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Abstract

We demonstrate how the parameters of a Gibson-Low flux-rope-based coronal mass ejection (CME) can be
constrained using remote observations. Our Multi-Scale Fluid-Kinetic Simulation Suite has been used to simulate
the propagation of a CME in a data-driven solar corona background computed using the photospheric
magnetogram data. We constrain the CME model parameters using the observations of such key CME properties
as its speed, orientation, and poloidal flux. The speed and orientation are estimated using multi-viewpoint white-
light coronagraph images. The reconnected magnetic flux in the area covered by the post-eruption arcade is used to
estimate the poloidal flux in the CME flux rope. We simulate the partial halo CME on 2011 March 7 to
demonstrate the efficiency of our approach. This CME erupted with the speed of 812 km s−1 and its poloidal flux,
as estimated from source active region data, was 4.9×1021 Mx. Using our approach, we were able to simulate this
CME with the speed 840 km s−1 and the poloidal flux of 5.1×1021 Mx, in remarkable agreement with the
observations.

Key words: magnetohydrodynamics (MHD) – methods: data analysis – methods: numerical – solar wind – Sun:
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1. Introduction

Predictions of the coronal mass ejection (CME) arrival times
and their properties at 1 au are of extreme importance because
CMEs are the major drivers of extreme space weather events. A
CME can dramatically change the near-Earth plasma condi-
tions resulting in adverse impacts on space assets. A lot of
energy can be deposited in the Earth’s upper atmospheric layers
potentially resulting in communication losses with satellites,
which have become integral parts of our technologically
advanced society.

MHD simulations are very promising for CME forecasting
due to the advancement in parallel computation techniques and
better CME models. Many observed CMEs have been
successfully simulated using MHD models where several
properties of simulated and observed CMEs were matched with
reasonable accuracy (Manchester et al. 2004a; Jin et al. 2017b;
Scolini et al. 2018; Singh et al. 2018 and references therein).

Current CME models used in MHD simulations can be
broadly divided into two categories: (1) overpressured
plasmoid models, such as the blob model (e.g., see Odstrcil
& Pizzo 1999; Chane et al. 2005) and (2) flux-rope-based
models, such as the Gibson-Low (GL; (Gibson & Low 1998)
model, the Titov–Demoulin model (Titov & Demoulin 1999),
and their variations. Since the magnetic flux rope of a CME is a
major contributor to its propagation and impact with Earth’s
magnetosphere, flux-rope-based models are clearly more
realistic and promising for space weather prediction. Further-
more, there is strong observational evidence that all CMEs
reaching the interplanetary medium have flux-rope structure
(Gopalswamy et al. 2013a). In particular, flux-rope models can
be readily used to calculate the z-component of magnetic field
at 1 au, which determines the geoeffectiveness of magnetic
storms. In addition, it is important to develop such models at
distances close to the solar surface because high-energy solar

energetic particles are typically accelerated at distances below
5 Re (Gopalswamy et al. 2013b).
Some previous works (e.g., Jin et al. 2017a; Singh et al.

2018) were successful in matching the CME speeds and
orientations, but no attention was paid to matching the poloidal
flux of CME flux ropes. To address this shortcoming, we
propose a method to find the input parameters for the Gibson-
Low flux-rope-based model by using the observations of CME
speed, orientation, and magnetic poloidal flux, and matching
them to those in the simulated CME. We build on a new
method developed by Gopalswamy et al. (2018), called flux
rope from eruption data (FRED), to find the poloidal flux of an
erupted CME. Then, the parametric study similar to that
performed by Singh et al. (2018) is used to constrain the GL
parameters.
Section 2 describes how the CME parameters are derived

from observations. Section 3 describes the background solar
wind and CME models used in this study. Section 4 addresses
the proposed method for deriving the flux-rope parameters that
match observations. Finally, in Section 5, we apply this
approach to an observed CME and present our conclusions.

2. CME Observations

In this study, we pay attention to three major physical
properties of CMEs: their speed, orientation angle, and flux-
rope poloidal flux. These properties can be estimated by using
the Solar Terrestrial Relations Observatory (STEREO) A & B
coronagraphs, Solar and Heliospheric Observatory (SOHO)
coronagraphs, Solar Dynamics Observatory/Atmospheric
Imaging Assembly (SDO/AIA) data in 193Å, and SDO/
Helioseismic and Magnetic Imager (HMI) magnetograms. If
we approximate a CME as a structure with two conical legs and
a curved front, the CME orientation angle can be defined as the
angle the plane containing CME legs makes with the local
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longitude line. The orientation angle is represented by γ in
Figure 3 of Thernisien et al. (2006). CME rotation can change
this angle.

We calculate the true speed and the orientation of the CME
with respect to the local longitude line using the Graduate
Cylindrical Shell (GCS) fitting method (Thernisien et al. 2006;
Thernisien 2011). GCS fitting is a visual tool in which three
viewpoints of a CME from STEREO A & B and SOHO
coronagraphs are used to fit its structure with conical legs and a
curved surface embracing this CME, as seen from all three
viewpoints. By fitting the CME properties with the GCS model
for a series of observational time frames, we can obtain the
CME height–time dependence and calculate its speed by linear
fitting. The orientation angle determined with this method is
used when the derived CME is inserted into the background
solar wind.

The poloidal flux of a CME can be found by the method
described by Gopalswamy et al. (2017). They find the
reconnected flux of a flux rope by calculating the unsigned
magnetic flux in the area covered by the post-eruption arcade
when a CME leaves the solar surface. The reconnected flux has
been shown to be approximately equal to the poloidal flux of a
CME by Qiu et al. (2007). We can find the poloidal flux of an
erupted CME from SDO/HMI line-of-sight magnetograms and
EUV 193 Å images of the source active region. This method
works best when the source active region of a CME lies
roughly within 30o from the solar disk center in both latitude
and longitude. This is because the accuracy of magnetograms
decreases as one moves away from the solar disk center. As the
majority of Earth-directed CMEs originate near the disk center,
this method is extremely useful for space weather predictions.

3. Physical Models

3.1. Corona Model

We use our global MHD model of the solar corona (Yalim
et al. 2017) implemented in the Multi-Scale Fluid-Kinetic
Simulation Suite (MS-FLUKSS; Pogorelov et al. 2014). This
model is designed to be driven by a variety of observational

solar magnetogram data. In this study, we use SDO/HMI
synoptic radial magnetogram data. We solve the set of ideal
MHD equations in a frame of reference corotating with the Sun
and use the volumetric heating source terms (Nakamizo et al.
2009) to model solar wind acceleration. We calculate the initial
solution for the magnetic field using the Potential Field Source
Surface (PFSS) model (Toth et al. 2011). For the rest of the
plasma parameters, we compute the initial solution from
Parker’s isothermal solar wind model (Parker 1958). The
boundary conditions are described later in Section 5.

3.2. The Gibson-Low Flux-rope Model

The magnetostatic solution to the Gibson-Low flux-rope
problem is found by balancing the magnetic, pressure gradient,
and gravitational forces, i.e., r ´ ´ -  - =( )B B gp 0,
where B, p, ρ, and g are the magnetic field, plasma pressure,
density, and the gravitational acceleration, respectively. The
condition of solenoidal magnetic field, ∇·B=0, is also taken
into account. This gives us an analytical solution for B in the
form of a spherical torus that is further stretched using the
transformation  -r r a in spherical coordinates. Here r is
the radial coordinate and a is the stretching parameter. This
creates a magnetic field line distribution of a tear-drop shape.
The analytical solution for a GL flux rope involves four
parameters:

1. Flux-rope radius (r0): this is the radius of an initial GL
spherical torus before stretching.

2. Flux-rope height (r1): this is the height of the center of the
introduced spherical torus with respect to the center of the
Sun before stretching.

3. Flux-rope stretching parameter (a): this is the amount by
which each part of the spherical torus is stretched toward
the center of the Sun.

4. Flux-rope field strength (a1): this is a free parameter that
controls the field strength in the flux rope. Plasma
pressure inside the rope is proportional to a1

2 due to the
condition of pressure balance assumed in this solution.

Figure 1. Density (g/cm3; left) and magnetic field lines (right) in a stretched GL torus. All horizontal and vertical axes are in Re. We used r0=1.67, r1=3.03,
a=1.01, and a1=0.23 in these figures. The origin is located at the solar center.
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Figure 1 shows density and magnetic field lines of GL torus
after stretching. We notice that the density distribution in a
stretched flux rope resembles the widely accepted three-part
structure of a CME: its bright front, dark cavity, and
bright core.

A GL flux rope is inserted into the solar wind background by
superposition such that the pointed end of the tear-drop-shaped
flux rope is under the solar surface. This results in anchoring of
two flux-rope legs on the Sun (see Figure 3). When the solution
is evolved with time, the flux rope is no longer in equilibrium
and erupts as a CME. The analytical solution of a GL model
can have negative density and pressure in some regions of the
flux rope. To avoid this problem, we follow Manchester et al.
(2004b) and make sure that total density and pressure do not
fall below 25% of the density and pressure in the original
background.

4. Constraining GL Parameters

Previous works (e.g., Jin et al. 2017a; Singh et al. 2018)
show that the speed of a simulated CME depends on the GL
parameters. In particular, Singh et al. (2018) demonstrated that
it depends on a r1 0

4 linearly. The dependence on r1 is linear for
r1<2.6 Re and independent of r1 for r1�2.6 Re. They also
found that the speed of a CME is inversely correlated with the
average thermal pressure of the background solar wind in the
initial direction of CME propagation. These results were then
used to find an empirical relation for the simulated CME speed:
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where ¼c c, ,1 6 were found using the nonlinear multivariable
regression. Since CMEs propagate through the low-β corona, it
makes more sense to use the total pressure rather than just the
thermal pressure. We find that the total pressure is inversely
correlated with the CME speed with a correlation coefficient of
−0.97. We have redone our analysis using the new definition
and updated the fitting constants accordingly. They are found
to be {3.56, 5.39, −0.06, 24.63, 2.57, 5.56} for r<2.6 and
{12.88, 19.52, −0.20, 52.97} for r�2.6.

We can simulate a CME that matches the observed speed
and poloidal flux as follows. First, we iterate over a set of
reasonable GL parameters and find the corresponding speed
and poloidal flux of the simulated CME. This speed is given by
Equation (1), and the poloidal flux is found using the GL
analytical solution. After that, there only remains to choose the
set of parameters that matches the observations the best.
Although this method is rather simple, it may significantly
improve the quality of space weather predictions. This is
because we are constraining not only the speed of the CME,
which naturally affects the CME arrival time at 1 au, but also
the poloidal flux and orientation of the CME flux rope, which
affect Bz at 1 au. The sign and magnitude of Bz are very
important quantities that control the geoeffectiveness of a
CME. It has been found that CMEs with negative (southward)
Bz flux ropes are more geoeffective due to the favorable
coupling with the Earth’s magnetosphere (Burton et al. 1975).
Therefore, an attempt to match poloidal flux in CME models
will be helpful in predicting Bz values at 1 au, and therefore the
CME geoeffectiveness.

5. Results and Conclusions

We now apply our approach to a CME that erupted on 2011
March 7 at 14:00 UT. It erupted from active region AR-11166,
which was then at N11E20 on the solar disk. First, we generate
an MHD corona background solution driven by the SDO/HMI
synoptic radial magnetogram for CR 2107 at the inner
boundary located at the lower corona just above the transition
region (Nakamizo et al. 2009). This solution is obtained by
relaxing the initial PFSS magnetic field distribution to a steady
state using our solar corona model. We used the TVD, finite-
volume Rusanov scheme (Kulikovskii et al. 2001) to compute
the numerical fluxes and the forward Euler scheme for time
integration. In order to satisfy the solenoidal constraint, we
applied Powell’s source term method (Powell et al. 1999). The
size of our computational domain is 1.03 Re�r�30 Re,
0�f�2π, 0�θ�π. We use the grid of 180×240×120
in r, f, and θ directions, respectively. We perform all
simulations in the frame corotating with the Sun. MS-FLUKSS
ensures an efficient parallel implementation of our numerical
methods. At the inner boundary of the computational domain,
which is located at the lower corona, we specify the radial
magnetic field derived from the HMI line-of-sight magneto-
gram data and the differential rotation (Komm et al. 1993a) and
meridional flow (Komm et al. 1993b) formulae for determining
the horizontal velocity components at the ghost cell centers.
We kept density and temperature constant as n=1.5×108

cm−3 and T=1.3×106 K, respectively. The radial velocity
component is imposed to be zero at the boundary surface. The
transverse magnetic field components are extrapolated from the
domain into the ghost cells below the inner radial boundary. At
the outer boundary of the domain, which is located beyond the
critical point, the plasma flow is superfast magnetosonic, so no
boundary conditions are required.
The observed CME shows up in the STEREO A & B Cor2

coronagraph FOV at 14:54 UT. We use the GCS model to
calculate the speed of the CME as 812 km s−1. The orientation
of the erupted CME is estimated to be 5° clockwise from the
local longitude line. The CME was found to be traveling
radially in the direction of 18° north and 24° east. It is
important to note that these values are different from those one
might get by using only the pre-eruption neutral line (NL)
location and orientation, which is done, for example, in the
Eruptive Event Generator Gibson-Low (EEGGL) approach
made available at the Community-Coordinated Modeling
Center (e.g., Borovikov et al. 2017, 2018; Jin et al. 2017a).
The EEGGL approach fixes the GL parameters r1 and a as 1.8
and 0.6, respectively. The size parameter r0 is estimated from
the source active region NL length using a scaling factor.
Finally, the magnetic strength parameter a1 is constrained using
observed CME speed via a parametric study. The EEGGL
model also assumes the orientation angle and direction of the
CME at the initial height to be the same as NL. Our current
approach treats parameters r1 and a as variables and is more
flexible. Also, our approach uses the GCS model that takes into
account the deflection and rotation, which a CME may
experience by the time it reaches the coronagraph FOV. Kay
et al. (2015) have found that CMEs undergo maximum
deflection in the low corona (<5 Re), with the primary
deflection occurring below 3 Re for strong background fields.
Similarly, CMEs can experience rotation in their orientation
very low in the corona (Manchester et al. 2017). For example,
Thompson et al. (2012) reported a CME that rotated 115°
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within a distance of 1.5 Re from the solar surface. When the
GL flux-rope model is introduced into the corona, its top edge
is already more than 1 Re from the solar surface. By this time, a
CME’s orientation and direction can be significantly different
from the one found using NL data. Therefore, direction and
orientation inputs from GCS model are more reliable than from
NL inputs.

We use CME brightness in the Cor2 coronagraphs of
STEREO A & B to estimate the mass of the CME as
3.9×1012 kg, which is not too different from the mass listed
in the SOHO/LASCO CME catalog.4 We use the “FRED”
approach to estimate the poloidal flux of the CME to be
4.9× 1021 Mx. Figure 2 shows the post-eruption arcade area
after the eruption in the source active region and the
corresponding pre-eruption magnetogram used to estimate the
poloidal flux. From the solar corona background, we estimate
the average pressure of the solar wind to be 67.1 mdyn cm−2.

Now, we apply the approach described in Section 4 to find
the GL parameters. We iterate a1 from 0.1 to 3.2, r0 from 0.1 to
3.1, r1 from 1.0 to 3.0, and a from 0.1 to 2.5, all with the steps
equal to 0.1. We look for GL parameter sets that give us the
poloidal flux and speed within a 10% error margin from their
observed values. Clearly, there is no unique set of such
parameters. We list a few of them in Table 1. We also include
the poloidal flux introduced related to these sets, as well as their
estimated speeds defined by Equation (1). We randomly choose
r0=1.0, r1=2.4, a=1.1, and a1=0.2 from our list of
acceptable GL parameters. As seen from Table 1, these
parameters should end up simulating a CME with a speed of
782 km s−1 and a poloidal flux of 5.1×1021 Mx. We inserted
this GL flux rope into the solar wind background in the
direction 18° north and 24° east and the orientation 5°
clockwise as was estimated by the GCS model. These GL
parameters give us the simulated CME with the speed of
840 km s−1. Figure 3 shows the time evolution of the simulated
CME. Figure 4 compares the height–time evolution of the
simulated CME with observed values found using GCS fitting.

Figure 2. (Left) Post-eruption arcade as seen in the SDO/AIA 193 imager at 16:21 UT. The area between the footpoints is enclosed by red points. (Right) The same
area is used in pre-eruption SDO/HMI line-of-sight magnetogram at 13:00 UT to find reconnected flux. The box size in both frames is 400 Mm.

Table 1
Parameters Used in the Expression of VCME

a1 ( RGauss 2) r0 (Re) r1 (Re) a (Re) Pol_flux (Mx) Mass (g) Speed (km s−1)

0.3 0.9 2.4 1.2 4.64E+21 5.35E+15 781
0.3 0.9 2.5 1.3 4.64E+21 6.39E+15 798
0.3 0.9 2.6 1.4 4.63E+21 7.43E+15 828
0.6 0.8 2.8 1.7 5.09E+21 7.23E+15 852
0.2 1 2.4 1.1 5.07E+21 6.78E+15 782
0.2 1 2.4 1.2 4.62E+21 1.73E+15 782
0.2 1 2.5 1.3 4.62E+21 2.53E+15 799
0.2 1 2.6 1.4 4.61E+21 3.34E+15 830
0.1 1.2 2.5 1.2 5.07E+21 5.66E+14 803
0.1 1.2 2.6 1.3 5.06E+21 1.48E+15 834
0.1 1.2 2.7 1.4 5.05E+21 2.39E+15 834
0.1 1.2 2.8 1.5 5.05E+21 3.31E+15 834
0.1 1.2 2.9 1.6 5.04E+21 4.24E+15 834

4 https://cdaw.gsfc.nasa.gov/CME_list
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The agreement between the observed and simulated CMEs, as
they propagate from the Sun, is clearly seen.

This example shows the power of the proposed method
when applied to simulations of CMEs with the speed, poloidal
flux, orientation, and direction derived from observations.
These CME properties have a direct impact on its geoeffec-
tiveness. The CME can be propagated further to 1 au, and its
properties such as arrival time and Bz can be measured. The
proposed approach can be further improved by using the
observed CME mass. In a recent paper of Howard & Vourlidas
(2018), it was found that there is no pileup of mass in front of
propagating CMEs up to a height of 30 Re. This means that the
mass of a CME observed in the coronagraph, when it has
completely emerged from behind the coronagraph occulter, can
be matched with the mass introduced in the GL model.
Typically, this occurs when the CME front has reached a height
of 7 Re. Another observable that can be constrained is the
angular width of a CME. In Singh et al. (2018), the stretching
parameter a was fixed as a=r1/3. Since this parameter
controls the shape and angular width of the initial GL flux rope,
further study needs to be done on how this parameter impacts
the expansion of the CME. However, even the addition of
poloidal flux as a constraining parameter makes the GL model
closer to reality.
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