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Abstract

Gravitational-wave detectors have opened a new window through which we can observe black holes (BHs) and
neutron stars (NSs). Analyzing the 11 detections from LIGO/Virgo’s first gravitational-wave catalog, GWTC-1,
we investigate whether the power-law fit to the BH mass spectrum can also accommodate the binary neutron star
(BNS) event GW170817, or whether we require an additional feature, such as a mass gap in between the NS and
BH populations. We find that with respect to the power-law fit to binary black hole (BBH) masses, GW170817 is
an outlier at the 0.13% level, suggesting a distinction between NS and BH masses. A single power-law fit across
the entire mass range is in mild tension with (a) the detection of one source in the BNS mass range (∼1–2.5Me),
(b) the absence of detections in the “mass-gap” range (∼2.5–5Me), and (c) the detection of 10 sources in the BBH
mass range (5Me). Instead, the data favor models with a feature between NS and BH masses, including a mass
gap (Bayes factor of 4.6) and a break in the power law, with a steeper slope at NS masses compared to BH masses
(91% credibility). We estimate the merger rates of compact binaries based on our fit to the global mass distribution,
finding = -

+R 871BNS 805
3015 and = -

+ - - 47.5 Gpc yrBBH 28.8
57.9 3 1. We conclude that, even in the absence of any prior

knowledge of the difference between NSs and BHs, the gravitational-wave data alone already suggest two distinct
populations of compact objects.

Unified Astronomy Thesaurus concepts: Astrophysical black holes (98); Compact objects (288); Stellar mass black
holes (1611); Neutron stars (1108); Gravitational wave astronomy (675); Gravitational waves (678);
Astrostatistics (1882)

1. Introduction

The mass distribution of neutron stars (NSs) and stellar-mass
black holes (BHs) is fundamental to our understanding of
stellar evolution, binary formation channels, supernova phy-
sics, and the nuclear equation of state (EoS). There has been
considerable effort to measure the mass distribution for NSs
and BHs based on radio, X-ray, and optical observations of
these systems(Valentim et al. 2011; Özel et al. 2012; Kiziltan
et al. 2013; Antoniadis et al. 2016; Alsing et al. 2018; Farrow
et al. 2019; Farr & Chatziioannou 2020). Indeed, there are
several features in the mass distribution that are particularly
relevant for understanding the physics of these systems,
including the maximum NS mass, the minimum BH mass,
and the purported mass gap between the most massive NS and
the least massive BH. The maximum possible NS mass is
governed by the nuclear EoS, and there has been significant
work to extract this value by measuring the masses of
electromagnetically identified NSs (see Lattimer 2012 for a
review). The maximum mass of the astrophysical population of
NSs is currently estimated to be ∼2–2.6Me (Antoniadis et al.
2016; Alsing et al. 2018; Farr & Chatziioannou 2020).
Although the maximum mass among astrophysically occurring
NSs in binary systems may, in general, differ from the
maximum gravitational mass supported by the nuclear EoS
(see, e.g., discussions in Miller et al. 2019; Landry et al. 2020),
it provides a useful lower bound on this uncertain quantity.
Meanwhile, analyses of the BH mass distribution based on the
sample of ∼20 BHs in X-ray binary systems suggest that the
minimum BH mass does not coincide with the maximum NS

mass, implying that there is a mass gap between the two
populations (Özel et al. 2010; Farr et al. 2011). However, it has
been proposed that this observed mass gap may not be
physical, but rather an artifact of X-ray selection effects
(Kreidberg et al. 2012). Recently, a low-mass BH, possibly
occupying the mass gap, was discovered in radial velocity
searches(Thompson et al. 2019), and a candidate mass gap BH
was discovered in the compact binary system GW190814
(Abbott et al. 2020d).5 Understanding whether or not there is a
mass gap between NSs and BHs in binary systems has
implications for supernova theory and binary physics(Fryer &
Kalogera 2001; Belczynski et al. 2012; Breivik et al. 2019).
Gravitational-wave (GW) detections by Advanced LIGO

(Aasi et al. 2015) and Virgo(Acernese et al. 2015) provide a
rapidly growing sample of binary black hole (BBH) and binary
neutron star (BNS) systems. Analyzing the masses of these
detections can provide a measurement of the maximum NS
mass (Chatziioannou & Farr 2020) and identify the presence of
a mass gap between NSs and BHs (Littenberg et al. 2015;
Mandel et al. 2015, 2017; Kovetz et al. 2017). This
measurement is challenging because large observational
uncertainties for the component masses often make it difficult
to determine whether individual systems are in the NS mass
range, the mass gap, or the BH mass range(Hannam et al.
2013; Littenberg et al. 2015; Mandel et al. 2015). Littenberg
et al. (2015) and Mandel et al. (2015, 2017) found that ∼100
low-mass detections are required to confidently detect the
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5 The secondary component of GW190814, with mass = -
+m M2.592 0.09

0.08 ,
may alternatively be the most massive NS ever observed.
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presence of a mass gap and measure the maximum NS mass
and minimum BH mass if these features are sharp. Alter-
natively, it has been proposed that tidal information encoded in
the GW signal can be used to distinguish populations of BBH,
BNS, and neutron star–black hole (NSBH) systems(Flanagan
& Hinderer 2008; Read et al. 2013; Chen & Chatziioannou
2020; Fasano et al. 2020), and Wysocki et al. (2020) recently
proposed an analysis to jointly measure the tidal deformability
and derived quantities like the EoS together with the mass and
spin distribution of the BNS population. However, the imprint
of tides is much harder to extract from the GW signal than the
masses(Lackey & Wade 2015).

In this paper, we focus on the mass distribution alone and
characterize a possible mass feature, such as a gap, between the
BNS and BBH populations. To do this, we jointly analyze the
masses of the 10 BBH systems and one BNS system detected
by the LIGO/Virgo Collaboration (LVC) in their first two
observing runs (O1 and O2) and published in the catalog
GWTC-1(Abbott et al. 2019a). We thereby explore whether
GW170817, the one BNS system of GWTC-1, is distinguish-
able from the BBH population based only on its mass.

In addition to the events published by the LVC in GWTC-1,
new candidate BBHs have been identified in the public O1 and
O2 data(Nitz et al. 2019, 2020; Venumadhav et al. 2020). In
order to ensure that we understand the selection function for the
catalog (see Section 2.2), we do not analyze these additional
systems here, but given that they are relatively high-mass
BBHs, we would not expect their inclusion to change our main
conclusions. Furthermore, three events from the third observing
run (O3) have been published by the LVC to date: GW190425,
GW190412, and GW190814(Abbott et al. 2020b, 2020c,
2020d). Both GW190425, a system with a total mass of
∼3Me, and GW190814, a system with a secondary mass of
∼2.6Me, are directly pertinent to the subject of this work, as
they feature systems that may fall within the mass gap. Without
the context of the full set of O3 events, we cannot yet include
these additional systems in our population analysis. However, it
is clear that the methods described here will be relevant when
analyzing events from O3 and beyond.

The remainder of the paper is organized as follows. Section 2
describes the technical details of the analysis, including
the parameterization employed for the mass distribution
(Section 2.1) and the statistical framework of the population
analysis (Section 2.2). Section 3 explores the extension of a
BBH power-law fit down to the BNS mass range. We find that
a single power law struggles to simultaneously fit the relatively
high rate of detections in the BNS mass range (one) compared
to BBH detections (10) and the lack of detections in between.
In Section 4 we fit for possible features between the NS and BH
mass range, including a dip and/or break in the power law, and
quantify the preference for these features. In Section 5 we
discuss how our results can be used to classify detections into
NS and BH categories (Section 5.1) and to infer the merger rate
of BNS, NSBH, and BBH systems (Section 5.2), as well as
future prospects (Section 5.3). We conclude in Section 6.

2. Methods

We describe the parameterization of the mass distribution in
Section 2.1 and then discuss the statistical framework upon
which we base our inference in Section 2.2.

2.1. Mass Model

For our simplest model of the component mass distribution,
we consider a power law with a variable minimum mass mmin,
slope α, and maximum mass mmax (Fishbach & Holz 2017;
Kovetz et al. 2017; Abbott et al. 2019b; Wysocki et al. 2019):

{( ) ( )µ < <a
p m m m m mif

0 else.
. 1PL

min max

This POWER LAW adequately fits the BH mass distribution as
inferred from the GWTC-1 BBH detections(Abbott et al.
2019b; Fishbach et al. 2020). When adding the BNS detection
to the fit, we gradually build on top of this simple mass
distribution, introducing phenomenological features to capture
possible deviations from a pure power law.
To allow for the possibility of a dip or gap in the mass

spectrum, we multiply the original POWER-LAW mass spectrum
by a notch filter,

( )( )
( ) ( )
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which suppresses the distribution when g g< <mlow high. We
refer to this model as POWER LAW + DIP. The parameters ηlow
and ηhigh set the sharpness of the dip’s edges, while the
amplitude of the dip is set by the parameter A. In principle, we
can allow the data to inform our knowledge of the sharpness of
the gap edges, in addition to their placement and the depth of
the gap. However, since we cannot meaningfully constrain all
of these features with only 11 events, we fix the edges to be
near-infinitely sharp: ηlow=ηhigh=50. With sharp edges,
A=1 corresponds to an empty gap, while A=0 corresponds
to no dip; A<0 corresponds to a bump rather than a dip. We
verify that the mass distribution we infer by simultaneously
fitting the sharpness parameters ηlow and ηhigh, in addition to
γlow, γhigh, and A, is nearly identical to the mass distribution
inferred under the reduced model with ηlow=ηhigh=50. This
is due to the degeneracies between the parameters of
Equation (2) within the large statistical uncertainties on the
shape of the gap.
Similar to the notch filter that models the mass gap, we can use

a low-pass filter that “turns off” the mass distribution when
<m mmax to model the edge of the upper/pair-instability mass

gap, rather than the sharp cutoff at mmax. In other words, we can
replace the condition that ( )> =p m m 0max by multiplying
p(m) by

( ) ( )
⎛
⎝⎜
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-

l m
m

m
1 , 3
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1

where large n corresponds to a sharp cutoff and small n
corresponds to a gradual turnoff. Similar to the low-mass-gap’s
edges, we do not have enough detections to meaningfully
constrain the steepness of the upper mass gap, and we fix the
cutoff to be sharp: n=50.
As a final complication, we include the possibility of a break

in the power law at γhigh, so that objects below the gap may
follow a different power-law slope α1 from objects above the
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gap with slope α2:
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The most general one-dimensional mass distribution we
consider is therefore

( ∣ ) ( ) ( ) ( ) ( )l µ ´ ´p m p m n m l m , 5BPL

with free parameters { }a a g gm m A, , , , , ,min max 1 2 low high denoted
by λ. We refer to this as POWER LAW + DIP + BREAK.

Figure 1 demonstrates some of the features of our parameter-
ization. Physically, γlow may correspond to the maximum NS
mass and γhigh to the minimum BH mass. However, the mapping
between the physical properties, such as the maximum NS mass,

and features in the overall mass distribution, such as the onset of
a mass gap, may be more complicated due to, for example, the
supernova mechanism or accretion from a binary partner. This
idealized model allows us to explore whether a single power law
(A= 0; α1=α2) can fit the entire compact object mass spectrum
or whether there is a distinguishing feature between the NS and
BH mass spectrum in the form of a dip (0<A<1), gap (A= 1),
and/or break in the power law (α1 ¹ α2). If such a feature is
found, it can be used to identify subpopulations of the compact
object mass distribution. In this case, the total mass distribution
can alternatively be modeled as a mixture model of subpopula-
tions (e.g., Kapadia et al. 2020).
As in Doctor et al. (2020) and Fishbach & Holz (2020), we

assume a simple pairing function to generate a joint distribution
over both component masses that make up a binary system,
given a particular component mass distribution:

( ∣ ) ( ∣ ) ( ∣ )
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where Λ represents the total set of free parameters
{ }a a g g bm m A, , , , , , ,min max 1 2 low high , or the union of λ and
{β}, and Θ is the Heaviside step function that enforces our
labeling convention that m2�m1. Here we take the pairing
function to be a power law in the mass ratio. More complicated
pairing probabilities are possible, and indeed, any function

( )p m m,1 2 can be factored into a product of the one-
dimensional mass distribution and a pairing function. We stick
with this simple model because it adequately reproduces the
observed distribution of GWTC-1(Fishbach & Holz 2020).

2.2. Statistical Framework

The analysis presented in this work consists of two main steps:
(a) model fitting, i.e., given the GW data, measuring the
population parameters of the mass distribution model; and (b)
model checking, i.e., simulating sets of observable data from the
fit to the model and evaluating how closely they resemble the
actual set of observed data. This subsection provides an overview
of these calculations; the details are provided in the Appendix.
Using the parameterized mass distributions from Section 2.1,

p(m1, m2| Λ), we construct a hierarchical Bayesian inference to
determine the appropriate population-level parameters, Λ, given
the observed data {Di} (Loredo 2004; Mandel 2010; Mandel
et al. 2019; Thrane & Talbot 2019). We focus on the mass
distribution alone, fixing the spin distribution (uniform in spin
magnitude and isotropic in orientation) and redshift distribution
(flat in comoving volume and source-frame time). The posterior
on the population hyperparameters, p(Λ | {Di}), is evaluated
according to the methods in the Appendix. Each draw from this
hyperposterior p(Λ | {Di}) corresponds to a mass distribution
p(m1, m2| Λ). Averaging the mass distribution over the
hyperposterior yields the posterior population distribution:

( ∣{ }) ( ∣ ) ( ∣{ }) ( )ò= L L Lp m m D p m m p D d, , . 7i i1 2 1 2

We often present the mass distribution in terms of the
astrophysical merger rate density, denoted by dN dm dm dV dtc s1 2 ,
where Vc is the comoving volume6 and ts is the time as measured

Figure 1. Example phenomenological distribution described in Section
2.1. Top: one-dimensional mass distribution parameterized according to
Equation (5): a broken power law with slopes α1 and α2 and break at γhigh,
with a notch filter between γlow and γhigh with amplitude A. Bottom:
corresponding two-dimensional distribution, constructed from the one-dimen-
sional distribution with a mass ratio–dependent pairing function following
Equation (6). The color bar denotes the probability density p(m1, m2).

6 We adopt the Planck 2015 cosmology throughout(Ade et al. 2016; Astropy
Collaboration et al. 2018).
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in the source frame, rather than the probability density p(m1,
m2). While the probability density p(m1, m2) integrates to unity,
the rate density integrated over the masses (m1, m2) yields the
overall merger rate, dN dV dtc s. The rate density is related to
the probability density according to Equations (A1)–(A3).

Once we fit the population model, we perform a posterior
predictive check by comparing the distribution of observed
masses as implied by the fit to the model, or the posterior
predictive distribution (PPD), to the actual set of observed
events, or the empirical distribution function (EDF). This
comparison provides strong goodness-of-fit tests, along with
further insight into why certain features of the overall mass
distribution are favored.

3. Can a Single Power Law Fit NS and BH Masses?

In this section, we discuss the ability of a simple power law
(POWER LAW of Equation (1)) to reproduce the 11 detections of
GWTC-1. We ask whether the BNS detection, GW170817, is
distinguishable from the BBH population based on its mass
alone. If we did not know (based, for example, on its
electromagnetic counterpart or prior astrophysical information)
that GW170817 belonged to a separate class of compact
objects, would we have classified it as a population outlier
based on its mass? Do the GW data alone suggest the existence
of distinct populations of NSs and BHs?
We begin by exploring whether the same power law that

fits the BBH detections can also accommodate the BNS

Figure 2. Corner plot(Foreman-Mackey 2016) comparing (orange) the power-law fit to the 10 BBHs and (blue) the fit to all 11 events. Contours show 50% and 90%
credible regions. The main effect of adding the BNS event GW170817 to the power-law fit is on the mmin constraints (first column), particularly the joint α–mmin
constraints (first column, third row). The low mass of GW170817 forces m 1.3min but prefers a relatively steeper power-law slope compared to the BBH-only joint
fit for α–mmin. However, the power-law fit to all 11 events remains consistent with the BBH-only fit within the 90% level.
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detection, GW170817. The POWER-LAW fit to the 10 GWTC-1
BBHs yields = -

+m M6.2min 4.5
2.4 , a = - -

+1.34 0.80
0.87, =mmax

-
+ M42.2 5.5

20.2 , and b = -
+7.2 5.4

4.4 (median and 90% equal-tailed
intervals; see Figure 2). Unlike previous power-law fits to the
BBH(Abbott et al. 2019b; Roulet & Zaldarriaga 2019;
Fishbach & Holz 2020), we allow the prior on the minimum
mass to extend down to 1Me, as opposed to 3 or 5Me.
Specifically, we assume flat priors on all hyperparameters in the
range [ ]Îm 1, 10min , [ ]Îm 30, 100max , α ä [−4, 2], β ä [−4,
12]. We find that although the posterior on mmin peaks at
8.2Me, there remains posterior support down to the lower prior
boundary of mmin=1Me. The posterior probability at the
peak =m M8.2min is ∼three times larger than at =mmin

M1 .
While the POWER-LAW fit to the BBH does not rule out

masses as low as 1Me, we would not expect to detect them
very often. Based on the BBH-only POWER-LAW fit, we would
expect to detect a GW170817-like system, with primary mass
m1  2Me, in a set of 11 total detections only 0.13% of the
time, suggesting that GW170817 is a fairly atypical system
with respect to the BBH population.

If we now include GW170817 and fit the POWER-LAW
model to all 11 events in GWTC-1, we find constraints on the
hyperparameters that are broadly compatible with the BBH-
only fit; see the comparison in Figure 2. The largest shift
between the BBH-only fit and the all-event fit is in the joint
(mmin, α) posterior, as seen in the third row of the first column
of Figure 2. Due to the correlation between α and mmin, if we

Figure 3. Posterior population distributions for three models, in order of
increasing complexity: POWER LAW, POWER LAW + DIP, and POWER LAW +
DIP + BREAK. Each panel shows the differential merger rate density,
dN dV dt dmc s 1, as a function of primary mass m1. The colored lines show
the median rate density, and the colored shaded bands show 1σ (68%) and 2σ
(95%) credible intervals. In gray, we plot 500 draws from the population
posterior under each model.

Figure 4. Posterior predictive check comparing the observed primary mass
distribution as predicted from our models (thin colored curves; each curve
corresponds to a draw from the hyperparameter posterior) with the empirical
distribution from the 11 GWTC-1 events (black; each point corresponds to a
draw from the population-informed single-event posterior). The solid colored
line in each panel corresponds to the posterior average (mean) of the predicted
distributions, while the two dashed colored lines denote the symmetric 90%
interval around the predicted curves. The model is a good fit to the data if the
empirical distribution (black) is contained within the range of model
predictions (colored). The top panel shows that the POWER-LAW model has
trouble accounting for GW170817, while the other models account for all 11
events.
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constrain <m M2min in the BBH-only fit, we find a
shallower slope, a = - -

+1.09 0.56
0.79, compared to the slope in

the all-events fit, a = - -
+1.52 0.35

0.45. Nevertheless, the hyperpara-
meter posteriors agree within the 90% levels between the
two fits.

The inferred primary mass distribution for the POWER-LAW
fit to the 11 GWTC-1 events can be seen in the top panel of
Figure 3, while the goodness of fit of the POWER-LAW model
can be visualized in the posterior predictive check of Figure 4.
The thin colored curves of Figure 4 show 1000 draws from the
PPD of observed primary masses. Each curve corresponds to a
different draw from the hyperparameter posterior. The solid
line corresponds to the mean of these 1000 realizations, and the
dashed lines show 90% credible bounds. In black, we show
1000 draws from the EDF. Each draw from the EDF is found
by reweighting the single-event posteriors to the population
prior. From the updated posterior for each of the 11 events, we
draw an m1 sample and order these 11 points from smallest to
largest. The EDF passes through (∼1.6Me, 1/11), driven by
the primary mass of GW170817, which is above the 90%
predictive band. While this is suggestive, it is not terribly
unexpected from noise fluctuations affecting the most extreme
members of a set(Weibull 1951; Fishbach et al. 2020). Based
on the POWER-LAW fit to all events, we expect to detect an
event with primary mass m1<2Me in a set of 11 events 17%
of the time, a significant shift from the expected 0.13% for the
BBH-only fit.

Another way of evaluating the goodness of fit of the models
is shown in Figure 5, which compares the expected fraction of
detections in different primary mass bins—the NS mass range
m1 ä [1, 2.5]Me, the mass gap range m1 ä [2.5, 5]Me, and the
BH mass range m1 ä [5, 100]Me—as predicted from the
POWER-LAW fit (in blue). These values are found by integrating
the PPD cumulative distribution functions of Figure 4 between
the specified mass boundaries. The boundaries used here are
chosen only for illustrative purposes, although the maximum
mass achievable by NSs is an area of active study(e.g.,
Margalit & Metzger 2017; Abbott et al. 2018a, 2020a; Rezzolla
et al. 2018; Shibata et al. 2019; Essick et al. 2020; Landry et al.
2020; Essick & Landry 2020). Regardless of the precise
boundaries, the true mass distribution should be able to

accurately predict the fraction of events detected in each
category. For the remainder of this work, we will use the NS,
mass gap, and BH labels to refer to these bins in primary mass,
unless stated otherwise.
Despite the large measurement uncertainties on the primary

mass, each of the GWTC-1 events falls clearly into one of these
mass-based categories, so that we can trivially count one NS,
zero mass gaps, and 10 BHs. Letting fNS, fmass gap, and fBH
denote the expected fraction of detections in the NS, mass gap,
and BH mass range according to the true underlying mass
distribution, the observed number of detections in each
category, out of N total detections, follows a trinomial
distribution:

( ∣ )
!

! ! !
( )=

p N N N f f f

N

N N N
f f f

, , , ,

. 8N N N

NS MG BH NS MG BH

NS MG BH
NS MG BH

NS MG BH

Given =N 1NS , Nmass gap=0, and NBH=10, we can calculate
the posterior on fNS, fmass gap, and fBH according to

( ∣ )
( ∣ )

( )
( )µ

´

p f f f N N N

p N N N f f f

p f f f

, , , ,

, , , ,

, , .

9

NS mass gap BH NS mass gap BH

NS mass gap BH NS mass gap BH

0 NS mass gap BH

We take the Jeffreys prior for ( )p f f f, ,0 NS mass gap BH , which is a
symmetric Dirichlet distribution with a concentration parameter
α=0.5. The posterior is then given by a Dirichlet distribution
with parameters ( )a = + + +N N N0.5, 0.5, 0.5NS mass gap BH .
The posterior on fNS, fmass gap, and fBH, produced by drawing
from a Dirichlet distribution in this way, is used to produce the
gray shaded regions in Figure 5. Here the expected number of
events in category  , á ñNdet , is related to the expected fraction

f by á ñ = N Nfdet , so ⟨ ⟩ ⟨ ⟩/ /=N N f fdet mass gap det NS mass gap NS,
and so on.
According to the POWER-LAW fit to all 11 GWTC-1 detections,

we should detect one BNS system per -
+48 38

370 systems containing
a BH. This is in mild tension with our detection of one BNS
system per 10 BBH systems, which implies that the detection ratio
is á ñ á ñ = -

+N N 8.8det BH det NS 6.5
51.0 (median and 90% symmetric

Figure 5. Left: ratio of the expected number of detections with primary mass in the MG (defined here as 2.5–5 Me) compared to the expected number of NS detections
(defined here as 1–2.5Me). Right: ratio of the expected number of detections with an NS primary mass (in the mass range 1–2.5 Me) compared to a BH primary mass
(in the mass range 5 Me–100 Me). Here GWTC-1 contains zero events with m1 in the MG, one BNS, and 10 BBHs, leading us to measure an mass-gap–NS ratio of
∼zero and an NS–BH ratio of ∼0.1; the 90% highest posterior density credible intervals on these values are shown by the gray shaded regions (see the text for more
detail). The simple POWER-LAW model predicts at least as many mass gap detections as NS detections. Meanwhile, when we allow for both a dip and a break in the
power law, we lower the expected fraction of mass-gap detections and raise the expected fraction of NS detections relative to BH detections, allowing us to better fit
the observed number of detections in each bin.
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interval). Meanwhile, according to the POWER-LAW fit, we expect
-
+2.37 0.98

2.06 systems with a mass gap primary mass per BNS event.
Again, this is in mild tension with our observation of no systems
in the mass gap and one BNS system, which suggests the
detection ratio á ñ á ñ <N N 1.9det MG det NS at 90% credibility.

In summary, we find that within the statistical uncertainties,
the POWER-LAW model provides a marginally adequate fit to
the 11 GWTC-1 detections. However, tensions emerge, hinting
at possible features in the mass spectrum between the NS and
BH mass range.

(a) The event GW170817 is a low-mass outlier with respect to
the BBH population. Based on the BBH-only POWER-LAW
fit, we would expect to detect a system with m1<2Me,
given 11 total detections, only 0.13% of the time. When
we update the POWER-LAW fit with all 11 detections, the
hyperparameters shift to accommodate GW170817 (see
Figure 2), and this increases to 17% of the time.

(b) The mass gap is too empty. The POWER-LAW fit to the 11
detections overpredicts the number of mass gap detec-
tions compared to NS detections. We would expect to
detect a greater number of BNS systems than mass-gap
systems, given 11 detections, only 12% of the time.

(c) The event GW170817 is a surprise. The POWER-LAW fit
underpredicts the number of NS detections compared to
BH detections; out of 11 total detections, we would
expect to detect one NS primary mass and 10 BH primary
masses only 9% of the time based on this fit.

In the following section, we characterize possible features
between the NS and BH mass spectrum, including a mass gap
and a power-law break, and explore how their presence
alleviates these tensions.

4. Characterizing a Feature between NSs and BHs

The previous section examined the ability of a single power
law to fit the BNS and BBHs of GWTC-1. Below, we fit the
full mass distribution of Equation (5) to the GWTC-1 events.
We investigate the presence of a feature between the NS and
BH mass spectrum, quantifying the evidence in favor of a mass
dip, gap, or break between NS and BH masses.

The first extension we consider to a power-law mass
spectrum is POWER LAW + DIP, parameterized by the notch
filter of Equation (2), which suppresses the merger rate for
masses γlow<m<γhigh. The free parameters of this model
are the minimum NS mass mmin, maximum BH mass mmax,
power-law slope α, amplitude of the dip A, dip boundaries γlow
and γhigh, and mass-ratio power-law slope β. While it is
important to remember that the lower edge of the dip may or
may not correspond to the maximum NS mass, depending on
whether BHs exist below the gap, this subtlety does not affect
our analysis. For convenience, we introduce a parameter
describing the gap width w=γhigh−γlow and set flat priors on
mminä[1Me, 1.4Me], [ ] Îm M M35 , 100max , α ä [−5,
2], A ä [0 , 1], γlow ä [1.4Me, 3Me], w ä [2Me, 6Me], and
β ä [−4, 12].

With this choice of priors, we allow for a mass gap starting at
1.4Me<γlow<3Me with a width of 2Me<w<6Me. Our
priors on the dip location are externally motivated by
observational and theoretical expectations for NS masses (see,
e.g.. Özel & Freire 2016; Essick et al. 2020; Farr &
Chatziioannou 2020; Landry et al. 2020). We verify that our
results are not driven by the prior choice with a “look-elsewhere”

test, fitting the full POWER LAW + DIP + BREAK model to only
the 10 GWTC-1 BBH detections and finding that, although we
cannot rule out the presence of a second dip in the mass
spectrum, there is no compelling evidence for a dip in the BBH
mass range; we simply recover the prior on A.
The fit to the primary mass distribution under POWER LAW +

DIP is shown in the middle panel of Figure 3. Comparing to the
top panel, which shows the POWER-LAW fit, we can see that the
data prefer some decrease in the merger rate between
g = -

+2.2low 0.5
0.6 and g = -

+6.7high 1.5
1.0 Me.

7 The posterior on the
amplitude of the dip, A, peaks at A=1, corresponding to a
perfect mass gap, with a tail down to A=0, corresponding to
an uninterrupted power law. We find that a perfect mass gap is
preferred over a POWER LAW by a factor of 4.6. As an
additional test, we fix A=1 within our parameterization of
Equation (2) and allow the sharpness of the gap edges, ηlow and
ηhigh, to vary between ηlow=ηhigh=0 (no gap) and
ηlow=ηhigh=50 (perfect mass gap).8 We find that within
this model, a perfect gap (ηlow=ηhigh=50) is preferred over
an uninterrupted power law by a Bayes factor of 6.0, similar to
the preference we recover in the default model. While this is
suggestive, noise fluctuations are expected to occasionally
produce Bayes factors at least this large (see, e.g., Agathos
et al. 2014). Indeed, Jeffreys (1961) suggested that the ratio
would need to be 100 to be decisive.
The second feature we allow in the mass distribution is a

break in the power law in addition to a dip. The fit to the
primary mass distribution under the POWER LAW + DIP +
BREAK model is shown in the bottom panel of Figure 3. In this
model, we adopt the same priors on the free parameters mmin,
mmax, A, γlow, w=γhigh−γlow, and β. Within the full model,
we recover similar constraints on the parameters describing the
dip, still favoring a mass gap A=1 over a simple power law
A=0 by a factor of ∼4. Again, this is suggestive but not
definitive.
The POWER LAW + DIP + BREAK model additionally allows

for a break in the power law at γhigh, with a power-law slope α1

at m<γhigh and slope α2 at m>γhigh. This allows for the
possibility that the NS and BH mass spectra are described by
different power laws, with a possible gap between them. We set
flat, uninformative priors on α1 and α2: α1, α2 ä [−8, 2]. The
joint posterior on α1 and α2 can be seen in Figure 6. We find
that α1, the NS power-law slope, is likely steeper than α2, the
BH power-law slope. The data prefer α1<α2 at 91%cred-
ibility, with a = - -

+2.581 0.87
0.72 and a = - -

+1.162 0.45
0.50. The

inferred value of the BH power-law slope, α2, is very similar
to the power-law slope inferred with the BBH-only fit,
a = - -

+1.34 0.80
0.87, and prefers to be slightly shallower than the

power-law slope inferred under the POWER-LAW model fit to
all events, a = - -

+1.52 ;0.35
0.45 see the comparison in Figure 6.

We can understand the preference for both a dip and a break
between NS and BH masses by returning to the posterior
predictive checks of Figures 4 and 5. The simple POWER-LAW
fit underpredicts the fraction of detections in the NS range
while overpredicting the fraction of detections in the mass gap
range, compared to the current observations of one BNS, zero
mass gaps, and 10 BBHs. In the POWER-LAW model, the rate of

7 The posterior on γlow is not well constrained and follows the prior, which is
to be expected from only one detection between mmin and glow and the low
sensitivity at low masses.
8 Recall that our default choice throughout this work is to fix
ηlow=ηhigh=50.
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mass gap detections must be at least 1.5 times as large as the
NS detection rate (at 90% credibility); increasing the fraction of
NSs within the POWER-LAW model necessitates an increase in
the fraction of mass gap events.

By introducing a dip, we decrease the expected number of
mass gap detections to <1.9 per NS detection (90%
credibility), while slightly increasing the expected fraction of
NS detections to one NS detection per -

+28 22
288 BH detections.

Introducing a break in the power law in addition to a dip
allows us to further increase the expected number of NS
detections to one NS detection per -

+13 10
141 BH detections,

bringing it close to the GWTC-1 observation of one BNS per
10 BBH detections while maintaining a low rate of mass gap
detections (<0.80 per NS detection).

5. Discussion

Given the evidence for a feature between NSs and BHs, we
now consider several implications, including delineating our
knowledge about specific objects in Section 5.1, updated
astrophysical rates in Section 5.2, and prospects for the coming
years in Section 5.3.

5.1. Updated Single-event Classification

Although not conclusive, the GWTC-1 detections show hints
of a feature between NS and BH masses. Future detections will
allow us to resolve this feature with increased precision, which
may provide a natural boundary between the NS and BH
populations. Meanwhile, our inference of the compact object
mass distribution allows us to update the mass measurements
of individual events, often allowing for much tighter
constraints than the posteriors inferred under uninformative

priors(Galaudage et al. 2019; Fishbach et al. 2020; Miller et al.
2020). For example, if the population fit reveals a mass gap
between the NS and BH masses, applying the population prior
to events for which the likelihood measurement uncertainty is
broad and overlaps with the gap will significantly tighten the
mass posteriors, forcing the posterior support to lie below or
above the gap(Fishbach et al. 2020). Simultaneously fitting the
population distribution and the masses of events can self-
consistently classify detected sources into NSs and BHs(Farr
et al. 2015; Mandel et al. 2015). However, we note that the
feature that emerges in the mass distribution may not
necessarily correspond to the boundary between NS and BH
masses but instead may be complicated by accretion,
hierarchical mergers, or primordial BHs(Carr et al. 2016; Yang
et al. 2018). External priors on the NS maximum mass may
also be applied, together with the population fit, in order to aid
in the classification(Abbott et al. 2020d; Essick &
Landry 2020).

5.2. Compact Object Merger Rates

Regardless of whether there exists a mass feature that
naturally distinguishes between subpopulations of compact
objects, our fit to the full mass distribution allows us to derive
the compact object merger rate in different mass bins without
explicitly counting the number of events in each category(Farr
et al. 2015; Kapadia et al. 2020). Defining the BNS category
as 1Me<m2<m1<2.5Me and the BBH category as
5Me<m2<m1<100Me, we calculate the merger rate for
each category by integrating the inferred rate density
dN dV dt dm dmc s 1 2 under the POWER LAW, POWER LAW +
DIP, and POWER LAW + DIP + BREAK models within the
specified (m1, m2) region.
The results are shown in Figure 7. In the POWER-LAW model,

the BNS and BBH merger rates are closely correlated, but adding
the features of the POWER LAW + DIP and POWER LAW + DIP +

Figure 7. Astrophysical merger rate within two different mass bins: for BNS,
1 Me<m2<m1<2.5 Me, and for BBH, 5 Me<m2<m1<100 Me, as
inferred by each of the models. The dashed open probability density curves
centered below ~ - - 10 Gpc yr2 3 1 show the BBH rate inference and the
solid filled curves show the BNS rate inference for the POWER LAW (blue),
POWER LAW + DIP (orange), and POWER LAW + DIP + BREAK (green) models.
For comparison, the gray shaded regions show the median and 90% credible
intervals of the BBH (dashed) and BNS (solid) rates inferred by the LVC in
Abbott et al. (2019a, 2019b). Allowing for a dip and break between NS and BH
masses tends to decorrelate the merger rates, increasing the inferred BNS
merger rate and decreasing the BBH merger rate.

Figure 6. Joint posterior on the power-law slopes α1 (NS mass range) and α2

(BH mass range) for the full POWER LAW + DIP + BREAK model (green). The
two-dimensional contours show 50% and 90% credible regions, while vertical
dashed lines show one-dimensional 90% credible intervals. For comparison, we
show the power-law slope inferred under the POWER-LAW fit to (blue) only the
BBH and (orange) all GWTC-1 events. We recover α1<α2 with 91%cred-
ibility; α1=α2 in this model reduces to the POWER LAW + DIP model.
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BREAK models increases the BNS merger rate estimate while
decreasing the BBH rate estimate. The BBH rate under the
POWER-LAW model is = -

+ - - 77.7 Gpc yrBBH 38.5
60.6 3 1, while

the full POWER LAW + DIP + BREAK model yields
-
+ - -47.5 Gpc yr28.8

57.9 3 1. Meanwhile, the inferred BNS merger rate
is = -

+ - - 199 Gpc yrBNS 173
817 3 1 under POWER LAW and

-
+ - -871 Gpc yr805

3015 3 1 under POWER LAW + DIP + BREAK. The
full POWER LAW + DIP + BREAK model better matches the rate
estimates of Abbott et al. (2019a, 2019b), which assumed
separate BNS and BBH populations, of = -

+R 53.2BBH 28.2
55.8 and

= -
+ - - 1540 Gpc yrBNS 1220

3200 3 1. These trends for the astrophy-
sical rates are consistent with the detection rates explored in
Figure 5.

We can also extrapolate our models to calculate the rate in
the NSBH category (5Me<m1<100Me, 1Me<m2<
2.5Me), although we caution that this is a significant
extrapolation, since our simple pairing function of Equation
(6) may not apply to the NSBH mass region. Because the
GWTC-1 detections are all consistent with having equal
component masses, our fits strongly disfavor unequal mass
pairings and predict a low NSBH rate, with an upper 95% limit
of - -8.2 Gpc yr3 1.

We reiterate that our choice of mass bins to classify NS,
mass gap, and BH sources and calculate the corresponding
rates is only illustrative. Future detections will enable us to set
the mass bins according to the measured feature in the mass
distribution or external measurements of the NS maximum
mass while accounting for uncertainty in the bin edges(Essick
& Landry 2020). Additional detections will also allow us to
meaningfully constrain the rate as a function of redshift
(Fishbach et al. 2018; Abbott et al. 2019b).

5.3. Looking Ahead

As seen in Section 4, the preference for a dip/break between
NS and BH masses can be understood by the dearth of detections
between ∼2 and 8Me relative to the number of detections below
the purported mass gap (GW170817) and above the gap (10
BBHs) in GWTC-1. Recall that, defining the NS range as m1 ä
[1, 2.5]Me, the mass-gap range as m1 ä [2.5, 5]Me, and the
“low-mass” BH range as m1 ä [5, 10]Me, the POWER-LAW fit
would have us detect -

+2.40 1.02
1.95 mass-gap systems for every BNS

system and one mass-gap system for every -
+2.33 0.91

1.92 low-mass
BH system (90% credibility). For a wider MG region, defined
between 2.5 and 7Me, we expect -

+4.63 2.33
5.55 mass-gap systems per

BNS system and -
+1.39 0.54

0.79 mass-gap systems per low-mass BH
system (7Me<m1<10Me).

While the current preference for a dip/break is suggestive,
with only 11 events, the statistical uncertainties remain large.
The situation will improve with future detections. For example,
with 100 detections, the featureless POWER-LAW model would
require at least -N 2BNS detections with true primary masses
in the mass range 2.5–5Me, where NBNS is the number of
detections in the range 1–2.5Me (95% credibility). For a wider
MG region between 2.5 and 7Me, POWER LAW predicts at
least NBNS+1 mass gap detections. Additionally, the POWER-
LAW model predicts no more than nine BNS detections given a
total of 100 detections. Observing a smaller number of mass-
gap detections or a larger number of BNS detections would
provide further evidence for a feature between the NS and BH
mass range.

Of course, it is important to carry out the full population
analysis that takes into account the measurement uncertainties
of detected systems. Even in the presence of an absolute gap
between NSs and BHs, some observed masses will be scattered
into the gap due to noise fluctuations(Mandel et al. 2017;
Fishbach et al. 2020). For the power-law type of distributions
explored here, we expect ∼2% of detected BHs to lie within 1σ
of the MG and ∼45% of detected NSs to lie within 1σ of the
gap, assuming 1σ measurement uncertainties of 20%. For a gap
width w>σ  1Me, we expect that ∼50% of the masses
close to the gap on either side will be erroneously observed
within the gap, or ∼1% of BHs and ∼20% of the detected NS
primary masses. If there exists an absolute mass gap, and we
observe five detections with NS primary masses along with 50
detections with BH primary masses, we would expect ∼1.5
erroneous observations in the gap, while the expectation from a
continuous power law would be ~ 10 10 detections,
making it possible to identify the presence of a mass gap at
∼3σ with fewer than 100 detections (see a similar argument in
Mandel et al. 2015). These predictions are consistent with the
population analysis of Mandel et al. (2017), which employed a
clustering analysis on simulated data and found that ∼20
detections on either side of the mass gap would enable its
confident detection.
In summary, the ability of future detections to precisely

measure features in the mass spectrum depends on the depth
and width of the purported mass gap, as well as the sharpness
of the features relative to the uncertainty of the observed
masses. If the features are sharp, we expect to converge on their
location relatively quickly, scaling with the number of
detections N as N−1, but if they are less abrupt, we expect to
converge as N−0.5 (Chakrabarty et al. 2003; Mandel et al.
2015).
The discussion throughout this paper has focused mainly on

the one-dimensional primary mass distribution, because the
GWTC-1 events all consist of nearly equal component masses.
In the future, looking for structure in the two-dimensional mass
distribution will be important for characterizing a potential
population of NSBH systems. The approach described here to
simultaneously fit the mass distribution of all compact objects
in binary systems will allow us to explore how the component
masses of NSBH systems relate to the component NSs and BHs
found in BNS and BBH systems.

6. Conclusion

This work presents the first analysis to jointly fit the mass
distribution of NSs and BHs in merging binary systems using
data from the first two observing runs of Advanced LIGO/
Virgo. We assume no external knowledge of NS and BH
subpopulations and ask whether GW170817, the least massive
event detected, can be identified as an outlier in the BBH-only
population based only on its mass, the property that is easiest to
measure with GWs. We find that in the context of the BBH
population, the masses of GW170817 are exceptional; based on
the BBH-only fit, we would expect to detect an event with
m1<2Me out of a set of 11 events only 0.13% of the time.
We next try to fit a continuous power law across the entire

mass range, finding that it is possible to extend the POWER-
LAW fit to the BBH population of Abbott et al. (2019b) down
to the masses of GW170817, but some tensions emerge.
Namely, the power-law fit underpredicts the number of
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detections in the BNS mass range while overpredicting the
number of detections in the MG range.

While more events are required to judge whether the tensions
in the POWER-LAW fit are statistically significant, we find that
these tensions can be alleviated by allowing for a dip and/or
break in the mass distribution between NS and BH masses.
When we include the possibility of a dip, we find that a mass
gap of width >2Me is preferred over an uninterrupted power
law by a factor of 4.6 in GWTC-1. When we further allow the
power law to take a different slope α1 at low (NS) masses,
compared to α2 at high (BH) masses, we find that this is also
preferred, with α1 steeper than α2 at 91% credibility.

Considering only the 11 GW events from O1+O2, we find
preliminary evidence for two distinct populations of sources,
with hints of a gap in between. Jointly fitting the mass
distribution of NSs and BHs in binary systems allows us to
self-consistently calculate merger rates in different categories
and pool our knowledge regarding NS and BH masses across
BNS, BBH, and NSBH systems. The methods described here
will provide important insights going forward, especially in
light of the latest discoveries from LIGO/Virgo. These include
a high-mass BNS system with a total mass of ∼3Me (Abbott
et al. 2020b) and a highly asymmetric BBH or NSBH system
with a secondary mass of ∼2.6Me (Abbott et al. 2020d). With
100 events, as might be expected by the end of O3 or early in
O4 (Abbott et al. 2018a), GW data alone may provide a clear
indication of the existence of separate NS and BH populations,
as well as important constraints on the existence and associated
parameters of a mass gap between NSs and BHs.
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Appendix
Analysis Details

We write the number density of sources as

( ) ( ∣ ) ( )= L
dN

dzdm dm
p z p m m, , A1

1 2
1 2

where the merger rate density is given by
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1

with Vc the comoving volume, ts the time as measured in the
source frame, and Tobs the total observing time, or 169.7 days
for O1+O2(Abbott et al. 2019a). We assume that the rate
density  is constant in redshift, consistent with the GWTC-1
detections(Fishbach et al. 2018; Abbott et al. 2019b), so that
the normalization term  is related to the astrophysical merger
rate  by
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and the redshift distribution is
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For convenience, we denote ( ) ( )( )ò= + -A z dz dV dz z1
z

cmax 0
1max ,

and we pick zmax=1, as no sources are detectable beyond this
redshift for O1/O2(Abbott et al. 2018a). Marginalizing away
the normalization term  with a prior ( ) µ - p 1, we
obtain a posterior for the population hyperparameters (Λ) given
the observed data { }i (Mandel et al. 2019),
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is the marginal likelihood for the ith event, and
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is the fraction of events we expect to detect in a population
described by Λ. The term ( ∣ )P m m zdet , ,1 2 in Equation (A7) is
the probability of detecting a specific system with component
masses m1 and m2 at redshift z. We calculate this term
following the semianalytic calculation described in Abbott
et al. (2016, 2019b), which assumes that sources are detected if
they have a single-detector signal-to-noise ratio ρ>8,
calculated with the Advanced LIGO Early High Sensitivity
noise power spectral density(Abbott et al. 2018a).
Note that in addition to the fixed redshift distribution, we

assume a fixed spin distribution (uniform spin magnitudes with
isotropic orientations) and focus on only the mass distribution.
As such, we neglect the possible impact of spins within the
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selection function ( ∣ )P m m zdet , ,1 2 , as detectability is predo-
minantly determined by the component masses and the redshift.

Sampling from the posterior distribution of Equation (A5)
produces our main results regarding the shape of the mass
distribution. However, we can obtain estimates of the overall
rate from

( ∣{ }) ( ∣ { }) ( ∣{ })

( ∣{ }) ( )( )

ò
ò

= L L L

= L Lb- L

    


 

p d p p

d e p

,

1
A8

i i

N
iobs

and use Equation (A3) to convert  to the astrophysical
merger rate. Here Nobs is the number of observations, and we
have again assumed a prior ( ) µ - p 1.

We estimate ( ∣ )LZ i by reweighting publicly available
posterior samples(Abbott et al. 2019c) that were originally
drawn assuming a prior p0(m1, m2, z),
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where ( ∣ ) ( )( ) ( ) ( ) ~ m m z p m m z p m m z, , , , , ,j j j
i1 2 1 2 0 1 2 . For the

samples of GWTC-1, the single-event sampling prior is
(Abbott et al. 2019b)
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where dC is the comoving distance, =d c HH 0 is the Hubble
distance, and ( ) ( )=E z H z H0 (Hogg 1999).

When carrying out posterior predictive checks, we estimate
the EDF by drawing samples from the single-event posterior.
For each draw Λ of the hyperposterior, we draw a sample from
each of the 11 single-event posteriors, with weights

( ∣ ) ( ) ( )Lp m m p z p m m z, , ,1 2 0 1 2 (Galaudage et al. 2019;
Fishbach et al. 2020; Miller et al. 2020).

Meanwhile, we calculate β(Λ) with a Monte Carlo integral
over a population of =N 2inj

26 simulated signals ( )m ,j
1

( )( ) ( ) ~m z p m m z, , ,j j
2 draw 1 2 (Tiwari 2018; Farr 2019),
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accounting for the uncertainty in the Monte Carlo integral
according to Farr (2019). To sample efficiently, pdraw should
resemble the true population distribution. We pick
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with fi=[0.5, 0.5], αi=[−4,−2], and mmax
i=[10, 100].

We calibrate β(Λ) to the actual selection function from the O1/
O2 search(Usman et al. 2016; Sachdev et al. 2019) by dividing
the above calculation of β(Λ) by a constant factor of 1.7; see
Figure 9 in Abbott et al. (2019b). Fishbach & Holz (2020)
showed that this constant calibration factor is sufficient in
recovering the population results of Abbott et al. (2019b). This
same set of injections is used to estimate PPDs, which are
found by reweighting the injections according to p(m1, m2,
Λ)/pdraw(m1, m2), with Λ drawn from the hyperposterior of a
given model. We sample from the population hyperposterior
using PyMC3(Salvatier et al. 2016).
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