
*Corresponding author: E-mail: karwan.jamil@dpu.edu.krd;

Asian Journal of Research in Computer Science

11(2): 46-57, 2021; Article no.AJRCOS.73019
ISSN: 2581-8260

A Comprehensive Survey for Hadoop Distributed
File System

Karwan Jameel Merceedi1* and Nareen Abdulla Sabry2

1
Department of Information Technology Management, Technical College of Administration, Iraq.

2 Department of Information Technology, Informatics Technical College of Akre, Iraq.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the
final manuscript.

Article Information

DOI: 10.9734/AJRCOS/2021/v11i230260

Editor(s):
(1) Dariusz Jacek Jakóbczak, Koszalin University of Technology, Poland.

Reviewers:
(1) Asif Irshad Khan, King Abdulaziz University, Saudi Arabia.

(2) P. Periyasamy, SRM Trichy Arts and Science College, India.
Complete Peer review History: https://www.sdiarticle4.com/review-history/73019

Received 12 June 2021
Accepted 21 August 2021
Published 23 August 2021

ABSTRACT

In the last few days, data and the internet have become increasingly growing, occurring in big data.
For these problems, there are many software frameworks used to increase the performance of the
distributed system. This software is used for available ample data storage. One of the most
beneficial software frameworks used to utilize data in distributed systems is Hadoop. This software
creates machine clustering and formatting the work between them. Hadoop consists of two major
components: Hadoop Distributed File System (HDFS) and Map Reduce (MR). By Hadoop, we can
process, count, and distribute each word in a large file and know the number of affecting for each of
them. The HDFS is designed to effectively store and transmit colossal data sets to high-bandwidth
user applications. The differences between this and other file systems provided are relevant. HDFS
is intended for low-cost hardware and is exceptionally tolerant to defects. Thousands of computers
in a vast cluster both have directly associated storage functions and user programmers. The
resource scales with demand while being cost-effective in all sizes by distributing storage and
calculation through numerous servers. Depending on the above characteristics of the HDFS, many
researchers worked in this field trying to enhance the performance and efficiency of the addressed
file system to be one of the most active cloud systems. This paper offers an adequate study to
review the essential investigations as a trend beneficial for researchers wishing to operate

Review Article

Merceedi and Sabry; AJRCOS, 11(2): 46-57, 2021; Article no.AJRCOS.73019

47

in such a system. The basic ideas and features of the investigated experiments were taken into
account to have a robust comparison, which simplifies the selection for future researchers in this
subject.
According to many authors, this paper will explain what Hadoop is and its architectures, how it
works, and its performance analysis in a distributed systems. In addition, assessing each Writing
and compare with each other.

Keywords: Hadoop; HDFS; distributed file system.

1. INTRODUCTION

Data are now more redundant over the internet
and dispersed systems. In general, on different
servers, there are 4 petabytes of data.
Technologies analyze this enormous data in a
complicated manner. This data is saved in
parallel processing in multiple distribution
computers and access to the data. There is,
therefore, increasing rivalry in similar processing
systems for access to shared resource data.
Many approaches can be employed to tackle
these difficulties. The investigations tend to
dismantle enormous quantities of data through a
break-up and simultaneous resolution of the
problem [1].

For example, a distributed cloud computing
system provides an immense data processing
mechanism. In addition, a combination of a
distributed system and parallel processing may
resolve some issues for clients remotely in a
minimum of time. Shared memory systems and
distributed memory systems are two more
techniques in a similar hybrid processing system
that solves complicated network challenges,
such as data size restriction. A fundamental
problem is the performance of the distributed
system. For example, the performance of a
three-stage 3TA Architecture system is better
and more accurate than 2TA systems, which
utilize Opnet as an evaluation and design tool.
The system architecture has a significant effect
on system performance. The performance of the
distributed system is analyzed using several
approaches. However, Hadoop is one of the
most popular methods. It is a framework, and an
open source software application that distributes
processes that store and handle the large data
application operated by the clustered system [1].
The research question addressed in this paper
related to how to prepare a comprehensive study
to address the Hadoop distributed file system.
The trend of this paper is to help the new
researchers in this field to have a broad scope of
the Hadoop file system.

One of the latest jobs in software technology
trends developed methods to store, manipulate

and retrieve data from enormous data volumes.
Hadoop [2] is a distributed filesystem and a multi-
data processing and analysis platform based on
the MapReduce methodology [3]. Ten years after
it started as an open-source project, Hadoop
became the most frequently used computer
platform for distributed data storage and
processing [4]. A key characteristic of Hadoop is
the separation of data and processing over
multiple (thousands) hosts and, in parallel with
their data, the execution of application
calculations [5]. A Hadoop cluster will improve
computer power, storage capacity, and
bandwidth by adding different commodity
servers. Hadoop is an Apache project. The
Apache open-source license allows all its
modules to be distributed freely. Yahoo!
established Hadoop's Centre and donated 80%
of it (HDFS and MapReduce). HBase is currently
a Microsoft division, developed at Powerset.
Facebook has developed and generated Hive [6].
Pig [7], ZooKeeper [8], and Chukwa conceived
and acquired Yahoo!. In cooperation with
Cloudera, Avro was created at Yahoo!.

Hadoop was created, a practical open-source
application, due to the necessity of MapReduce.
Hadoop is currently utilized for backend data
analysis by many business and academic users,
developed in Java for cross-platform portability.
The distributed Hadoop file system (HDFS) is a
crucial component of Hadoop and is utilized for
the storage of both input and output data for
applications [9]. HDFS separates metadata and
files of the device from metadata. HDFS
maintains metadata on a dedicated server known
as the Name Node same like other distributed file
systems such as PVFS [10] and GFS [11].
Application data is saved on extra Data Nodes
servers. Both servers are fully connected with
each other and interact with each other using
TCP protocols.

This paper consists of six sections. The rest are
organized in the following style: Section two
provides a detailed explanation of the
background theory of the addressed subject.
Section three represents reviewing the number of
most previous works related to the Hadoop file

Merceedi and Sabry; AJRCOS, 11(2): 46-57, 2021; Article no.AJRCOS.73019

48

system. A detailed discussion with a good
comparison is browsed in section four.
Necessary recommendations are given in section
five. Finally, the conclusion of this
comprehensive study is illustrated in section six.

2. BACKGROUND THEORY

2.1 Hadoop

A free, open-source Apache Foundation project,
Hadoop, is a Java framework. It enables
enormous volumes of data to be processed in a
cluster of one or more hundred machines. This is
the first technology that allows you to digitally
store, manage and analyze an endless amount
of data to allocate suitable work to the system
concerned. TECHNO [12] includes Hadoop's two
core services: Hadoop Distributed File System
(HDFS) data storage and MapReduce technique,
large-scale parallel data processing [13].

2.2 Fiber Optic Communication Principles

Every Hadoop distribution has a Big Data system
notion. Several studies to define and describe big
data as a massive data volume have been
undertaken. In addition, big-data features are
speed, variety, and increasing data volume [14].
Big data are divided into three types: structured,
unstructured, and half-structured data. Additional
big data categories include pictures, video,
audio, and natural language [15]. Highly
organized structured data is, however
unstructured data is not maintained
systematically and clearly. For example,
Wikipedia, Google, Facebook, and Amazon
utilize unstructured data formats, whereas e-
commerce businesses use structured data
formats [12,16]. NoSQL is a new database
technology class designed to handle "Not Only
SQL." Unstructured and semi-structured data
eventually generates a variable number of data
fields and diverse content, providing a challenge
for the database model [17]. Current systems of
NoSQL might be categorized into four large
groups. Key/Value: This idea is like a distributed
hash map. It maintains information as a
key/value pair, where the value may be an
integer or serialized object string [18].

Column-Oriented: The data is kept in a row with
columns. It simulates a relational database [19].

Document-Oriented: The document-oriented
model's ability to retrieve a hierarchically
structured set of information using a single key
distinguishes it [20].

Graph-Oriented: The basis of graph theory is
primarily based on the concept of nodes,
connections, and attributes associated with the
nodes [21].

2.3 HDFS

Hadoop distributed file systems need security
solutions to safeguard their data while retaining
high performance. To be secure, several
researchers assume that HDFS is encrypted
[13]. In this situation, big data is divided into
64MB or 128MB. Three duplicates are made of
each block, and these copies are stored on three
different computers [15]. When the system has a
large amount of data and a simultaneous job,
accessing the HDFS files may need multiple
interacting Name Node and Data Nodes
connections, which considerably lowers access
speed [22].

Name Node maintains the hierarchical file tree
structure in the filesystem. The files are stored as
blocks on behalf of the customer by the Data
Nodes [23]. Each block is reserved to the local
node filesystem as a separate file. Data nodes
do not need to be equal in their features since
Data Nodes abstract the underlying filesystem
details [24].

2.4 HDFS Architecture

The name node and data node are software
components that may be executed on
commodities machines. HDFS is created in Java
language and can run the Nama node or Data
node software on any Java-supporting device.
The Java language is highly portable and allows
for HDFS on multiple computers [25].

The Hadoop user can process the dataset on the
local system on a single node by using local
mode or stand-alone mode. The Hadoop
Distributed File System (HDFS) and MapReduce
are Hadoop's key components [26]. The HDFS is
developed in Java and splits the dataset file into
blocks according to data size. In processing the
data set, the HDFS employs the Name and Data
Node systems [27].

2.4.1 Name node

The namespace for HDFS is a hierarchical file
and directory. Files and folders on the Name
Node are specified using inodes that hold
attributes like rights, changes and access times,
namespace, and disk space quotas [28].

Merceedi and Sabry; AJRCOS, 11(2): 46-57, 2021; Article no.AJRCOS.73019

49

Fig. 1. HDFS architecture [1]

The Name Node keeps the namespace tree and
routes file blocks in Data Nodes 2 (the physical
location of file data) [29]. When an HDFS
customer wishes to read a file, they first contact
the Name Node to identify the data blocks in the
file and then receive the information on the block
from the Data Node closest to the customer
[1,30]. The client asks the client to pick a group
of three data nodes to host replicas of the block
while typing data. The customer then transfers
data in a pipeline format to the Data Nodes.
Every cluster has its Name Node in the current
arrangement [31].

HDFS holds all namespace in the RAM. Indole
data and the list of blocks belonging to every file
are the naming system's image metadata. A
control point is a persistent picture archive saved
on the default localhost filesystem [32]. The
Name Node also keeps the record of changes to
the picture, called the document, on the original
file system of the localhost. Redundant
checkpoint and diary copies can be generated to
improve durability on different servers [33]. The
Node name reads the namespace and replays
the log to reset the namespace upon restarting.
Block copies that vary over time and do not form
part of the permanent checkpoint.

2.4.2 Data nodes

In the native file system of localhost, three files
support each Block Replication on the Data Node
[34]. The first file contains the information, and

the second file contains the block's metadata and
gives the block data and the stamp creation [35].
The data file size equals the whole block length
and does not need considerable space, as in
traditional file systems, to round it to its nominal
block size. Therefore, if a block is half-filled, the
local drive requires just half the size of a
complete block [36].

Each Data Node block reproduction is defined by
two files in the default filesystem of the localhost.
The Name Node does not contact Data Nodes
directly [37].

It delivers commands in response to heartbeats
to the data knots. The following guidelines
include:

 Distribute blocks to other nodes.

 Get rid of local block replicas;

 Re-register the Node or shut it down;

 Submit a block report right away.

As these instructions are necessary to preserve
the overall integrity of the device, it is crucial to
maintain heartbeats even tiny clusters [38].
Despite interfering with other Name Node
activities, the Name Node can handle miles of
heartbeats every second [37].

Data Node without namespace ID was born in an
era, and the cluster's namespace ID is permitted
to enter and gather [36].

Merceedi and Sabry; AJRCOS, 11(2): 46-57, 2021; Article no.AJRCOS.73019

50

2.4.3 HDFS client

HDFS organizes a group to read, edit, and delete
files and transactions for creating and deleting
folders, like most classic file systems [39]. The
administrator uses namespace paths to connect
to files and folders. The user application must not
be aware that the metadata and persistence of
the file system are hosted in various repositories
or blocks that have several replicas [36].

2.4.4 Image and journal

The namespace image is the metadata system
file defining how to organize data in folders and
files. The image archive written to disk is a
continuous checkpoint [37].

2.4.5 Checkpoint node

The Node includes the current control point and
diary for the regular construction of a new control
point and a blank journal. Since the Checkpoint
Node has the same RAM as the Name Node, it is
generally run on a different host [40].

2.4.6 Backup node

The Backup Node allows you to construct
intermittent control points and maintains a
current image in the memory of the file system's
name that is always manfully aligned with the
Name Node [37].

2.4.7 Upgrade, file system snapshot

Device updates design snapshots in HDFS to
decrease the chance of data loss [41]. The
snapshot feature allows admins to record
frequently the current status of the file system,
meaning that the upgrade may be rolled back
and HDFS restored in the name and
storage state of the file at the time of the
shoot if a promotion leads to data failure or
abuse [27].

HDFS was meant to store large files with data
access streaming patterns. As said before [42].
In other words, as seen below, there are
problems with minimum data:

 High Name Node’s memory

consumption: Node Name eats a lot of
memory. Name Node stores metadata in
the main memory. A total of around 250
bytes of main memory are used in a
document's metadata. Metadata will

absorb roughly 368 bytes of every block
with the usual three copies [43].

 Unacceptable storing time: For example,
550,000 tiny files of between 1KB and
10KB in size are saved in HDFS in around
7.7 hours. On the other hand, it takes
approximately 660 seconds to keep such
data in a local file system, such as ext3
[44].

 Name Node becomes the bottleneck:
Metadata maintenance in HdFS is a time-
consuming operation, as it requires node
coordination [31]. The HDFS client must
first obtain the file's metadata from the
Name Node to access a file. For tiny files,
data transfer needs very little time, but disk
search and metadata management
constitute considerable overhead [32]. The
HDFS client must call Name Node, often
with a high number of tiny files, which can
substantially influence the performance of
Name Node [45].

For the management of a large number of tiny
files, Hadoop Archive (HAR) gives Hadoop. The
user groups and saves all the small files in a
particular archive format (.her) [46]. The Hadoop
archive command uses the HAR command to
construct a task for MapReduce to compress a
set of local files onto large files to enable the
parallel (file extension free) and efficient retrieval
of the original files [47].

2.5 MapReduce

MapReduce is a software framework that
belongs to the Hadoop context. It can manage
large quantities of data used in thousands of
nodes in the terabyte range [48]. The
MapReduce approach splits maps into maps and
reduces the functionality [49]. Users supply a
map function that processes a key/value pair to
produce a collection of mid-key/value pairs and
decreases a function that merges all the mid-
term values with the same key [50]. MapReduce
and HDFS are the fundamental components of
Hadoop. In essence, HDFS employs a writing
and reading process mechanism to disseminate
data inside a local node (Single Node model) or
via many nodes (Multiple Nodes Model) [14].
HDFS offers the MapReduce replication feature
to enhance performance. MapReduce is a
master node (Job Tracker) and multiple slave
nodes (Task Trackers). A JobTracker is
responsible for the task trackers group of slave
nodes [15].

Merceedi and Sabry; AJRCOS, 11(2): 46-57, 2021; Article no.AJRCOS.73019

51

MapReduce operates on the acceptable items by
first running the map function and reducing the
unwanted things [51]. The implementation of
MapReduce is based upon programs in many
languages such as Java, C, or Python [50].
MapReduce is a Hadoop function that
reorganizes a dataset's content [52]. A program
code essentially comprises the Mapping funktion
and subsequently the Reducer function for
rearranging items in a dataset. The primary and
value rules are applied on target objects to use
Map and Reduce processes [48].

3. LITERATURE REVIEW

The distributed file system has always been
necessary for continued progress and expansion
since the 1990s. Chandrasekhar and others [24].
Proposed Extended Hadoop Distributed File
System (EHDFS) to enable the combination of a
vaster number of small files, increase access to
small files efficiently and improve EHDFS
metadata management for smaller files to
improve memory usage HDFS resources.

The techniques of simulation and modeling relied
on Mendoza and Lorene [53]. To examine the
system's behavior inside a cluster of
workstations, many simulations have been done.
(HDFS) Model of colored Petri Networks (CPN)
to study and evaluate the accessibility of
workstations to a model by exploring different
configurations and alternative approaches. The
simulation findings show that acceptance or
rejection of the Name Node pipeline is a key
constraint.

The automatic benchmarking system was
introduced by Kim et al. [54] (ABCM). This work
developed the identification process for the set of
settings parameters, reducing the benchmark
runtime. Primarily TestDFSIO writes and reads
the primary setup generated by ABCM to change
the Benchmark Time. Optimal parameters have
been determined, lowering by 32 percent the
average execution time compared to the default
set of Hadoop setup options. The four kinds of
NoSQL databases are included by Erraissi and
Belanger [12] as proposed. For significant data
efforts, several companies use this software
platform and its various components. Ethiopia
and others [15]. The complexity of the time of an
algorithm indicate how long an algorithm takes to
finish. O (long) time complexity is fair scheduling.
Masmoudi and Almansouri [14]. Hadoop
proposed on one node architecture allows the
cost-effective analysis on a local workstation and

automatic HDFS backup. The proposed
encryption of Mahmoud et al. [54] HDFS files
were encrypted with AES and OTP methods.
Enhance the Encryption/Decryption file
performance of this technique. Liao and al. [55]
Presented a hierarchical approach to structural
structure, which may be utilized to facilitate the
processing of HDFS data and B-tree and R-tree
variants. The distributed caching system built on
top of the HDFS dubbed HDCache was
described by Zhang et al. [22]. Use standard
memory to compensate for the shortcomings in
performance (HDFS). Vijayakumari and others
[56]. Apache-owned components of the Hadoop
Project include Hadoop Distributed File System
and MapReduce. Comparisons are made
between these two file systems with specific
parameters (Security, File serving ... etc.).

Wang et al. [57] proposed Zput's Remote Block
Placement support and design. Zput's significant
benefit over HDFS-put is an improved upload
efficiency while avoiding adverse effects. They
provided Hua et al. [58] with rigorous interaction
tasks. The HDFS modifications are: (2) the
caching on each rack to increase I/O functionality
in accessing interaction-intensive files; (3) the
use of PSO-based methods to establish a near-
optimum storage allocation plan for incoming
documents. Shahabinejad et al., respectively
[59]. They have suggested a locally repairable
binary code (BLRC) since it does not include
finite set multiplication, encoding, decoding, and
repair, which saves considerable time. Krishna
and others [60]. They realized that HDFS works
well for files more extensive than the default
blocks and poorly for files smaller than the
standard blocks. Clubric et al. [61]. The security
of essential data, not accomplished by Kerberos,
at an HDFS storage level. Day and al. [62]
Suggest a novel replica placement method for
HDFS that addresses load balancing through the
consistent distribution of replicas onto cluster
nodes and hence eliminates the need to provide
any load balancing utility. Qu et al. Qu et al. [63]
The DRS approach based on an improved
Markov model of the chain is proposed. The
Markov model distinguishes between various
data kinds and changes the copies dynamically,
which will then be spread equitably throughout
the rack, depending on the connection between
the files. Zebedie and al. [1] In distributed
systems, Hadoop's performance is higher than
other technologies used for the same purpose.
Several important companies, like Facebook,
have implemented Hadoop.

Merceedi and Sabry; AJRCOS, 11(2): 46-57, 2021; Article no.AJRCOS.73019

52

Table 1. Comparisons of related works

Ref. no. Tools Achieved Objectives Significant Results

 endoza
and
Quesada
[53]

CPN the Colored
Petri Nets
combined with the
CPN ML
programming
language

The feasibility of exploiting
the idle computational
storage in a large Cluster of
Workstations (COW).

To achieve a reliable service
for Writing and reading files
despite the random failures
due to the turning on and off of
the computers in a COW with
hundreds of machines.

Aswan et
al. [64]

small single rack
implementation and
multi-rack
implementation
of the HDFS

the high overview of Hadoop
Distributed File System
architecture and different
server roles

MapReduce is used for
implementation, and HDFS is
in charge of storing massive
datasets.

Chandras
ekhar et
al. [24]

Extended Hadoop
Distributed
File System
(EHDFS).

To minimize the file count, a
collection of associated files
discovered by the client is
merged into a huge file.

EHDFS can minimize metadata
while increasing the efficiency
of storing and accessing a
large number of tiny files.

Kim et al.

 [54]

small single rack
implementation and
multi-rack
implementation

of the HDFS

the high overview of HDFS
architecture and different

server roles

MapReduce is used for
implementation, although
suitable for dataset
management and
storage, HDFS assumes the
job of storing massive
datasets.

Manias
and
Schroeder
[4]

(HDFS)’s code
evolution. based on
the reports and
patch files
(patches)

classify the root causes of

 issues at a finer granularity

than prior work

having an ever-increasing pace
through time. Furthermore, the
total breadth and complexity of
reports and patch files stay
relatively consistent through
the lifespan of HDFS.

Erase and

Selangor

[12]

Model-Driven
Engineering

 (MADE)

the storage layer is very

 useful and is essential

Model-Driven Engineering
(MDE) is used to offer
universal Metamodeling for the
storage layer of a Big Data
system.

Hussain et
al. [15]

introduce a job
scheduling
algorithm

Scheduling is more

complicated since it is

Required in significant data
time optimization.

The approach has lowered the

number of iterations while
increasing

 time efficiency

Almansouri
and
Masmoudi
[14]

Illustrated the main
steps to

setup Hadoop and
MapReduce

Hadoop for extensive data
analysis

 has provided critical

 information that may be used
for analysis.

Hadoop employs MapReduce,
in which the dataset is
processed in the Mapping
phase before being reduced in
the Reducing phase.

Mahmoud
et al.

 [13]

encryption
/Decryption file by
using AES and
OTP algorithms

Because of enormous data,
Cloud computing provides
users with on-demand,
reliable, flexible, and low-cost
services

As the size of the encrypted file

 expanded by 20% from the
initial file size,

 This ratio improved.

Liao et al.

[55]

built-in block-based
hierarchical index
structures, like R-
tree

to arrange data sets in one,

two or more dimensions

increase query performance for

commonly used query types
(e.g., point Query, range query)
on (HDFS).

Zhang et
al.

HDFS-based
Distributed Cache

Files loaded from HDFS are
cached in shared memory

cache system can store files
with a wide

Merceedi and Sabry; AJRCOS, 11(2): 46-57, 2021; Article no.AJRCOS.73019

53

Ref. no. Tools Achieved Objectives Significant Results

[22] System
(HDCache).

and may be accessed
immediately By a client
library.

range in their sizes

Vijayakum
ari

et al.

[56]

Cloud computing,
Google File System
(GFS), and (HDFS)

Hadoop MapReduce is based

 on the Google MapReduce
concept.

GFS is built to function in data
centers

to provide exceptionally high
data

 throughputs, minimal latency,
and the

ability to withstand individual

Server outages.

Wang et
al. [57]

Sport. which can substantially speed

 up uploading by employing a
metadata mapping strategy

the remote block placement
can boost

 the course of block

Hua et al.

[58]

interaction-
intensive files

The paper addresses the
throughput degradation
problem while

 reading interaction-intensive

 files and proposes an
improved HDFS design,

HDFS throughput for
interaction-

intensive files rise by 300 %,
with just a

 the little performance hit for
big data set workloads.

Shahabine
jad et al.

 [59]

locally repairable
codes (LRCs),
binary locally
repairable codes
(BLRC)

(LRCs) computational

complexity reduction can be
attractive. With regard to the
immense size of modern
energy-hungry HDFS

legend has lower complexity
than most recent non-binary
LRC desirable requirements in
HDFS, such as storage
overhead and

 reliability.

Krishna et
al.

[60]

Apache Hadoop
project

The computation in HDFS is

They were done at the nodes
where the necessary data is
stored.

For files more extensive than
the default block size, HDFS
operates admirably.

Shetty and

Manjaiah,

[61]

data security is to
encrypt the data
that is stored in
Hadoop,

Data security will be a crucial
consideration when storing
sensitive data on Hadoop.

Hadoop security features
include Kerberos

And Transparent Data
Encryption (TDE) for Hadoop
and security in the Hadoop
Distributed File System.

Dai et al.

[62]

placement of data
replicas

Another placement policy that
approaches the sender of
information from an entirely
different angle

HDFS replica placement policy,
capable of generating replica
distributions that fulfill all HDFS
replica placement standards

Qu et al.

 [63]

DRS, a dynamic
replica strategy
based on improved
Markov

model

DRS may dynamically

increase or decrease the

number of replicas when the

Data becomes hot or cold.

DRS is effective, and it
outperforms HDFS's static
replica

Method.

Zeebaree
et al.

[1]

Hadoop Distributed
File System
(HDFS) and Map
Reduce (MR).

HDFS, analyze, process and
manage extensive data and
very

easy and fast to access data

on different servers in the
clustered system

 HDFS is used to process and
compute

 The number of words in an
extensive database. Hadoop
out-

performs alternative software
used for

The same goal.

Merceedi and Sabry; AJRCOS, 11(2): 46-57, 2021; Article no.AJRCOS.73019

54

4. DISCUSSION AND COMPARISON

This article must emphasize that every author
has a distinct perspective but identical aims while
analyzing HDFS performance. Hadoop's
adaptation to distributor systems aims to speed
up massive data storage, processing, analysis,
and management. The Hadoop in an original
manner, including Twenty researchers covered in
the literature review (architecture and operation).
An overview of the comparison of twenty prior
publications is provided in Table 1. They were
comparing the performance of Hadoop in the
distributed system area with previously
dependent approaches. The comparison focuses
on the dependent instruments, the aims attained,
and the actual results for each study. Each writer
describes Hadoop's architecture and operation.
Comparing Hadoop's performance with other
previous techniques in the distributed system.

5. CONCLUSION

From the previous works addressed in this
paper, and depending on the summarized
comparison in section 4, it can be concluded that
the earlier researchers focused on: the
unstructured data sets are processed quickly
using the programming paradigm and HDFS of
Hadoop MapReduce. Also, Hadoop enables you
to work with the MapReduce framework while
masking the complexity in a public or private
cloud to install, configure and operate computer
modules. The users can build a cluster of
commodity servers using Hadoop. Some
researchers have developed MapReduce as a
stand-alone, service-like platform, which can be
adapted to fit the demands of cloud providers. It
also enables consumers to gather and analyze
data. Adding to that, the HDFS is a fast-changing
technology for storing and managing extensive
data. Finally, HDFS is master/slave design-
based and more potent for read-intensive
business intelligence systems databases.

Adding to the above conclusion, it can be shown
clearly that previous researchers focussed on
achieving the following outcomes and objectives:
The feasibility of exploiting the idle computational
storage in a large Cluster of Workstations. They
are classifying the root causes of issues at a finer
granularity than prior work. Scheduling is more
complicated since it is required in significant data
time optimization. Because of enormous data,
Cloud computing provides users with on-
demand, reliable, flexible, and low-cost services.
Data security will be a crucial consideration when
storing sensitive data on Hadoop.

6. RECOMMENDATIONS

Depending on the addressed trends toward
producing efficient Hadoop file system by many
previous works, it is recommended to take care
of the following concepts when treating with this
subject: the relations between Hadoop file
system in one side with the overall cloud systems
for excellent efficiency. Considering the effects of
Fog computations. Going towards the dew
computations that will provide broad scope for
combining Hadoop techniques with the dew
strength.

DISCLAIMER

The products used for this research are
commonly and predominantly used in our
research area and country. There is absolutely
no conflict of interest between the authors and
producers of the products because we do not
intend to use these products as an avenue for
litigation but for the advancement of knowledge.
Also, the research was not funded by the
producing company rather it was funded by
personal efforts of the authors.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Zeebaree SR, Shukur HM, Haji LM, Zebari

RR, Jacksi K, Abas SM. Characteristics
and analysis of hadoop distributed
systems, Technology Reports of Kansai
University. 2020;62:1555-1564.

2. Wadkar S, Siddalingaiah M, Venner J. Pro
Apache Hadoop: Springer; 2014.

3. Dean J, Ghemawat S. MapReduce:
Simplified data processing on large
clusters, Communications of the ACM.
2008;51:107-113.

4. Maneas S, Schroeder B. The evolution of
the hadoop distributed file system, in 2018
32nd International Conference on
Advanced Information Networking and
Applications Workshops (WAINA).
2018;67-74.

5. Dino HI, Zeebaree S, Ahmad OM, Shukur
HM, Zebari RR, Haji LM. Impact of load
sharing on performance of distributed
systems computations, International
Journal of Multidisciplinary Research and
Publications (IJMRAP). 2020;3:30-37.

Merceedi and Sabry; AJRCOS, 11(2): 46-57, 2021; Article no.AJRCOS.73019

55

6. Thusoo A, Sarma JS, Jain N, Shao Z,
Chakka P, Anthony S, et al. Hive: A
warehousing solution over a map-reduce
framework, Proceedings of the VLDB
Endowment. 2009v;2:1626-1629.

7. Gates AF, Natkovich O, Chopra S, Kamath
P, Narayanamurthy SM, Olston C, et al.
Building a high-level dataflow system on
top of Map-Reduce: the Pig experience,
Proceedings of the VLDB Endowment.
2009;2:1414-1425.

8. Junqueira FP, Reed BC. The life and times
of a zookeeper, in Proceedings of the 28th
ACM symposium on Principles of
Distributed Computing. 2009;4-4.

9. Shafer J, Rixner S, Cox AL. The hadoop
distributed filesystem: Balancing portability
and performance, in 2010 IEEE
International Symposium on Performance
Analysis of Systems & Software (ISPASS).
2010;122-133.

10. Tantisiriroj W, Patil S, Gibson G. Data-
intensive file systems for internet services:
A rose by any other name, Technical
Report CMUPDL-08-114, Parallel Data
Laboratory, Carnegie Mellon; 2008.

11. McKusick K, Quinlan S. GFS: evolution on
fast-forward, Communications of the ACM.
2010;53:42-49.

12. Erraissi A, Belangour A. Capturing hadoop
storage big data layer meta-concepts, in
International Conference on Advanced
Intelligent Systems for Sustainable
Development. 2018;413-421.

13. Mahmoud H, Hegazy A, Khafagy MH. An
approach for big data security based on
Hadoop distributed file system, in 2018
International Conference on Innovative
Trends in Computer Engineering (ITCE).
2018;109-114.

14. Almansouri HT, Masmoudi Y. Hadoop
Distributed file system for big data
analysis, in 2019 4th World Conference on
Complex Systems (WCCS). 2019;1-5.

15. Hussain R, Rahman M, Masud KI, Roky
SM, Akhtar MN, Tarin TA. A novel
approach of fair scheduling to enhance
performance of hadoop distributed file
system, in 2019 International Conference
on Electrical, Computer and
Communication Engineering (ECCE).
2019;1-6.

16. Kareem FQ, Zeebaree SR, Dino HI,
Sadeeq MA, Rashid ZN, Hasan DA,
et al. A survey of optical fiber
communications: Challenges and
processing time influences, Asian Journal

of Research in Computer Science. 2021;
48-58.

17. Ageed Z, Mahmood MR, Sadeeq M,
Abdulrazzaq MB, Dino H. Cloud computing
resources impacts on heavy-load parallel
processing approaches, IOSR Journal of
Computer Engineering (IOSR-JCE).
2020;22:30-41.

18. Seeger M, Ultra-Large-Sites S. Key-Value
stores: A practical overview, Computer
Science and Media, Stuttgart; 2009.

19. Robinson I, Webber J, Eifrem E. Graph
databases: New opportunities for
connected data: O'Reilly Media, Inc.;
2015.

20. Abadi D, Boncz P, Amiato SH, Idreos S,
Madden S. The design and implementation
of modern column-oriented database
systems: Now Hanover, Mass; 2013.

21. Issa A, Schiltz F. Document oriented
databases, ed: Universite Libre de
Bruxelles; 2015.
Available:http://cs. ulb. ac. be/public

22. Zhang J, Wu G, Hu X, Wu X. A distributed
cache for hadoop distributed file system in
real-time cloud services, in 2012
ACM/IEEE 13th International Conference
on Grid Computing. 2012;12-21.

23. Ageed ZS, Zeebaree SR, Sadeeq MM,
Kak SF, Yahia HS, Mahmood MR,
et al., Comprehensive survey of big
data mining approaches in cloud
systems, Qubahan Academic Journal.
2021;1:29-38.

24. Chandrasekar S, Dakshinamurthy R,
Seshakumar P, Prabavathy B, Babu C. A
novel indexing scheme for efficient
handling of small files in hadoop distributed
file system, in 2013 International
Conference on Computer Communication
and Informatics. 2013;1-8.

25. Abdulqadir HR, Zeebaree SR, Shukur HM,
Sadeeq MM, Salim BW, Salih AA, et al. A
study of moving from cloud computing to
fog computing, Qubahan Academic
Journal. 2021;1:60-70.

26. Afzali M, Singh N, Kumar S. Hadoop-
MapReduce: A platform for mining large
datasets, in 2016 3rd International
Conference on Computing for Sustainable
Global Development (INDIACom). 2016;
1856-1860.

27. Pol UR. Big data analysis using Hadoop
MapReduce, Am. J. Eng. Res. AJER.
2016;5:146-151.

28. Ibrahim IM. Task scheduling algorithms in
cloud computing: A review, Turkish Journal

Merceedi and Sabry; AJRCOS, 11(2): 46-57, 2021; Article no.AJRCOS.73019

56

of Computer and Mathematics Education
(TURCOMAT). 2021;12:1041-1053.

29. Samann FEF, Zeebaree SR, Askar S. IoT
provisioning QoS based on cloud and fog
computing, Journal of Applied Science and
Technology Trends. 2021;2:29-40.

30. Ageed ZS, Ibrahim RK, Sadeeq M. Unified
ontology implementation of cloud
computing for distributed systems, Current
Journal of Applied Science and
Technology. 2020;82-97.

31. Shukur H, Zeebaree S, Zebari R, Ahmed
O, Haji L, Abdulqader D. Cache coherence
protocols in distributed systems, Journal of
Applied Science and Technology Trends.
2020;1:92-97.

32. Haji LM, Zeebaree S, Ahmed OM, Sallow
AB, Jacksi K, Zeabri RR. Dynamic
resource allocation for distributed systems
and cloud computing, TEST Engineering &
Management. 2020;83:22417-22426.

33. Sadeeq MM, Abdulkareem NM, Zeebaree
SR, Ahmed DM, Sami AS, Zebari RR. IoT
and Cloud computing issues, challenges
and opportunities: A review, Qubahan
Academic Journal. 2021;1:1-7.

34. Shukur H, Zeebaree SR, Ahmed AJ,
Zebari RR, Ahmed O, Tahir BSA, et al. A
state of art survey for concurrent
computation and clustering of parallel
computing for distributed systems, Journal
of Applied Science and Technology
Trends. 2020;1:148-154.

35. Alzakholi O, Shukur H, Zebari R, Abas S,
Sadeeq M. Comparison among cloud
technologies and cloud performance,
Journal of Applied Science and
Technology Trends. 2020;1:40-47.

36. Shvachko K, Kuang H, Radia S, Chansler
R. The hadoop distributed file system, in
2010 IEEE 26th symposium on mass
storage systems and technologies (MSST).
2010;1-10.

37. Maurya M, Mahajan S. Performance
analysis of MapReduce programs on
Hadoop cluster, in 2012 World Congress
on Information and Communication
Technologies. 2012;505-510.

38. Yahia HS, Zeebaree SR, Sadeeq MA,
Salim NO, Kak SF, Adel AZ, et al.
Comprehensive survey for cloud
computing based nature-inspired
algorithms optimization scheduling, Asian
Journal of Research in Computer Science.
2021;1-16.

39. Zeebaree SR. Remote controlling
distributed parallel computing system over

the cloud (RCDPCSC), in 2020 3rd
International Conference on Engineering
Technology and its Applications (IICETA).
2020;258-258.

40. Pavlo A, Paulson E, Rasin A, Abadi DJ,
DeWitt DJ, Madden S, et al. A comparison
of approaches to large-scale data analysis,
in Proceedings of the 2009 ACM SIGMOD
International Conference on Management
of Data. 2009;165-178.

41. Haji SH, Zeebaree SR, Saeed RH, Ameen
SY, Shukur HM, Omar N, et al.
Comparison of software defined
networking with traditional networking,
Asian Journal of Research in Computer
Science. 2021;1-18.

42. Shukur H, Zeebaree S, Zebari R,
Zeebaree D, Ahmed O, Salih A. Cloud
computing virtualization of resources
allocation for distributed systems, Journal
of Applied Science and Technology
Trends. 2020;1:98-105.

43. Shvachko K. Name-node memory size
estimates and optimization proposal,
Apache Hadoop Common Issues,
HADOOP-1687; 2007.

44. Liu X, Han J, Zhong Y, Han C, He X.
Implementing WebGIS on Hadoop: A case
study of improving small file I/O
performance on HDFS, in 2009 IEEE
International Conference on Cluster
Computing and Workshops. 2009;1-8.

45. Vorapongkitipun C, Nupairoj N. Improving
performance of small-file accessing in
Hadoop, in 2014 11th International Joint
Conference on Computer Science and
Software Engineering (JCSSE). 2014;200-
205.

46. Jghef YS, Zeebaree S. State of art survey
for significant relations between cloud
computing and distributed computing,
International Journal of Science and
Business. 2020;4:53-61.

47. Ahad MA, Biswas R. Handling small size
files in hadoop: Challenges, opportunities,
and review, Soft Computing in Data
Analytics. 2019;653-663.

48. Ghazi MR, Gangodkar D. Hadoop,
MapReduce and HDFS: A developers
perspective, Procedia Computer Science.
2015;48:45-50.

49. Haji LM, Ahmad OM, Zeebaree S,
Dino HI, Zebari RR, Shukur HM.
Impact of cloud computing and internet of
things on the future internet, Technology
Reports of Kansai University. 2020;62:
2179-2190.

Merceedi and Sabry; AJRCOS, 11(2): 46-57, 2021; Article no.AJRCOS.73019

57

50. Watson HJ. Tutorial: Big data analytics:
Concepts, technologies, and applications,
Communications of the Association for
Information Systems. 2014;34:65.

51. Ibrahim BR, Zeebaree SR, Hussan BK.
Performance Measurement for Distributed
Systems using 2TA and 3TA based on
OPNET Principles, Science Journal of
University of Zakho. 2019;7:65-69.

52. Rashid ZN, Zebari SR, Sharif KH, Jacksi
K. Distributed cloud computing and
distributed parallel computing: A review, in
2018 International Conference on
Advanced Science and Engineering
(ICOASE). 2018;167-172.

53. Aguilera-Mendoza L, Llorente-Quesada
MT. Modeling and simulation of Hadoop
Distributed File System in a cluster of
workstations, in International Conference
on Model and Data Engineering. 2013;1-
12.

54. Kim J, Kumar TA, George K, Park N.
Performance evaluation and tuning for
MapReduce computing in Hadoop
distributed file system, in 2015 IEEE 13th
International Conference on Industrial
Informatics (INDIN). 2015;62-68.

55. Liao H, Han J, Fang J. Multi-dimensional
index on hadoop distributed file system, in
2010 IEEE Fifth International Conference
on Networking, Architecture, and Storage.
2010;240-249.

56. Vijayakumari R, Kirankumar R, Rao KG.
Comparative analysis of google file system
and hadoop distributed file system,
International Journal of Advanced Trends
in Computer Science and Engineering.
2014;3:553-558.

57. Wang Y, Wang W, Ma C, Meng D. Zput: A
speedy data uploading approach for the
hadoop distributed file system, in 2013
IEEE International Conference on Cluster
Computing (CLUSTER). 2013;1-5.

58. Hua X, Wu H, Li Z, Ren S. Enhancing
throughput of the hadoop distributed file
system for interaction-intensive tasks,
Journal of Parallel and Distributed
Computing. 2014;74:2770-2779.

59. Shahabinejad M, Khabbazian M, Ardakani
M. An efficient binary locally repairable
code for hadoop distributed file system,
IEEE Communications Letters. 2014;18:
1287-1290.

60. Krishna TLSR, Ragunathan T, Battula SK.
Performance evaluation of read and write
operations in hadoop distributed file
system, in 2014 Sixth International
Symposium on Parallel Architectures,
Algorithms and Programming. 2014;110-
113.

61. Shetty MM, Manjaiah D. Data security in
Hadoop distributed file system, in
2016 International Conference on
Emerging Technological Trends (ICETT).
2016;1-5.

62. Dai W, Ibrahim I, Bassiouni M. A new
replica placement policy for hadoop
distributed file system, in 2016 IEEE 2nd
international conference on big data
security on cloud (bigdatasecurity), IEEE
international conference on high
performance and smart computing
(HPSC), and IEEE International
Conference on Intelligent Data and
Security (IDS). 2016;262-267.

63. Qu K, Meng L, Yang Y. A dynamic replica
strategy based on Markov model for
hadoop distributed file system (HDFS), in
2016 4th International Conference on
Cloud Computing and Intelligence Systems
(CCIS). 2016;337-342.

64. Sajwan V, Yadav V, Haider M. The hadoop
distributed file system: Architecture and
internals, International Journal of
Combined Research & Development
(IJCRD). 2015;4:541-544.

© 2021 Merceedi and Sabry; This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

https://www.sdiarticle4.com/review-history/73019

http://creativecommons.org/licenses/by/4.0

