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Abstract

In this paper, we proposed and analyzed an SEIR compartmesel rof Swine flu withmixing
transmission. The stability of the disease-free equilib and the endemic equilibrium is obtained by
Routh-Hurwitz criteria The Basic Reproduction numbgg has also been discussed, whgn< 1, the
disease free equilibrium point is stable. In cRge> 1, there exists endemic equilibrium. Numerical
simulations are carried out for different values of cdantate to understand the transmission behavigr of
the disease.
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1 Introduction

Swine flu is a respiratory virus of pigs which was fidgrntified in 1918 and although historic diffusion to
human beings has been sporadic, the infection rate in luimantensifying at present. Chills, dyspnea,
headache, vomiting, diarrhea, myalgia, and fatiguereret common symptoms of swine flu. The virus has
not previously circulated in human the virus is entirely figw

Many mathematical models have been analyzed to undetssgread of swine flu within human and also
in pig populations like in [2,3,4]. Kermack and McKendrick [5]revehe first person that's describe an
influenza epidemic early in the ®@entury. Their model is known as the SIR which has beet as a basis
for all subsequent influenza models. By modifying the balk r8odel in a variety of ways by including
seasonality influenza epidemics can be shown to haveirmastaycles [6,7]. The SIR model has also been
extended so that it can be used to represent and/or predépatiel dynamics of an influenza epidemic.

Most recently several investigation have concern themselth modeling of dynamics of influenza virus
[8,9,2,10,11].

In this paper we have modified the model of Das et al. [1#] vecovery class. In the first section we
present the model in which c¢ is the contact rate at whielstisceptible population is converted into the
exposed populatiors.(t), E(t), I(t) and R(t) represents the number of susceptible, exposed, infectious, and
recovered Population at the time t respectively, Avésrequirement rate of the populatigris the natural
death rate of the populatiopjs the natural recovery rate of the infective individuéh the next section we
obtained the disease free and the endemic equilibrium afyr@dahe stability conditions for both. In the
last section numerical results are also provided.

2 The Mathematical M odel
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Where S, E, | and R stands for susceptible, exposed wdeatid recovered individuals, respectively. The
parameters in the model are

A= The recruitment rate of the population

u = The natural death rate of the population

¢ = The contact rate at which the susceptible population is cavmto exposed population.
r = Recovery rate

A = The effective transmission coefficient

y = The natural recovery rate of the infective individuals
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The transfer diagram is depicted in the following Fig. 1:
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Fig. 1. A compartment model of swineflu
3 Stability Analysis

For the equilibrium points the above differential equatioousd be equated to zero.
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We have two equilibrium points are given By= (4/u,0,0,0) is the disease free equilibrium points of the
system (2.1) and the unique endemic equilibrium p&int (S*,E*,I*,R*), where

*= p l*'
c—p
r+y+

E*=( 14 H)I*’

A

. A

_[”p+p—r]
c-p

R* ZI*

u

A+ +y+w
2

where p =

The basic reproduction number defined as
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3.1 Theorem. The disease free equilibrium of the system is locallymgdotically stable iR, < 1 and
unstable ifR, > 1.

Proof: We consider equations

cSI
FF=A—_—+rl—uS

S+1
F, = ﬁ—(/1+ﬂ)5
S+1
Fs=AE -+ v+ wl
F,= yl— uR

The Jacobian matrix

—cl? 0 —cS? N O]
s+nz * s+ " |
I? cS?
L=l 2 _ & I
0 S+D @+ T O
0 A —(r+y+w) O
0 0 14 —u

At equilibrium pointP, = (4/u,0,0,0) the Jacobian matrix becomes

—u 0 —c+r 0
10 —(A+w c 0
=1 A —r+y+wpw 0
0 0 14 —u

The characteristics equatiphy — @I| = 0 is given as

—(u+ ) 0 —c+r 0
0 —A+u+oe) c 0 ~0
0 A —(r+y+u+o) 0
0 0 14 —(u+oe)

=>@u+e)lPlA+tut+t+y+p+e)—cA]=0
Clearly two Eigen valuep = —u, —p are negative, other Eigen values are given by the giadratation.
o*+ a0 +a, =0,
Where
a=A+r+y+2u
a; =A+ur+y+u—ca

Therefore, by Routh-Hurwitz criteria the disease-fegpiilibrium stable iz, > 0 and a, > 0, which is
possible if  + u)(r +y + u) > ci, i.eR, <1.

3.2 Theorem. If Ry, > 1 the endemic equilibriunP* is locally asymptotically stable.
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Proof: The variation matrix at the endemic pai(S*, E*,I*,R*)

—C —C
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1*2 CS*Z
L= & _u _2 0
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Consider that
B CI*Z d B CS*Z
MIZ e v MV T ez

Thenj; becomes

—-w; — U 0 —-wy + 71 0

_ wyq —(A+p) w; 0
hi= 0 A —(r+y+w 0
0 0 14 —u

The characteristics equatiph — @I| = 0 is given as

—(wy+u+9) 0 —w, +r 0
wy —A+u+oe) w; 0 -0
0 A —(r+y+u+o) 0
0 0 Y —(u+9)

S Ut oW +u+e)A+p+@)r+y+u+e)— W +pu+@wd+ (wy —rIwyd] =0
Clearly one eigen value is negatiwe= —u and other eigen values are given by the cubic equation.
@3+ a,9% + a9 + az;=0
Where
ap=3u+i+w+r+y
a, =[A+pww, + W+ wy +2u+ D +y+ @) —wyi]
as =@+ pw + W +y+ ) — (uwz +rwy)A

By Routh-Hurwitz criteria, the system (2.1) is localyymptotically stable i, > 0,a; > 0 and a,a, >
as. Thus, P* is locally asymptotically stable.

4 Discussion and Numerical Simulation

From practical point of view, numerical solutions areyvenportant beside analytical study. In our study,
we propose and analyze a swine flu model. We alsonpeefbthe numerical solutions by using hypothetical
set of parameter values with Excel. Since A is theurBuent rate of the population, we choose a suitable
value as unit. From the study we observe that the diskaseequilibrium is locally stable for basic
reproduction numbeR, <1 and is unstable otherwise, which is directly proportitm&ontact rate ‘c’. For
existence of endemic equilibrium point we have increasad\hke contact rate. Further local stability of the
endemic equilibrium of the system is also contact rate depen@e performed numerical simulation for
different values of c. Numerical solutions are presegtaphically by taking the population in hundreds and

time is in per day.
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4.1 Numerical smulation for disease free equilibrium

From the numerical values of the parameters &sl1,c = 0.003,r = 0.1, = 0.02,A = 0.1 and y = 0.01
Then the calculated disease free equilibrium point andc baproductive number aré,(S,0,0,0) =
(50,0,0,0) and R, =0.192307 <1 . Fig. 2 shows thatS(t) goes to its steady state,
while E (t), I(t)and R(t) goes to zero with respect to time. Hence the disgiaseout.

Diesease free equalibrium points
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Fig. 2. Thefigure showsthat the disease free equilibrium islocally stable for the choice of parameter
values

4.2 Numerical smulation for endemic equilibrium

We change the value of= 0.3 and all other parameters are as above. Then, we ol®t&i§*, E*,[*,R*) =
(13.9496,16.7395,12.8766,6.4383) and R, = 1.92307 > 1 . Therefore, the endemic equilibrium *is

locally asymptotically stable. Fig. 3 shows tlgE, I and R goes to their steady state values. Hence the
disease becomes endemic.

Endemic equalibrium points
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Fig. 3. Thefigure showsthat the endemic equilibrium islocally asymptotically stable for the choice of
parameter values

Now if we change ¢ value as= 0.162 then the endemic equilibrium point changesPags*, E*, [*,R*) =
(45.1388,2.2569,1.73611,0.86805).
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Endemic equalibrium points
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Fig. 4. Thefigure showsthat the exposed, infective and recover ed classes are decreasing in number for
the choice of parameter values

Keeping other parameters fixed, if we change the values=00.1560312 we get endemic equilibrium
point becomesP*(S* E*,I*,R*) = (49.978,0.01299428,0.0099956,0.0049978) , which shows the
exposed, infective and recovery classes are going ektinchoice of parameter value.

Endemic equalibrium points
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Fig. 5. Exposed, infective and recovery classes ar e going extinct for choice of parameter value

5 Conclusion

In this paper, we analyzed an SEIR compartment mod8ivirfie flu, the results are helpful to predict the
developing tendency of disease and recovery. We analyz&dtahdy state and stability of the equilibrium
points. The model equations were solved analytically. Wecoanlude that the basic reproduction number
R, < 1 then the disease free equilibriufp is locally asymptotically stable and B, >1 the endemic
equilibrium P* is locally asymptotically stable.

Numerical simulations were presented graphically. Weehalgo observed that contact ratplays an
important role in stability; the basic reproduction numiewill be decrease if the contact rateecreases
when disease is endemic.
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