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Abstract

This paper discusses the Modified Variational Iteratioethdd (MVIM) for the solution of nonlinedr
Burgers’ equation arising in longitudinal dispersion phenomenkioh flow through porous media. The
method is an elegant combination of Taylor's series andrdhiational iteration method (VIM). Usin

Maple 18 for implementation, it is observed the proceduoeiges rapidly convergent approximation

with less computational efforts. The result shows that concentratiorC(X,t) of the contaminate
water decreases as distan¢encreases for the given tirbe

Keywords: Modified variational iteration method; Burger'guation; porous media; partial differential
equation.
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1 Introduction

Burgers’ equation is the approximation for the one-dimensimugdagation of weak shock waves in a fluid.
It can also be used in the description of the variation in vetieaisity in highway traffic.

The equation is one of the fundamental model equations ahrflechanics which demonstrates the coupling
between the dissipation effect @, and convection process &C, . Burgers introduced the equation to
describe the behavior of shock waves, traffic flow and stiotransmission.

Many authors; [1-6] have worked on different methods to shieeBurgers’ equation numerically. Wazwaz
[1] studied Travelling wave solution of generalized formdBargers, Burgers-KdV and Burger’s-Huxley
equations. Patel and Mehta [2] applied Hope-Cole transformatipnesent solution of Burgers’ equation
for longitudinal dispersion of miscible fluid flow through porousdme Meher and Mehta [3] used

Backlund Transformations to solve Burger's equation ragish longitudinal dispersion of miscible fluid

flow through porous media and Joshi, et al. [4] used theoretioagprto find the solution of Burgers’

equation for longitudinal dispersion phenomena occurring in biésghase flow through porous media.
Olayiwola et al. [5] also presented the modified véoiel iteration method for the numerical solution of
generalized Burger's-Huxley equation. Recently, Kunjan @wnihkle [6] used mixture of new integral

transform and Homotopy Perturbation Method to find the wwmlubf Bugers’ equation arising in the

longitudinal dispersion phenomenon in fluid flow through porous media.

In this paper, a modified variational iteration method isqmeed to discuss the solution of the problem.
2 Modified Variational Iteration Method (MVIM)

The idea of variational iteration can be traced to Inokd]ti The variational iteration method was proposed
by J. H He [8-9], In this paper, a Modified Variationeration Method proposed by Olayiwola [5,10-13] is
presented for the solution of the Burgers’ equation.

To illustrate the basic concept of the MVIM, we consittier following general nonlinear partial differential
equation:

Lu(x,t)+ Ru(x,t) + Nu(x,t) = g(x,t) )

where L is a linear time derivative operator, R ishadir operator which has partial derivative with respect t
X, N is a nonlinear operator and g is an inhomogeneous t#eoording to MVIM, we can construct a
correction functional as follows:

uo(x,t):u(x,0)+ g (X)t @)
U, (xt) =u, (xt) +j/1[Lun + Rﬁn + Nﬁn - ghr 3)

where gy (x) can be evaluated by substitutingo (X,t)in (@) and evaluate dt = O .

Ais a Lagrange multiplier which can be identified optimalip Variational Iteration Method. The

subscript N denote the nth approximatiohjn is considered as a restricted variation t‘ﬁ'n =0.



Olayiwola; BJMCS, 14(5): 1-7, 2016; Article no.BJE23856

3 Problem Formulation

In [14-17] and according to Darcy’s law, the equation afticwity of fluid is given as:

dp -
“E+0*(pv)=0 4
m (ov) (4)

The equation of diffusion for a fluid flow through a hageneous porous medium without decreasing or
increasing the dispersing material is:

oc - = (C
it DOl =
< oo S| ®

In a lamina flow through homogeneous porous medium at a cotestaperature,0 is a constant. Then,

0*v=0 (6)
Therefore, equation (5) becomes:

%—Ct:+\_/DC -0+ (poc) (7)

When the seepage velocity is along x-axis, tép = ), D, ; =0
Hence, equation (7) becomes:

dC  aC _ 9°%C
+u —y—=

—+u— 8
ot  ox  ox° ®
Asx=0,D, >0
. cg(,t) o)

0

Equation (8) then becomes:
6_C+CO_C:y62C (10)
ot ox x>
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This is the nonlinear Burgers equation for longitudinal disipa of miscible fluid flows through porous
media where:

C, = initial concentration of contaminant in liquid

C = concentration of contaminant in liquid phase
P = density of the mixure

V= pore seepage velocity vector

D = tensor coefficients of dispersion with componﬁ];j

U = velocity component along x-axis
y = coefficient of longitudinal dispersion

4 Solution of the Problem Using MVIM

In this section, the reliability of the MVIM is tested lapplying it to find and discuss the behavior of
solution of nonlinear Burgers equation for longitudinal disjger phenomena in fluid flow through a porous
media.

The initial and boundary condition for problem (10) is:
C(x,0)=e*,0<x<1 0001<t< 001 (12)
CcCOt)=1 (12)

The correction functional becomes:

C..(xt) =C, (x1) + IA[OC% (;" D e acn;;, 0 _ yazch(j( ’ T)} dr (13)
from equations (1-2)

Co(xt)=e™+ (;,e‘X + e‘zx)t (14)
When N = 4 Equations (13)-(14) gives:

Cs(xt)=e™+ (ye‘X +e Xk + @ yle ™ +3)e +ge‘3xj t? +

(% y'e™ +§e‘4x + %4 ye > + 1—27 ye‘”j t?+ (15)

1 -X 125 —5x —2X 101 2 \—3X 71 —-4x 4 5
—)ye +—e>+hpye T +—ypyeT +— t* +Olt
(24”4 24 yer Ty 37 ) )

Equation (15) represents the concentration of the longitudispédiion at any given distanéeand time
t. This solution is identical to solution obtained in [6] wher 1.
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Fig. 2. Graph of C(X,t) againstt for various values of X
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5 Conclusion

The graphs show that the numerical solution of concentrafian given dissolved substance in unsteady
unidirectional seepage flows through semi-infinite, homogeneoagpis porous media subject to the

source concentrations vary negatively exponentially with distamd slightly increase with time. This helps
to predict the possible contamination of groundwater argdiit agreement with the physical phenomenon of
longitudinal dispersion in miscible fluid thorough isotgiorous media subject to a defined initial and
boundary conditions.
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