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1 Introduction

The stability problem of functional equation originated from a question of S.M. Ulam [1] . In 1940,
S. M. Ulam gave the following question concerning the stability of homomorphisms:

Let (G, ·) be a group and let H be a metric group with metric d(., .). Given ϵ > 0 does there exist
a δ > 0 such that if a function f : G → H satisfies the inequality d (f(xy), f(x)f(y)) < δ for all
x, y ∈ G then a homomorphism a : G → H exists with d (f(x), a(x)) < ϵ for all x ∈ G ?

In other words, under what condition does there exist a homomorphism near an approximate
homomorphism?. D.H. Hyers [2] gave an affirmative answer to the problem of Ulam under the
assumption that the groups are Banach spaces. The theorem of Hyers was extended by T. Aoki [3]
for approximately additive mappings and by Th.M.Rassias [4] for approximately linear mappings.
Four years later, J.M. Rassias [5] by applying Th. M. Rassias’s approach [4] for the stability of
mappings when the norm of the Cauchy difference is bounded by the sum of powers of norms,
obtained a similar theorem in which the norm of the Cauchy difference is bounded by the product
of powers of norms.

In 2009, Jung Rye Lee and Choonkil Park [6] proved the generalized Hyers-Ulam Stability of
homomorphism and of derivations on Banach algebras using fixed point method for the 3-variable
Cauchy functional equation

f(x+ y + z) = f(x) + f(y) + f(z)

In 2010, C.Park and A.Najati [7] investigated Hyers-Ulam-Rassias-Stability of homomorphism and
of derivations in Banach algebras associated with generalized additive functional inequality

∥af(x) + bf(y) + cf(z)∥ ≤ ∥f(αx+ βy + γz)∥

In 2012, Yeol Je Cho, Jung IM Kang and Reza Saadati [8] investigated generalized Hyers-Ulam
stability of homomorphisms and of derivations on Banach algebras using fixed point method for the
following additive functional equation

m∑
i=1

f

mxi +
m∑

j=1,j ̸=i

xj

+ f

(
m∑
i=1

xi

)
= 2f

(
m∑
i=1

mxi

)

for all m ∈ N with m ≥ 2.

The stability problems of various functional equations have been extensively investigated by a
number of authors and there are many interesting results concerning this problem (see[9]-[15],[16],[17],
[18],[19]-[34]).

Definition 1.1. Let X be a set. A function d : X ×X → [0,∞) is called generalized metric on X
if d satisfies

1. d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x) for all x, y ∈ X;

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

In 1996, Isac and Rassias [35] were the first to provide applications of stability theory of functional
equations for the new fixed point theorems. By using fixed point methods, several stability problems
have been extensively investigated by number of authors.

Now we shall recall a fundamental result in fixed point theory.
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Theorem 1.1. Let (X,d) be a complete generalized metric space and let J : X → X be a strictly
contractive mapping with Lipschitz constant α < 1. Then for each given element x ∈ X, either
d(Jnx, Jn+1x) = ∞ for all nonnegative integers n or there exists a positive integer n0 such that

1. d(Jnx, Jn+1x) < ∞, ∀n ≥ n0;.

2. the sequence{Jnx} converges to a fixed point y∗ of J;

3. y∗ is the unique fixed point of J in the set Y = {y ∈ X|d(Jn0x, y) < ∞};
4. d(y, y∗) ≤ 1

1−α
d(y, Jy) for all y ∈ Y .

In this paper, we obtain the general solution of a quadratic functional equation

f(2x− y) + f(2y − z) + f(2z − x) + f(x+ y + z)− f(x− y + z)

− f(x+ y − z)− f(x− y − z) = 3f(x) + 3f(y) + 3f(z) (1.1)

and investigate its Hyers-Ulam stability in Banach algebras using fixed point approach. This paper
is organized as follows.

In Section: 2, we provide the general solution of a quadratic functional equation (1.1). In Section:3,
we prove the Hyers-Ulam-Rassias stability of homomorphisms for the quadratic functional equation
(1.1) in real Banach algebras and in Section: 4, we investigate the Hyers-Ulam stability of the
functional equation (1.1). In Section:5, we prove the Hyers-Ulam-Rassias stability of generalized
derivations on real Banach algebras for the quadratic functional equation (1.1) by using fixed point
method.

2 The General Solution

The following theorem provide the general solution of the functional equation (1.1) by establishing
a connection with the classical quadratic functional equation.

Theorem 2.1. Let X and Y be real vector spaces. A function f : X → Y satisfies the functional
equation

f(2x− y) + f(2y − z) + f(2z − x) + f(x+ y + z)− f(x− y + z)

− f(x+ y − z)− f(x− y − z) = 3f(x) + 3f(y) + 3f(z) (2.1)

for all x, y, z ∈ X if and only if it satisfies the quadratic functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (2.2)

for all x ∈ X .

Proof. Suppose a function f : X → Y satisfies (2.1). Setting (x, y, z) = (x, x, x) in (2.1), we obtain

f (x) + f (x) + f (x) + f (3x)− f (x)− f (x)− f (−x) = 3f (x) + 3f (x) + 3f (x)

which gives
f (3x) = 8f (x) + f (−x) . (2.3)

Again, setting (x, y, z) = (−x, x, x) in (2.1), we obtain

f (−3x) + f (x) + f (3x) + f (x)− f (−x)− f (−x)− f (−3x)
= 3f (−x) + 3f (x) + 3f (x)

which gives
f (3x) = 5f (−x) + 4f (x) . (2.4)
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Equating (2.3) and (2.4) we obtain f(x) = f(−x). Thus, f is an even function. Putting x = 0
in equation (2.1), we obtain f(0) = 0. Setting (x, y, z) = (x, 0, 0) in (2.1) and using evenness we
arrive,

f (2x)− f (x) = 3f (x) ,

which gives

f (2x) = 4f (x) . (2.5)

In equation (2.3), using the evenness, we arrive

f (3x) = 9f (x) forall x ∈ X. (2.6)

Extending this ideas, in general we obtain f (nx) = n2f (x). Setting x = 0 in equation (2.1), using
(2.5) and evenness of f , we obtain

f(2y − z)− f(−y + z)− f(y − z) = 2f(y)− f(z). (2.7)

Again, setting (y, z) = (y, y − z) in equation (2.7) and using evenness of f , we obtain

f (y + z) + f (y − z) = 2f (y) + 2f (z) .

Setting (y, z) = (x, y), we obtain

f (x+ y) + f (x− y) = 2f (x) + 2f (y) .

Suppose that a function f : X → Y satisfies (2.2). Setting (x, y) = (x+ y, z) , (y + z, x) ,
(z + x, y) respectively in equation (2.2), we obtain a set of equations:

f (x+ y + z) + f (x+ y − z) = 2f (x+ y) + 2f (z)

f (y + z + x) + f (y + z − x) = 2f (y + z) + 2f (x) (2.8)

f (z + x+ y) + f (z + x− y) = 2f (z + x) + 2f (y) .

Again setting (x, y) = (x, y − z) , (y, z − x) , (z, x− y) respectively in equation (2.2), we have another
set of equations:

f (x+ y − z) + f (x− y + z) = 2f (x) + 2f (y − z)

f (y + z − x) + f (y − z + x) = 2f (y) + 2f (z − x) (2.9)

f (z + x− y) + f (z − x+ y) = 2f (z) + 2f (x− y) .

Subtracting half the sum of all equations in (2.9) from the sum of all equations in (2.8), we obtain

3f (x+ y + z) = 2 [f (x+ y) + f (y + z) + f (z + x)]− [f (x− y) + f (y − z) + f (z − x)]

+ [f (x) + f (y) + f (z)] . (2.10)

If we rewrite (2.2) as f (x+ y) = 2f (x) + 2f (y)− f (x− y) and perform cyclic permutation of all
variables, then (2.10) simplifies to

3f (x+ y + z) = 9 [f (x) + f (y) + f (z)]− 3 [f (x− y) + f (y − z) + f (z − x)] . (2.11)

Setting (x, y) = (x, x− y) and all cyclic permutations of variables in (2.2), we have

f (2x− y) + f (y) = 2f (x) + 2f (x− y) ,

f (2y − z) + f (z) = 2f (y) + 2f (y − z) , (2.12)

f (2z − x) + f (x) = 2f (z) + 2f (z − x) .
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from equation (2.12), we get

2 [f (x− y) + f (y − z) + f (z − x)]

= f (2x− y) + f (2y − z) + f (2z − x)− [f (x) + f (y) + f (z)] . (2.13)

Using (2.13) in equation (2.11), we get

f (2x− y) + f (2y − z) + f (2z − x) + 2f (x+ y + z) = 7f (x) + 7f (y) + 7f (z) . (2.14)

Setting y by y + z and y − z in equation (2.2), we get

f (x+ y + z) + f (x− y − z) = 2f (x) + 2f (y + z) (2.15)

f (x+ y − z) + f (x− y + z) = 2f (x) + 2f (y − z) (2.16)

Adding equation (2.15) and (2.16), using (2.2) we get,

f (x+ y + z) + f (x− y − z) + f (x+ y − z) + f (x− y + z) = 4f (x) + 4f (y) + 4f (z) . (2.17)

Subtracting equation (2.17) from (2.14), we obtain

f(2x− y) + f(2y − z) + f(2z − x) + f(x+ y + z)− f(x− y + z)

− f(x+ y − z)− f(x− y − z) = 3f(x) + 3f(y) + 3f(z)

3 Stability of Homomorphisms in Real Banach Algebras

Throughout this section, assume that A is a real Banach algebra with norm ∥·∥A and that B is a
real Banach algebra with norm ∥·∥B . For a given mapping f : A → B, we define

Cf(x, y, z) := f(2x− y) + f(2y − z) + f(2z − x) + f(x+ y + z)− f(x− y + z)

− f(x+ y − z)− f(x− y − z)− 3f(x)− 3f(y)− 3f(z) (3.1)

for all x, y, z ∈ A.

Note that a C-linear mapping H : A → B is called a algebra homomorphism in Banach algebras if
H satisfies H(xy) = H(x)H(y) for all x, y ∈ A

We prove the Hyers-Ulam-Rassias stability of homomorphisms in real Banach algebras for the
functional equation Cf(x, y, z) = 0.

Theorem 3.1. Let f : A → B be a mapping for which there exists a function ϕ : A3 → [0,∞) such
that

∞∑
j=0

1

4j
ϕ(2jx, 2jy, 2jz) < ∞ (3.2)

∥Cf(x, y, z)∥B ≤ ϕ(x, y, z) (3.3)

∥f(xy)− f(x)f(y)∥B ≤ ϕ(x, y, 0) (3.4)

for all x, y, z ∈ A. If there exists an L < 1 such that ϕ(x, 0, 0) ≤ 4Lϕ
(
x
2
, 0, 0

)
for all x ∈ A and

if f(tx) is continuous in t ∈ ℜ for each fixed x ∈ A, then there exists a unique homomorphism
H : A → B such that

∥f(x)−H(x)∥B ≤ 1

4− 4L
ϕ(x, 0, 0) (3.5)

for all x ∈ A.
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Proof. Consider the set
X := {g : A → B} (3.6)

and introduce the generalized metric on X:

d(g, h) = inf
{
C ∈ ℜ+ : ∥g(x)− h(x)∥B ≤ Cϕ(x, 0, 0), ∀x ∈ A

}
. (3.7)

It is easy to show that (X, d) is complete. Now, we consider the linear mapping J : X → X such
that

Jg(x) :=
1

4
g(2x) (3.8)

for all x ∈ A. By [[12], Theorem 3.1]

d(Jg, Jh) ≤ Ld(g, h) (3.9)

for all g, h ∈ X. Letting x = x,y = z = 0, f is even and f(0) = 0 in (3.3) we get

∥f(2x) + f(−x) + f(x)− f(x)− f(x)− f(x)− 3f(x)∥ ≤ ϕ(x, 0, 0)

∥f(2x)− 4f(x)∥ ≤ ϕ(x, 0, 0) (3.10)

for all x ∈ A. So ∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 1

4
ϕ(x, 0, 0) (3.11)

for all x ∈ A. Hence d(f, Jf) ≤ 1
4
. By Theorem 1.1, there exists a mapping H : A → B such that

the following hold.

1. H is a fixed point of J, that is
H(2x) = 4H(x) (3.12)

for all x ∈ A. The mapping H is a unique fixed point of J in the set

Y = {g ∈ X : d(f, g) < ∞} (3.13)

This implies that H is a unique mapping satisfying (3.12) such that there exists C ∈ (0,∞)
satisfying

∥H(x)− f(x)∥B ≤ Cϕ(x, 0, 0) (3.14)

for all x ∈ A

2. d(Jnf,H) → 0 as n → ∞. This implies the equality

lim
n→∞

f(2nx)

4n
= H(x) (3.15)

for all x ∈ A.

3. d(f,H) ≤
(

1
1−L

)
d(f, Jf) which implies the inequality

d(f,H) ≤ 1

4− 4L
· (3.16)

This implies that the inequality (3.5) holds.

It follows from (3.2), (3.3) and (3.15) that

∥H(2x− y) +H(2y − z) +H(2z − x) +H(x+ y + z)−H(x− y + z)

−H(x+ y − z)−H(x− y − z)− 3H(x)− 3H(y)− 3H(z)∥

= lim
n→∞

1

4n
∥f(2n(2x− y)) + f(2n(2y − z)) + f(2n(2z − x)) + f(2n(x+ y + z))

− f(2n(x− y + z))− f(2n(x+ y − z))− f(2n(x− y − z))

− 3f(2nx)− 3f(2ny)− 3f(2nz)∥

≤ lim
n→∞

1

4n
ϕ(2nx, 2ny, 2nz) = 0

(3.17)
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for all x, y, z ∈ A. So

H(2x− y) +H(2y − z) +H(2z − x) +H(x+ y + z)−H(x− y + z)

−H(x+ y − z)−H(x− y − z) = 3H(x) + 3H(y) + 3H(z)
(3.18)

for all x, y, z ∈ A. By Theorem 2.1, the mapping H : A → B is a quadratic.

By the same reasoning as in the proof of theorem of [4], the mapping H : A → B is ℜ-linear.

It follows from (3.4) that

∥H(xy)−H(x)H(y)∥B = lim
n→∞

1

16n
∥f(4nxy)− f(2nx)f(2ny)∥

≤ lim
n→∞

1

16n
ϕ(2nx, 2ny, 0)

≤ lim
n→∞

1

4n
ϕ(2nx, 2ny, 0) = 0 (3.19)

for all x, y ∈ A. So
H(xy) = H(x)H(y) (3.20)

for all x, y ∈ A. Thus H : A → B is a homomorphism satisfying (3.5) as desired.

Corollary 3.2. Let r < 2 and θ be non negative real numbers, and let f : A → B be a mapping
such that

∥Cf(x, y, z)∥B ≤ θ
(
∥x∥rA + ∥y∥rA + ∥z∥rA

)
∥f(xy)− f(x)f(y)∥B ≤ θ(∥x∥rA + ∥y∥rA) (3.21)

for all x, y, z ∈ A. If f(tx) is continuous in t ∈ ℜ for each fixed x ∈ A, then there exists a unique
homomorphism H : A → B such that

∥f(x)−H(x)∥B ≤ θ

4− 2r
∥x∥rA (3.22)

for all x ∈ A.

Proof. The proof follows from Theorem 3.1, by taking

ϕ(x, y, z) := θ
(
∥x∥rA + ∥y∥rA + ∥z∥rA

)
(3.23)

for all x, y, z ∈ A, then we can choose L = 2r−2 and we get the desired result.

∥f(x)−H(x)∥B ≤ 1

4− 4L
ϕ(x, 0, 0)

≤ 1

4− 4(2r−2)
ϕ(x, 0, 0)

≤ θ

4− 2r
∥x∥rA .

Theorem 3.3. Let f : A → B be a mapping for which there exists a function ϕ : A3 → [0,∞)
satisfying (3.3) and (3.4) such that

∞∑
j=0

16jϕ
( x

2j
,
y

2j
,
z

2j

)
< ∞ (3.24)
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for all x, y, z ∈ A. If there exists an L < 1 such that ϕ(x, 0, 0) ≤ 1
4
Lϕ(2x, 0, 0) for all x ∈ A and

if f(tx) is continuous in t ∈ ℜ for each fixed x ∈ A, then there exists a unique homomorphism
H : A → B such that

∥f(x)−H(x)∥B ≤ L

4− 4L
ϕ(x, 0, 0) (3.25)

for all x ∈ A.

Proof. we consider the linear mapping J : X → X such that

Jg(x) := 4g
(x
2

)
(3.26)

for all x ∈ A. It follows from (3.10) that∥∥∥f(x)− 4f(
x

2
)
∥∥∥ ≤ ϕ

(x
2
, 0, 0

)
≤ L

4
ϕ(x, 0, 0) (3.27)

for all x ∈ A. Hence d(f, Jf) ≤ L
4
. By Theorem 1.1, there exists a mapping H : A → B such that

the following holds

1. H is a fixed point of J, that is
H(2x) = 4H(x) (3.28)

for all x ∈ A. The mapping H is a unique fixed point of J in the set

Y = {g ∈ X : d(f, g) < ∞} . (3.29)

This implies that H is a unique mapping satisfying (3.28) such that there exists C ∈ (0,∞)
satisfying

∥H(x)− f(x)∥B ≤ Cϕ(x, 0, 0) (3.30)

for all x ∈ A

2. d(Jnf,H) → 0 as n → ∞. this implies the equality

lim
n→∞

4nf(
x

2n
) = H(x) (3.31)

for all x ∈ A.

3. d(f,H) ≤
(

1
1−L

)
d(f, Jf) which implies the inequality

d(f,H) ≤ L

4− 4L
(3.32)

This implies that the inequality (3.25) holds.

It follows from (3.3), (3.24) and (3.31) that

∥H(2x− y) +H(2y − z) +H(2z − x) +H(x+ y + z)−H(x− y + z)

−H(x+ y − z)−H(x− y − z)− 3H(x)− 3H(y)− 3H(z)∥B

= lim
n→∞

4n∥f
(
2x− y

2n

)
+ f

(
2y − z

2n

)
+ f

(
2z − x

2n

)
+ f

(x+ y + z

2n

)
− f

(x− y + z

2n

)
− f

(x+ y − z

2n

)
− f

(x− y − z

2n

)
− 3f

( x

2n

)
− 3f

( y

2n

)
− 3f

( z

2n

)
∥

≤ lim
n→∞

4nϕ
( x

2n
,
y

2n
,
z

2n

)
≤ lim

n→∞
16nϕ

( x

2n
,
y

2n
,
z

2n

)
= 0

(3.33)
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for all x, y, z ∈ A. So

H(2x− y) +H(2y − z) +H(2z − x) +H(x+ y + z)−H(x− y + z)

−H(x+ y − z)−H(x− y − z) = 3H(x) + 3H(y) + 3H(z)
(3.34)

for all x, y, z ∈ A. By Theorem 2.1, the mapping H : A → B is a quadratic.

By the same reasoning as in the proof of theorem of [4], the mapping H : A → B is ℜ-linear.

It follows from (3.4) that

∥H(xy)−H(x)H(y)∥B = lim
n→∞

16n
∥∥∥f (xy

4n

)
− f

( x

2n

)
f
( y

2n

)∥∥∥
≤ lim

n→∞
16nϕ

( x

2n
,
y

2n
, 0
)
= 0 (3.35)

for all x, y ∈ A. So
H(xy) = H(x)H(y) (3.36)

for all x, y ∈ A. Thus H : A → B is a homomorphism satisfying (3.25) as desired.

Corollary 3.4. Let r > 2 and θ be non negative real numbers, and let f : A → B be a mapping
satisfying (3.21). If f(tx) is continuous in t ∈ ℜ for each fixed x ∈ A, then there exists a unique
homomorphism H : A → B such that

∥f(x)−H(x)∥B ≤ θ

2r − 4
∥x∥rA (3.37)

for all x ∈ A.

Proof. The proof follows from Theorem 3.3, by taking

ϕ(x, y, z) := θ
(
∥x∥rA + ∥y∥rA + ∥z∥rA

)
(3.38)

for all x, y, z ∈ A, then we can choose L = 22−r and we get the desired result.

∥f(x)−H(x)∥B ≤ L

4− 4L
ϕ(x, 0, 0)

≤ 22−r

4− 4(22−r)
θ
(
∥x∥rA

)
≤ θ

2r − 4

(
∥x∥rA

)
.

4 Hyers-Ulam Stability of a Functional Equation

The following Corollaries provides the Hyers-Ulam stability [36] for the quadratic functional equation
(1.1). This kind of stability considers both the sum and the product of powers of norms as an upper
bound for the norm of the Cauchy difference.

Corollary 4.1. Let r < 2
3
and θ be non negative real numbers, and let f : A → B be a mapping

such that

∥Cf(x, y, z)∥B ≤ θ
(
∥x∥3rA + ∥y∥3rA + ∥z∥3rA + ∥x∥rA ∥y∥rA ∥z∥rA

)
∥f(xy)− f(x)f(y)∥B ≤ θ(∥x∥3rA + ∥y∥3rA + ∥x∥rA ∥y∥rA) (4.1)

9
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for all x, y, z ∈ A. If f(tx) is continuous in t ∈ ℜ for each fixed x ∈ A, then there exists a unique
homomorphism H : A → B such that

∥f(x)−H(x)∥B ≤ θ

22 − 23r
∥x∥3rA (4.2)

for all x ∈ A.

Proof. The proof follows from Theorem 3.1, by taking

ϕ(x, y, z) := θ
(
∥x∥3rA + ∥y∥3rA + ∥z∥3rA + ∥x∥rA ∥y∥rA ∥z∥rA

)
(4.3)

for all x, y, z ∈ A, then we can choose L = 23r−2 and we get the desired result.

∥f(x)−H(x)∥B ≤ 1

4− 4L
ϕ(x, 0, 0)

≤ 1

4− 4(23r−2)
ϕ(x, 0, 0)

≤ θ

22 − 23r
∥x∥3rA .

Corollary 4.2. Let r > 2
3
and θ be non negative real numbers, and let f : A → B be a mapping

satisfying (4.1). If f(tx) is continuous in t ∈ ℜ for each fixed x ∈ A, then there exists a unique
homomorphism H : A → B such that

∥f(x)−H(x)∥B ≤ θ

23r − 22
∥x∥3rA (4.4)

for all x ∈ A.

Proof. The proof follows from Theorem 3.3, by taking

ϕ(x, y, z) := θ
(
∥x∥3rA + ∥y∥3rA + ∥z∥3rA + ∥x∥rA ∥y∥rA ∥z∥rA

)
(4.5)

for all x, y, z ∈ A, then we can choose L = 22−3r and we get the desired result.

∥f(x)−H(x)∥B ≤ L

4− 4L
ϕ(x, 0, 0)

≤ 22−3r

4− 4(22−3r)
θ
(
∥x∥3rA

)
≤ θ

23r − 22
(
∥x∥3rA

)
.

5 Stability of Generalized Derivations on Real Banach
Algebras

Throughout this section, assume that A is a real Banach algebra with norm ∥·∥A. For a given
mapping f : A → A, we define

Df(x, y, z) := f(2x− y) + f(2y − z) + f(2z − x) + f(x+ y + z)− f(x− y + z)

− f(x+ y − z)− f(x− y − z)− 3f(x)− 3f(y)− 3f(z) (5.1)

for all x, y, z ∈ A. Note that a C-linear mapping δ : A → A is called a derivation if δ(xy) =
δ(x)y + xδ(y) for all x, y ∈ A

10
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Definition 5.1. A generalized derivation f : A → A is ℜ- linear and fulfills the generalized Leibniz
rule

f(xyz) = f(xy)z − xf(y)z + xf(yz) (5.2)

We prove the Hyers-Ulam-Rassias stability of generalized derivations on real Banach algebras [37, 38]
for the functional equation Df(x, y, z) = 0.

Theorem 5.1. Let f : A → A be a mapping for which there exists a function ϕ : A3 → [0,∞)
satisfying (3.2) such that

∥Df(x, y, z)∥A ≤ ϕ(x, y, z) (5.3)

∥f(xyz)− f(xy)z + xf(y)z − xf(yz)∥A ≤ ϕ(x, y, z) (5.4)

for all x, y, z ∈ A. If there exists an L < 1 such that ϕ(x, 0, 0) ≤ 4Lϕ
(
x
2
, 0, 0

)
for all x ∈ A and if

f(tx) is continuous in t ∈ ℜ for each fixed x ∈ A, then there exists a unique generalized derivation
δ : A → A such that

∥f(x)− δ(x)∥A ≤ 1

4− 4L
ϕ(x, 0, 0) (5.5)

for all x ∈ A.

Proof. Consider the set
X := {g : A → A} (5.6)

and introduce the generalized metric on X:

d(g, h) = inf
{
C ∈ ℜ+ : ∥g(x)− h(x)∥A ≤ Cϕ(x, 0, 0), ∀x ∈ A

}
. (5.7)

It is easy to show that (X, d) is complete. Now, we consider the linear mapping J : X → X such
that

Jg(x) :=
1

4
g(2x) (5.8)

for all x ∈ A. By [[12],Theorem 3.1]

d(Jg, Jh) ≤ Ld(g, h) (5.9)

for all g, h ∈ X.

Letting y = z = 0 ,f is even and f(0) = 0 in (5.3) we get

∥f(2x)− 4f(x)∥ ≤ ϕ(x, 0, 0) (5.10)

for all x ∈ A. So ∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 1

4
ϕ(x, 0, 0) (5.11)

for all x ∈ A. Hence d(f, Jf) ≤ 1
4
. By Theorem 1.1, there exists a mapping δ : A → A such that

the following hold.

1. δ is a fixed point of J, that is
δ(2x) = 4δ(x) (5.12)

for all x ∈ A. The mapping δ is a unique fixed point of J in the set

Y = {g ∈ X : d(f, g) < ∞} . (5.13)

This implies that δ is a unique mapping satisfying (5.12) such that there exists C ∈ (0,∞)
satisfying

∥δ(x)− f(x)∥A ≤ Cϕ(x, 0, 0) (5.14)

for all x ∈ A

11
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2. d(Jnf, δ) → 0 as n → ∞. This implies the equality

lim
n→∞

f(2nx)

4n
= δ(x) (5.15)

for all x ∈ A.

3. d(f, δ) ≤
(

1
1−L

)
d(f, Jf) which implies the inequality

d(f, δ) ≤ 1

4− 4L
. (5.16)

This implies that the inequality (5.5) holds.

It follows from (3.2), (5.3) and (5.15) that

∥δ(2x− y) + δ(2y − z) + δ(2z − x) + δ(x+ y + z)− δ(x− y + z)

− δ(x+ y − z)− δ(x− y − z)− 3δ(x)− 3δ(y)− 3δ(z)∥A

= lim
n→∞

1

4n
∥f(2n(2x− y)) + f(2n(2y − z)) + f(2n(2z − x)) + f(2n(x+ y + z))

− f(2n(x− y + z))− f(2n(x+ y − z))− f(2n(x− y − z))− 3f(2nx)− 3f(2ny)− 3f(2nz)∥A

≤ lim
n→∞

1

4n
ϕ(2nx, 2ny, 2nz) = 0.

(5.17)

for all x, y, z ∈ A. So

δ(2x− y) + δ(2y − z) + δ(2z − x) + δ(x+ y + z)− δ(x− y + z)

− δ(x+ y − z)− δ(x− y − z) = 3δ(x) + 3δ(y) + 3δ(z)
(5.18)

for all x, y, z ∈ A. By Theorem 2.1, the mapping δ : A → A is a quadratic.

By the same reasoning as in the proof of theorem of [4], the mapping δ : A → A is ℜ-linear.

It follows from (5.4) that

∥δ(xyz)− δ(xy)z + xδ(y)z − xδ(yz)∥A

= lim
n→∞

1

64n
∥f(8nxyz)− f(4nxy)2nz + 2nxf(2ny)2nz − 2nxf(4nyz)∥

≤ lim
n→∞

1

64n
ϕ(2nx, 2ny, 2nz)

≤ lim
n→∞

1

4n
ϕ(2nx, 2ny, 2nz) = 0 (5.19)

for all x, y, z ∈ A. So

δ(xyz) = δ(xy)z − xδ(y)z + xδ(yz) (5.20)

for all x, y, z ∈ A. Thus δ : A → A is a homomorphism satisfying (5.5) as desired.

Theorem 5.2. Let f : A → A be a mapping for which there exists a function ϕ : A3 → [0,∞)
satisfying (5.3) and (5.4) such that

∞∑
j=0

64jϕ
( x

2j
,
y

2j
,
z

2j

)
< ∞ (5.21)

12
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for all x, y, z ∈ A. If there exists an L < 1 such that ϕ(x, 0, 0) ≤ 1
4
Lϕ(2x, 0, 0) for all x ∈ A and

if f(tx) is continuous in t ∈ ℜ for each fixed x ∈ A, then there exists a unique homomorphism
δ : A → A such that

∥f(x)− δ(x)∥A ≤ L

4− 4L
ϕ(x, 0, 0) (5.22)

for all x ∈ A.

Proof. we consider the linear mapping J : X → X such that

Jg(x) := 4g
(x
2

)
(5.23)

for all x ∈ A. It follows from (5.10) that∥∥∥f(x)− 4f
(x
2

)∥∥∥ ≤ ϕ
(x
2
, 0, 0

)
≤ L

4
ϕ(x, 0, 0) (5.24)

for all x ∈ A. Hence d(f, Jf) ≤ L
4
. By Theorem 1.1, there exists a mapping δ : A → A such that

the following holds.

1. δ is a fixed point of J, that is
δ(2x) = 4δ(x) (5.25)

for all x ∈ A. The mapping δ is a unique fixed point of J in the set

Y = {g ∈ X : d(f, g) < ∞} . (5.26)

This implies that δ is a unique mapping satisfying (5.25) such that there exists C ∈ (0,∞)
satisfying

∥δ(x)− f(x)∥A ≤ Cϕ(x, 0, 0) (5.27)

for all x ∈ A

2. d(Jnf, δ) → 0 as n → ∞. this implies the equality

lim
n→∞

4nf(
x

2n
) = δ(x) (5.28)

for all x ∈ A.

3. d(f, δ) ≤
(

1
1−L

)
d(f, Jf) which implies the inequality

d(f, δ) ≤ L

4− 4L
. (5.29)

This implies that the inequality (5.22) holds.

It follows from (5.3), (5.21) and (5.28) that

∥δ(2x− y) + δ(2y − z) + δ(2z − x) + δ(x+ y + z)− δ(x− y + z)

− δ(x+ y − z)− δ(x− y − z)− 3δ(x)− 3δ(y)− 3δ(z)∥A

= lim
n→∞

4n∥f
(
2x− y

2n

)
+ f

(
2y − z

2n

)
+ f

(
2z − x

2n

)
+ f

(x+ y + z

2n

)
− f

(x− y + z

2n

)
− f

(x+ y − z

2n

)
− f

(x− y − z

2n

)
− 3f

( x

2n

)
− 3f

( y

2n

)
− 3f

( z

2n

)
∥

≤ lim
n→∞

4nϕ
( x

2n
,
y

2n
,
z

2n

)
≤ lim

n→∞
64nϕ

( x

2n
,
y

2n
,
z

2n

)
= 0

(5.30)

13



Ravi et al.; BJMCS, 14(5), 1-16, 2016; Article no.BJMCS.24013

for all x, y, z ∈ A. So

δ(2x− y) + δ(2y − z) + δ(2z − x) + δ(x+ y + z)− δ(x− y + z)

− δ(x+ y − z)− δ(x− y − z) = 3δ(x) + 3δ(y) + 3δ(z)
(5.31)

for all x, y, z ∈ A. By Theorem 2.1, the mapping δ : A → A is a quadratic.

By the same reasoning as in the proof of theorem of [4], the mapping δ : A → A is ℜ-linear.
It follows from (5.4) that

∥δ(xyz)− δ(xy)z + xδ(y)z − xδ(yz)∥A
= lim

n→∞
64n

∥∥∥f (xyz
8n

)
− f

(xy
4n

) z

2n
+

x

2n
f
( y

2n

) z

2n
− x

2n
f
(yz
4n

)∥∥∥
A

≤ lim
n→∞

64nϕ
( x

2n
,
y

2n
,
z

2n

)
= 0 (5.32)

for all x, y, z ∈ A. So
δ(xyz) = δ(xy)z − xδ(y)z + xδ(yz) (5.33)

for all x, y, z ∈ A. Thus δ : A → A is a generalized derivation satisfying (5.25) as desired.

6 Conclusion

We obtained the general solution of (1.1) and proved the Hyers-Ulam stability, Hyers-Ulam-Rassias
stability of homomorphisms in real Banach algebras and generalized derivations on real Banach
algebras of a new quadratic functional equation (1.1) with better upper bound results using fixed
point method.
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