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Abstract 
 

In this paper, we proposed and analyzed an SEIR compartment model of Swine flu with mixing 
transmission. The stability of the disease-free equilibrium and the endemic equilibrium is obtained by 
Routh-Hurwitz criteria. The Basic Reproduction number �� has also been discussed, when  �� � 1, the 
disease free equilibrium point is stable. In case �� � 1, there exists endemic equilibrium. Numerical 
simulations are carried out for different values of contact rate to understand the transmission behavior of 
the disease. 
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1 Introduction 
 
Swine flu is a respiratory virus of pigs which was first identified in 1918 and although historic diffusion to 
human beings has been sporadic, the infection rate in humans is intensifying at present. Chills, dyspnea, 
headache, vomiting, diarrhea, myalgia, and fatigue are most common symptoms of swine flu. The virus has 
not previously circulated in human the virus is entirely new [1]. 
 
Many mathematical models have been analyzed to understand the spread of swine flu within human and also 
in pig populations like in [2,3,4]. Kermack and McKendrick [5] were the first person that’s describe an 
influenza epidemic early in the 20th century. Their model is known as the SIR which has been used as a basis 
for all subsequent influenza models. By modifying the basic SIR model in a variety of ways by including 
seasonality influenza epidemics can be shown to have sustained cycles [6,7]. The SIR model has also been 
extended so that it can be used to represent and/or predict the spatial dynamics of an influenza epidemic. 
 
Most recently several investigation have concern themselves with modeling of dynamics of influenza virus 
[8, 9,2,10,11].  
 
In this paper we have modified the model of Das et al. [12] with recovery class. In the first section we 
present the model in which c is the contact rate at which the susceptible population is converted into the 
exposed population. ��	
, ��	
, 
�	
 ��� ��	
 represents the number of susceptible, exposed, infectious, and 
recovered Population at the time t respectively, A is the requirement rate of the population, � is the natural 
death rate of the population, � is the natural recovery rate of the infective individuals. In the next section we 
obtained the disease free and the endemic equilibrium and analyzed the stability conditions for both. In the 
last section numerical results are also provided. 
 

2 The Mathematical Model 
 ���	 = � −  ��
� + 
 + �
 −  ��                                                                                                       

 ���	 =  ��
� + 
 − �� +  �
�                                                                                                                             �2.1
 

 �
�	 =  �� − �� +  � +  �

 

 ���	 =  �
 −  �� 

 
Where S, E, I and R stands for susceptible, exposed infective and recovered individuals, respectively. The 
parameters in the model are  
 

A=  The recruitment rate of the population � = The natural death rate of the population  � = The contact rate at which the susceptible population is converted into exposed population. � =  Recovery rate � = The effective transmission coefficient � = The natural recovery rate of the infective individuals 
 
 
 
 
 



 
 
 

Nirwani and Badshah; BJMCS, 14(5): 1-8, 2016; Article no.BJMCS.23142 
 
 
 

3 
 
 

The transfer diagram is depicted in the following Fig. 1: 

 
 

Fig. 1. A compartment model of swine flu 
 

3 Stability Analysis 
 
For the equilibrium points the above differential equation should be equated to zero. 
 �. �.  ���	 = ���	 = �
�	 = ���	 = 0 

 
We have two equilibrium points are given by �� = �� �⁄ , 0,0,0
 is the disease free equilibrium points of the 
system (2.1) and the unique endemic equilibrium point  �∗ = ��∗, �∗, 
∗, �∗
, where 
  �∗ = "� − " 
∗, 

 �∗ = �� + � + �
� 
∗, 
 
∗ = �# $%&'% + " − �( 
 �∗ = �� 
∗ 
 )ℎ��� " = �� + �
�� + � + �
�  

 
The basic reproduction number defined as 
 �� = ���� + �
�� + � + �
 

 
 
 

�� �
 �� �� 

�
 �� 

��
� + 
 � � � 
 � 

�
 



 
 
 

Nirwani and Badshah; BJMCS, 14(5): 1-8, 2016; Article no.BJMCS.23142 
 
 
 

4 
 
 

3.1 Theorem. The disease free equilibrium of the system is locally asymptotically stable if �� � 1 and 
unstable if �� � 1. 
 
Proof: We consider equations 
 +, =  � −  ��
� + 
 + �
 −  ��  +- =   ��
� + 
 − �� +  �
�  +. =  �� − �� +  � +  �

  +/ =   �
 −  �� 

  
The Jacobian matrix 
 

0� =
122
222
3 −�
-�� + 

- − � 0 −��-�� + 

- + � 0�
-�� + 

 −�� + �
 ��-�� + 

- 00 � −�� + � + �
 00 0 � −�455

555
6
 

 
At equilibrium point �� = �� �⁄ , 0,0,0
 the Jacobian matrix becomes  
 

0� = 7−� 0 −� + � 00 −�� + �
 � 00 � −�� + � + �
 00 0 � −�8 

 
The characteristics equation |0� − :
| = 0 is given as 
 

;;−�� + :
 0 −� + � 00 −�� + � + :
 � 00 � −�� + � + � + :
 00 0 � −�� + :
;; = 0 

 ⇒ �� + :
-=�� + � + :
�� + � + � + :
 − ��> = 0 
 
Clearly two Eigen values : = −�, −�  are negative, other Eigen values are given by the quadratic equation.  
 :- + �,: + �- = 0, 
 
Where 
 �, = � + � + � + 2� 

 �- =(� + �)(� + � + �
 − �� 
 

Therefore, by Routh-Hurwitz criteria the disease-free equilibrium stable if �, � 0 ��� �- � 0, which is 
possible  if (� + �)(� + � + �
 � ��, i.e �� �1. 
 
3.2 Theorem. If �� � 1 the endemic equilibrium  �∗ is locally asymptotically stable. 
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Proof: The variation matrix at the endemic point �∗��∗, �∗, 
∗, �∗
 
 

0, =
122
222
3 −�
∗-��∗ + 
∗
- − � 0 −��∗-��∗ + 
∗
- + � 0�
∗-��∗ + 
∗
 −�� + �
 ��∗-��∗ + 
∗
- 00 � −�� + � + �
 00 0 � −�455

555
6
 

 

Consider that 
 ), = �
∗-��∗ + 
∗
-  ��� )- = ��∗-��∗ + 
∗
- 

 
Then 0, becomes 
 

0, = 7−), − � 0 −)- + � 0), −�� + �
 )- 00 � −�� + � + �
 00 0 � −�8 

 

The characteristics equation |0, − :
| = 0  is given as 
 

;;−�), + � + :
 0 −)- + � 0), −�� + � + :
 )- 00 � −�� + � + � + :
 00 0 � −�� + :
;; = 0 

 ⇒ �� + :
=�), + � + :
�� + � + :
�� + � + � + :
 − �), + � + :
)-� + �)- − �
),�> = 0 
 
Clearly one eigen value is negative : = −� and other eigen values are given by the cubic equation. 
 :. + �,:- + �-: + �.=0 
 
Where 
 �, = 3� + � + ), + � + � 

  �- = =�� + �
�), + �
+ �), + 2� + �
�� + � + �
 − )-�> 
 �. = �� + �
�), + �
�� + � + �
 − ��)- + �),
�  

 
By Routh-Hurwitz criteria, the system (2.1) is locally asymptotically stable if �, � 0, �. � 0 ��� �,�- ��.. Thus,  �∗ is locally asymptotically stable.  
 

4 Discussion and Numerical Simulation 
 
From practical point of view, numerical solutions are very important beside analytical study. In our study, 
we propose and analyze a swine flu model. We also performed the numerical solutions by using hypothetical 
set of parameter values with Excel. Since A is the recruitment rate of the population, we choose a suitable 
value as unit. From the study we observe that the disease free equilibrium is locally stable for basic 
reproduction number �� �1 and is unstable otherwise, which is directly proportional to contact rate ‘c’. For 
existence of endemic equilibrium point we have increased value the contact rate. Further local stability of the 
endemic equilibrium of the system is also contact rate dependent. We performed numerical simulation for 
different values of c. Numerical solutions are presented graphically by taking the population in hundreds and 
time is in per day. 
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4.1 Numerical simulation for disease free equilibrium 
 
From the numerical values of the parameters as � = 1, � = 0.003, � = 0.1, � = 0.02, � = 0.1 ��� � = 0.01 
Then the calculated disease free equilibrium point and basic reproductive number are: ����, 0,0,0
 =�50,0,0,0
  and  �� = 0.192307 � 1 . Fig. 2 shows that ��	
  goes to its steady state, 
while ��	
, 
�	
��� ��	
 goes to zero with respect to time. Hence the disease dies out.  

 

 

Fig. 2. The figure shows that the disease free equilibrium is locally stable for the choice of parameter 
values 

 

4.2 Numerical simulation for endemic equilibrium  
 
We change the value of � = 0.3 and all other parameters are as above. Then, we obtain   �∗��∗, �∗, 
∗, �∗
 =�13.9496,16.7395,12.8766,6.4383
 and  �� = 1.92307 � 1 . Therefore, the endemic equilibrium  � ∗ is 
locally asymptotically stable. Fig. 3 shows that �, �, 
 ��� � goes to their steady state values. Hence the 
disease becomes endemic.  
 

 

Fig. 3. The figure shows that the endemic equilibrium is locally asymptotically stable for the choice of 
parameter values 

 

Now if we change c value as � = 0.162 then the endemic equilibrium point changes as  �∗��∗, �∗, 
∗, �∗
 =�45.1388,2.2569,1.73611,0.86805
. 
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Fig. 4. The figure shows that the exposed, infective and recovered classes are decreasing in number for 

the choice of parameter values 
 
Keeping other parameters fixed, if we change the values of � = 0.1560312 we get endemic equilibrium 
point becomes �∗��∗, �∗, 
∗, �∗
 = �49.978,0.01299428,0.0099956,0.0049978
 , which shows the 
exposed, infective and recovery classes are going extinct for choice of parameter value. 
 

 

Fig. 5. Exposed, infective and recovery classes are going extinct for choice of parameter value 
 

5 Conclusion  
   
In this paper, we analyzed an SEIR compartment model of Swine flu, the results are helpful to predict the 
developing tendency of disease and recovery. We analyzed the Steady state and stability of the equilibrium 
points. The model equations were solved analytically. We can conclude that the basic reproduction number �� � 1  then the disease free equilibrium ��  is locally asymptotically stable and if �� �1 the endemic 
equilibrium  �∗ is locally asymptotically stable. 
 
Numerical simulations were presented graphically. We have also observed that contact rate �  plays an 
important role in stability; the basic reproduction number �� will be decrease if the contact rate � decreases 
when disease is endemic.  
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