01) db,

™ (0, 0lw) =7 Orle, O)m Ole) = i S 00y dn T [ (216) 7 (6161 = (01) dBds
_ m (x]0) 7 (0]61) 7 (61)
= T (l0) 7 (0101) 7 (6r) dgag, * " @O O16)T 0.
The proof is complete. O

3 An Example

In this section, we will provide an example to illustrate the usage of Theorem 2.1. We consider the
following hierarchical normal Bayes model with two conditional levels:

{ 7 (z]0) ~ N (0,1),

7 (0]61) ~ N (61,1), (3.1)
7 (61) ~ N (0,1).

Therefore,
wolo) = o[-0
(016 = = exp |- L0
w(01) \/%exp 7%}

As described in Theorem 2.1. Let the assumptions (A1), (A2), and (A3) hold. Then we can calculate
the 16 densities in terms of the 3 known densities 7 (z]0), 7 (0]61), and 7 (61) as follows. In general,
we can only obtain the functional forms of the 16 densities. However, for the simple hierarchical
normal Bayes model, we can figure out the exact distributions of the 16 densities. They are one-,
two-, or three-dimensional normal distributions.

Before calculating the 16 densities, we provide a standard Bayesian calculus tool, that is,

ym\@wN(&%) (9|ymN]\](%’ngzm)7
{ QNN(HO’%)v :>{ ymNN(MO,U?(n%Jr;))’ (3.2)

where ji0, no, and o2 are known.
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We first calculate the 5 densities related to x. Since x, 0, and 0; are normal, the integrals in this
section are from —oo to co. We will omit the integration limits to lighten notations. We have

x) ://7T(a:|9)7r(9\01)7r(61)d9d01
://w@mnwmmwgwﬁe
:/}@ww/wmamwgwlw

:/wumnww&

That is, 7 (z) is the marginal distribution of 7 (z|#) and 7 (#). From (3.1) and (3.2), we can easily
obtain

{ ™ (z0) ~ N (0,1),
m(0) ~ N (0,2).
Moreover, by (3.2), we have
™ (z) (0,3)

Therefore,

For 7 (z|01), we have

m(x)|01) = /7T (z]0)  (6|61) do
that is, 7 (z|f1) is the marginal distribution of 7 (x|6) and = (0]61). By (3.2), we have
m (z]61) ~ N (61,2).

Hence,

For 7 (z|0,61), we have
m(x]0,01) = 7w (z]0) ~ N (0,1).

Thus,

7 (2]0,0,) =

o[
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For 7 (0,0:|x), we have
m (x]0) 7 (0]61) 7 (01)
7 ()
_0)2 _ 2 92
L exp [_(ac -6) ]\/%exp [_(0 o1) ]\/%exp [_?1}
1 z2
Varvs P (*Ts)

:j—fexp{—é [<x79>2+(9791>2+9%7ﬁ]}

e
{

_% [20% + 203 — 200, — 2x9]}

m(0,0:]z) =

[(z—0)°+(0—01)> + 9?]}

N

X exp

=exp{— [0° + 07 — 00, — 0]} . (3.3)

It remains to show that 7 (6,6:|x) is a two-dimensional normal distribution N2 (ue, pe,, 00, 06, , p)
with appropriate parameter values. Let

F=2(1-p%, (3.4)

where
c=+2(1-p%)>0.

1 (9—ue)2 (91—#«61)2 0 — po 01 — po,
— 8 + () —gp— 0L PO
2(1—p?) o) oo, o) 06,

() sy )
c o1’} 09, g9 00,

We have

7 (6,01|x) o exp

| (0= re 2+ 01 — po, 2_2 0 — po 01 — po,
Ccog cog, p COp COg,

2 52 2 +2 2
C 0'9 C 0'61 C°0900,

02 — 2090 + p3 0 — 2up, 01 + uj 2
- por T Ho | 2 Eo7L T Moy P (001 — g, 0 — 161 + prope,)

[ 92 02 2 ) 2 —2 2
O(exp{_ A S p 991+( 2u29+ 2puol >9+< 2u2el+ 2pue )91”
co; 2o c?ogoyg, c?o; ctogoy, c?op, c?ogog,

01
(3.5)
Comparing (3.3) and (3.5), we find that
0> + 07 — 00, — x6
0? 03 2 -2 2 -2 2
=537 212 T2 L 991+< 2M29+ 2pM01)0+ 2M291+ 20#0 O1.
C 0'9 C 0'91 C 0906, C 0'9 C 0900, C 061 C 090¢,
Comparing the coefficients of 82, 62, 061, 6, and 61, we obtain
L = 1
czo'g - ’
(12;2 = 17
2
_5209;91 = _1’ (36)
—2n PHG _
cguge + 62090;1 = I
Hoq 2ppe _
620'9 + 620'90'91 - 0
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By noting (3.4) and solving the first three equations of (3.6), we easily obtain

g9 = \/7 061 = \/77 p_7

Substituting the values of 09, 0y, , and p into the last two equations of (3.6), we easily obtain

Ho = 3T, fo, = Z .

3 3

2
(0, 01]x) ~ <M 3% Ho = 3 ro,00= \/7091 \/7P—>

For 7 (6,01), we have

Consequently,

o exp {—% (0% + 2607 — 2001]
— exp {— [%92 . 991]}
—exp{— [(9ﬁ0>2+<0110)2_991]}' (3.7)

It remains to show that 7 (6,61) is a two-dimensional normal distribution Nz (g, pe,, o6, 00, , p)
with appropriate parameter values. Let ¢ be given by (3.4). We have

1 0 — o\’ 01 — o, \° 0 — g 01 — po,
”“’"’”“"p{ 20— 7) {( ) () e
2 2
— exp _12 (9—M9) +(91—M01> _2p9—M991—M91
c oo o6, o 00,
2 2

R GCAR DR | R

cog Ccoo, 00'9 COo,

Comparing (3.7) and (3.8), we find that
0-0\*  [(6.-0)\?
() (%) -

_ (O —pe 2+ 01 — po, _29 po b1 — po,
cog cog, CoOg COg, '

Comparing the corresponding terms, we obtain

Ho = 0
Mo, = 0,
cog = V2, (3.9)
COg, = 1,
—2p _ _
c2ogog - L.

10
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By noting (3.4) and solving the last three equations of (3.9), we easily obtain

1
Uo:\/i, oo, =1, P:ﬁ-
Consequently,
1
m(0,01) ~ N2 (/w =0,p0, = 0,00 = V2,00, =1,p= E) :

Now we calculate the 5 densities related to 6. For 7 (), we have

x(0) = /w(e\el)w(ol)del.

That is, 7 () is the marginal distribution of 7 (8|61) and 7 (61). From (3.1) and (3.2), we can easily
obtain

7(0) ~ N (0,2).

Therefore,

7 (0) = ﬁexp (-%) .

For 7 (9]z), we have
x (0]z) /ﬂ(x\e)w(ewl)w(el)del
x /exp [— (“”_29)2} exp {—w] exp [—% o,
— exp [—@] /exp {—% [(0— 61)? + 62] } a6,
= exp [— (- 9)2] I,

2

where

I

/exp{—% [(6—61) +9§]}d91 = /exp{—% [207 — 200, +92]}d91
/exp{f {0? 00, + %62]}d01 - /exp{ [(91 - ;9>2+ %02 }d01
= /exp{— (91 - ;9>2 - ieQ}dol = exp <—%02> ~/exp{— (91 - ;0)2}d01.

Note that the probability density function (pdf) of a normal distribution integrates to 1, that is,

/00 L ex {f(x_u)wdm*l
oo V21O P 262

N /: exp {—%} dr = \/276. (3.10)

By (3.10), we have

1 1 1
I; = exp <—102) . \/271'% X exp (—192) .

11
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Therefore,

Hence,

For m (0|x, 01), we have

7 (0]z,01) o 7 (2|0) 7 (6]61)
x exp {—@} exp {—W] = exp {—% [(z —0)*+ (0 — 01)%] }

= exp {—% [20% — 2260 — 20,0 + 2 +9ﬂ}

o<exp{[92(x+91)9]}—exp{ |:<9x+291) _ (33—1—401)

ol 52)

Hence,

For 7 (z,61|0), we have

7 (x,61]|0) x 7 (z|0)

3

(0161) 7 (61)
[(z—0)> + (6 —61) +ef]}

X exp

8
|

—
A

—0)2+2 (67 — 06)

)
2ot 9]
S -

X exp

Il
[¢]
%
k!

R
@
i
ko]
/—’H/—/H/—/H/—’H
|
— N M\H w\»—t

12
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It remains to show that 7 (z, 61]6) is a two-dimensional normal distribution N2 (ps, e, , 0z, 0oy, p)
with appropriate parameter values. Let c? be given by (3.4). We have

1 T — [y 01 — o, T — pa 01 — po;
_ —2
7r(a:,91|9)o<exp{ 2(1—p?) {( Oz ) ( oo, L Oz oo,
2 2
_eXp{l2 [(fﬂuz) +<017u91> 72pw*u191 uel]}
C O g9, Og g0,
z—pe\> (01— 2 0
_exp{—[< "””) +< ! “91> Y “91]}. (3.12)
(o cog, COg COo,

Comparing (3.11) and (3.12), we find that

2 0\ 2 2 2
x—0 N 01— 3 _ ek 01 — po, _o T — pa b1 — po,
V2 1 Oy cog, L COx cog,

Comparing the corresponding terms, we obtain

0
pa =0, po, = 35

3"
Moreover,
Coy = V2,
COp, = 1,
c2 CETrN :

By noting (3.4) and solving the above three equations, we easily obtain

1
O'g;Il, 06, :%, p:O
Consequently,
0 1
7 (2, 0116) ~ (Mac—9 M91:§70w=17091:%7020>~

For m (x,61), we have

7 (x,01) oc 7w (x]61) w (61)
x exp{—% (x—91)2}exp{—%9§} = exp{— E (x—01)° + %9%]}
= exp {— E (z® — 2261 + 67) + %9%} } = exp {— B:ﬁ + Zaf - %x@l]}
:exp{ [(z - 0)2 N (921/\_/30)2 - ;xel] } (3.13)

It remains to show that = (z,0:) is a two-dimensional normal distribution N3 (px, pt6,, 0z, 06, , p)
with appropriate parameter values. Let ¢ be given by (3.4). We have

1 T — [z 01 — e T — ptz 01 — e
0 - L -2 —
7 (z, 1)o<exp{ 21— ) [( =, ) ( 7or ) . o,
1 )\ 2 _ 2 Oy —
ol B[ () ]
c (o 00, Og 06,
T — 2 01 — 2 T — g 0
:exp{— [( ”"”) +< ! “"1> —gpt—He 1 “91]}. (3.14)
cog coe, COz oo,

13
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Comparing (3.13) and (3.14), we find that
2 2 2 2
z—0 n 61 -0 7lx91: el N 01 — pe, 72p«’r—ﬂz01—,u91.
2 2/ V3 2 COs cog, COx cog,
Comparing the corresponding terms, we obtain

pz =0, pg, = 0.

Moreover,
COx = 2,
2
COp, = ﬁ )
—2p o1
2oy oo, 2°

By noting (3.4) and solving the above three equations, we easily obtain

1
O'z:\/g, 091:17p:ﬁ.

Consequently,
1
7T(I,91) ~ N (N’I = 07/1‘91 = ngl‘ = \/§70‘91 = 1,,0: ﬁ) .

Now we calculate the 5 densities related to 6;. For 7 (61|z), we have

" (Brla) = T2
exp {— [12” + 107 — 5261] }
X 2
exp (—%)

X exp {— [29% - %x@l] } = exp {—% {9% - %x&l} }

1 17°
X exp —@ 01—§x

1 2
~N(zz,2).
(523
Hence,
1 1 177
7r(91a:)—exp{— 3 |:01—*I£:| }
\/27r\/§ 2.3 3

For 7 (61]0), we have
7 (01]0) o< 7 (6]61) 7 (61)
o[-0y [ 2] < e { L - 1)

— exp {_% (207 — 2991]} = exp {— [67 —66:]}

el 6}
(2

14



Zhang et al.; ARJOM, 6(1): 1-19, 2017; Article no. ARJOM.35481

Another method to determine the distribution of 7 (61]0) is by utilizing the Bayesian tool (3.2). We

have (|) ( 1)
916, 01,1 10410 1\ _ (01
{ 7 (01) ~ N (0,1). Ol N( 111 ’1+1>_N<2’2>'

Hence,

1 1 07°
m(61|0) = T exp{— I |:91 —7] }
\V4 271'% 2- b 2
For 7 (61|z,0), we have

1 1 01° 6 1
7r(01|x,0)—7r(91\0)—m1 exp{Q.; {01—5] }~N(2,2),

For 7 (x,0]61), we have

7 (2,0101) = 7 (210) 7 (0101)
x exp {—M} exp {_M] = exp {—% [z — 0> + (0 - 0:)?] }

2 2
:exp{f

:exp{_
_exp{— [(m:/;l)Q + (9_191)2 - (93—01)(9—91)} } (3.15)

It remains to show that 7 (z,0|01) is a two-dimensional normal distribution N2 (tz, te, 0z, 09, p)
with appropriate parameter values. Let ¢ be given by (3.4). We have

(2,0]01) o exp 4 ——— T—ps )"y (O=po)' ) @—pO—po
AT, U)o exp 2(1—-p? O o9 P Oz L)
1 T — g 2 0 — o 2 T — g 0 — po
= = _gpt " H=T T HO
exp{ c? |:( O ) Jr( oo ) P O L)
2 2
:exp{_{(w—ﬂx) +(9—7M0> _QPWM]}_ (3.16)
COx COg COg COg

Comparing (3.15) and (3.16), we find that

z — 01 2 60— 0, 2 T — g 2 0 — po 2 T — e 0 — Lo
—(x—061)(0—-0,) = —= —_— —2p—— .
( V2 ) +< 1 ) (@=6)( ) ( COg + cog p cos  COg

Comparing the corresponding terms, we obtain

[((z —61) = (6~ 61))* + (6 — 61)]

N = N =

[(z—01)*+2(0—61)° —2(z—01) (0 — 91)]}

po = 01, pg = 01.

Moreover,
COy = \/57
cog = 1,
—2p _ 1
c2o,o9 :
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By noting (3.4) and solving the above three equations, we easily obtain
1
(J‘I:\/§7 op=1, p=—.
r="
Consequently,
1
7l'($,9|91) ~ NQ (lj/a; = 017/19 = 9170'x = \/5,0’9 = 1,p= %) .

For 7 (x,0), we have

7 (x,0) =7 (0|z) 7 (x)

() (152) ]} -

It remains to show that 7 (z,0) is a two-dimensional normal distribution N2 (i, te, 0z, 00, p) with
appropriate parameter values. Let ¢® be given by (3.4). We have

1 T — [ 2 0 — po 2 T — phe 0 — po
”(”’9)“6Xp{2<1—p2> {( =) () 2’3%09]}
2 2
e[ ¢ () )
c Oz (o) Og g9

T — ? 0 — ? T — e 0 —
= exp{— |:( ,ugc) + ( Me) — 2p‘uxu9:| } (3.18)

COg COg COg COg

Comparing (3.17) and (3.18), we find that

2 2 2 2
(m—O) n 0;0 7‘%9:(10—#2) +(0—u9) 72px—ug§0—,u9.
V2 7 COx cog cox  COg

Comparing the corresponding terms, we obtain

pae =0, po = 0.
Moreover,
COx = \/5,
2
COg = 3
—2p — -1
20,09 .

By noting (3.4) and solving the above three equations, we easily obtain

2
ox =V3, 00 =2, p= 3

16
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Consequently,

2
7 (x,0) ~ N2 (uz—07u9—07az—\/§709—\/§7p— 3>‘

Finally, for 7 (z, 0, 601), we have

w(x,0,01) = (x|0) 7 (0]61) 7 (01)

(xexp{—% [(1:—9)24-(9—91)24—9%]}. (3.19)

It remains to show that = (z,0,6:1) is a three-dimensional normal distribution N3 (@, ) with
appropriate parameter values, where

M= (MI7M9’M91)/7 271 =A= (a’ij)3><3 .

Let © = (z,0,601). We have

w000 xep{ -3 @-w = @-p}—eo{-J@-wae-w). G20
Comparing (3.19) and (3.20), we find that
(@ —p) A(@—p) = (z—0)" + (0 - 01)" + 67

= 22 4 20% + 20% — 2260 — 200,

1 -1 0\ [z
=(2,0,00) | -1 2 —1]][#8
0 -1 2/ \6&

Comparing the corresponding terms, we obtain

“:(07070),7
1 -1 0
st=4=(-1 2 -1},
0 -1 2
1 -1 o\ "' 3 2 1
S=A1t=|-1 2 -1 =12 2 1
0 -1 2 11 1

4 Conclusions

There are 19 densities involved in the hierarchical Bayes model with two conditional levels, in which
the 3 densities 7 (z|), 7 (0]61), and 7 (f1) are known densities. Fig. 1 provides these 19 densities.
Note that 4 of the 16 unknown densities are obviously represented by the 3 known densities.
The remaining 12 unknown densities, their dependence densities, and the order of calculation are
summarized in Table 1. After that, we have written the 16 unknown densities in terms of the 3
known densities in Theorem 2.1 which is very handy for practitioners and researchers interested
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in the hierarchical Bayes model with two conditional levels. Finally, we apply Theorem 2.1 to a
hierarchical normal Bayes model with two conditional levels and obtain the functional forms of the
16 densities. Moreover, for the simple hierarchical normal Bayes model, we figure out the exact
distributions of the 16 densities, which are one-, two-, or three-dimensional normal distributions.
In other hierarchical Bayes models, one may not obtain analytical expressions of the densities, then
one should be able to derive the densities numerically.
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