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Abstract: Each p-ring class field K f modulo a p-admissible conductor f over a quadratic base field K with
p-ring class rank $ f mod f is classified according to Galois cohomology and differential principal factorization
type of all members of its associated heterogeneous multiplet M(K f ) = [(Nc,i)1≤i≤m(c)]c| f of dihedral fields

Nc,i with various conductors c | f having p-multiplicities m(c) over K such that ∑c| f m(c) = p
$ f −1
p−1 . The

advanced viewpoint of classifying the entire collection M(K f ), instead of its individual members separately,
admits considerably deeper insight into the class field theoretic structure of ring class fields. The actual
construction of the multiplet M(K f ) is enabled by exploiting the routines for abelian extensions in the
computational algebra system Magma.
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1. Introduction

T he aim of this article is to present an entirely new technique for the construction and classification of
non-Galois fields L of odd prime degree p as subfields L < K f of a p-ring class field K f modulo a

p-admissible conductor f over a quadratic base field K. The innovative idea underlying this new method is
the fact that, if the Galois closure N of such a field L is absolutely dihedral of degree 2p with automorphism
group Gal(N/Q) ' Dp = 〈σ, τ | σp = τ2 = 1, τσ = σ−1τ〉, then N is relatively cyclic of degree p with group
G = Gal(N/K) ' Cp = 〈σ〉 over its unique quadratic subfield K = Fix(σ) and can be viewed as an abelian
extension modulo some conductor f over K within the scope of class field theory [1–4].

The construction process for the fields L is implemented as a program script for the computational algebra
system Magma [5–7] using the class field theoretic routines by Fieker [3], and the normal fields N/L are classified
according to the cohomology Ĥ0(G, UN) and H1(G, UN) of their unit group UN as a Galois module over G
[8–10].

For p ≥ 5, the results are completely new, whereas for p = 3, they admit an independent verification and a
class field theoretic illumination of classical tables of cubic fields by Angell 1972 [11,12] and 1975 [13,14], Ennola
and Turunen 1983 [15,16], Llorente and Quer 1988 [17], Fung and Williams 1990 [18,19], and Belabas 1997 [20].
However, in contrast to these well-known tables, where the focus was on the computation of fundamental
systems of units and the structure of ideal class groups [11–16,18], or even only of generating polynomials and
prime decompositions [17,20], our innovative database establishes an arrangement according to conductors
with an increasing number of prime factors, pays attention to the phenomenon of multiplicities of discriminants
[21–25], and constitutes the first classification into 9, respectively 3, differential principal factorization types of totally
real, respectively simply real, cubic number fields [8–10,26,27]. This is a progressive new kind of structural
information which has never been provided for algebraic number fields before, except for pure cubic fields
[28–31] and pure quintic fields [8], but the present paper emphasizes the advanced viewpoint of classifying an
entire ring class field K f by its associated heterogeneous multiplet M(K f ) of dihedral fields with various conductors
c | f .
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2. Heterogeneous multiplets of objects and invariants

Let K = Q(
√

d) be a quadratic base field with positive or negative fundamental discriminant d =

dK ≡ 0, 1 (mod 4), essentially squarefree except possibly for the 2-contribution v2(d). Suppose that p is
an odd prime number and f ≥ 1 is a p-admissible conductor over K [21,25]. Then the p-ring class
field Kp, f mod f of K contains all cyclic relative extensions N/K with some conductor c | f which are
absolutely dihedral with automorphism group Gal(N/Q) ' Dp over the rational number field Q. The crucial
concept underlying this entire paper is the collection of all these dihedral fields in a heterogeneous multiplet
M(Kp, f ) = [(Nc,i)1≤i≤mp(K,c)]c| f according to the p-multiplicities mp(K, c) [21,25], which satisfy the relation

∑c| f mp(K, c) = p
$p, f −1
p−1 in terms of the p-ring class rank $p, f modulo f of K. Since our principal aim is the

classification of p-ring class fields Kp, f , it is essential to distinguish between a multiplet of objects (expressing
the multiplicity of the discriminants dN) and a corresponding multiplet of invariants (expressing the Galois
cohomology of the unit groups UN and differential principal factorizations of the fields N).

Definition 1. By the type of the p-ring class field Kp, f modulo f of K we understand the pair
(Obj(Kp, f ), Inv(Kp, f )) of heterogeneous multipletsObj(Kp, f ) = [(Nc,i)1≤i≤mp(K,c)]c| f

Inv(Kp, f ) = [(τ(Nc,i))1≤i≤mp(K,c)]c| f
(1)

consisting of all absolutely dihedral fields Nc,i with conductors c dividing f as objects and their differential
principal factorization types (DPF types) τ(Nc,i) as invariants [8,9].

3. Homogeneous multiplets of unramified extensions

The unique situation where the heterogeneous multiplets degenerate to homogeneous multiplets occurs for
unramified relative extensions N/K with conductor f = 1 which has only itself as a divisor c | f . In this
unramified case, which implies positive p-class rank $p = $p,1 ≥ 1 of the quadratic base field K, there occur at
most two possible differential principal factorization types.

Theorem 1. An unramified cyclic extension N with odd prime degree p of K possesses the conductor f = 1 without
any prime divisors. For a totally real field N, there are two cases:

1. If the p-class rank of K is $p = 1, then N is of type δ1.
2. If the p-class rank of K is $p ≥ 2, then two types α1 and δ1 are possible for N.

If N is totally complex, then N is of type α1, independently of the p-class rank of K.

Proof. Since the conductor f = q1 · · · qt is essentially the square free product of all prime numbers qi ∈ P,
whose overlying prime ideals qi ∈ PK are ramified in N, the following chain of equivalent statements is true:
N/K is unramified⇐⇒ None of the prime ideals of K ramifies in N ⇐⇒ The conductor f = 1 has no prime
divisors, i.e., t = 0.

Now we use the fundamental equation in [9, Corollary 5.1] and the estimates in [9, Corollary 5.2] for the
decision about possible types of principal factorizations. If f = 1, then there neither exist absolute principal
factorizations in L/Q, since 0 ≤ A ≤ min(t, 2) = 0, nor relative principal factorizations in N/K, since 0 ≤
R ≤ min(s, 2) = 0, where s ≤ t denotes the number of prime divisors qi of f which split in K. Consequently,
the fundamental equation degenerates to U + 1 = C with 1 ≤ U + 1 ≤ 2, which implies 1 ≤ C ≤ min($p, 2).
Thus, only type δ1 with C = 1 is possible for $p = 1, whereas type α1 with C = 2 can arise additionally for
$p ≥ 2.

4. Conductors with a single prime divisor

For a regular prime conductor f , only two cases are possible.

Theorem 2. Let K be a quadratic base field with p-class rank $ = $p. Suppose f = q is a regular p-admissible prime
conductor for K. Then the heterogeneous multiplet M(Kp, f ) associated with the p-ring class field Kp, f mod f of K
consists of two homogeneous multiplets with multiplicities mp(K, 1) and mp(K, q). In this order, and in dependence on
the p-ring space Vp(q), these two multiplicities are given by
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1. (1 + p + . . . + p$−1, p$), if Vp(q) = V (free situation),
2. (1 + p + . . . + p$−1, 0), if Vp(q) < V (restrictive situation).

Proof. See [25, Theorem 3.2, p. 2215, and Theorem 3.3, p. 2217].

In the special case p = 3, there also exists the possibility of an irregular prime power conductor f = 32,
provided the discriminant of the quadratic field satisfies the congruence d ≡ −3 (mod 9).

Theorem 3. Assume that p = 3. Let K be a quadratic base field with 3-class rank $ = $3 and discriminant d ≡
−3 (mod 9). Consider the irregular 3-admissible prime power conductor f = 32 for K. Then the heterogeneous
multiplet M(Kp, f ) associated with the 3-ring class field K3, f mod f of K consists of three homogeneous multiplets with
multiplicities m3(K, 1), m3(K, 3) and m3(K, 9). In this order, and in dependence on the 3-ring spaces V3(3) and V3(9),
these three multiplicities are given by

1. (1 + 3 + . . . + 3$−1, 3$, 3$+1), if V3(9) = V3(3) = V (free situation),
2. (1 + 3 + . . . + 3$−1, 3$, 0), if V3(9) < V3(3) = V,
3. (1 + 3 + . . . + 3$−1, 0, 3$), if V3(9) = V3(3) < V,
4. (1 + 3 + . . . + 3$−1, 0, 0), if V3(9) < V3(3) < V (maximal restriction).

Proof. See [25, Theorem 3.4, p. 2217].

5. Conductors with two prime divisors

For regular conductors f divisible by two primes, more distinct situations may arise.

Theorem 4. Let K be a quadratic base field with p-class rank $ = $p. Suppose f = q1 · q2 is a regular p-admissible
conductor for K with two prime divisors q1 and q2. Then the heterogeneous multiplet M(Kp, f ) associated with the
p-ring class field Kp, f mod f of K consists of four homogeneous multiplets with multiplicities mp(K, 1), mp(K, q1),
mp(K, q2) and mp(K, f ). In this order, and in dependence on the p-ring spaces Vp(q1), Vp(q2) and Vp( f ), these four
multiplicities are given by

1. (1 + p + . . . + p$−1, p$, p$, p$(p− 1)), if Vp( f ) = Vp(q1) = Vp(q2) = V (free case),
2. (1 + p + . . . + p$−1, p$, 0, 0), if Vp( f ) = Vp(q2) < Vp(q1) = V,
3. (1 + p + . . . + p$−1, 0, p$, 0), if Vp( f ) = Vp(q1) < Vp(q2) = V,
4. (1 + p + . . . + p$−1, 0, 0, p$), if Vp( f ) = Vp(q1) = Vp(q2) < V,
5. (1 + p + . . . + p$−1, 0, 0, 0), if Vp( f ) < Vp(q1) 6= Vp(q2) < V (maximal restriction).

Proof. We use the terminology and notation in [25]. Generally, the p-ring class rank is given by $p, f = $ + t +
w− δp( f ). Here, we have either t = 2, w = 0 or t = 1, w = 1, and thus $p, f = $ + 2− δp( f ). Also, we know

that generally mp(K, 1) = p$−1
p−1 . Since f = q1 · q2 is p-admissible, q1 and q2 must also be p-admissible, both.

1. In the free case with defect δp( f ) = 0, we have Vp( f ) = Vp(q1) = Vp(q2) = V and

p$+2 − 1
p− 1

− p$ − 1
p− 1

=
p$(p2 − 1)

p− 1
= p$(p + 1) = p$ + p$ + p$(p− 1),

which is exactly the desired partition

p$p, f − 1
p− 1

−mp(K, 1) = mp(K, q1) + mp(K, q2) + mp(K, f ).

2. If q1 is free and q2, f are restrictive, then Vp( f ) = Vp(q2) < Vp(q1) = V and the relation

p$+1 − 1
p− 1

− p$ − 1
p− 1

=
p$(p− 1)

p− 1
= p$,

must be interpreted as mp(K, q1) = p$ and mp(K, q2) = mp(K, f ) = 0.
3. This case arises by interchanging the roles of q1 and q2 in the previous case.
4. Additionally to (2) and (3), there is another case of defect δp( f ) = 1 where neither q1 nor q2 is free but

their p-ring spaces coincide Vp( f ) = Vp(q1) = Vp(q2) < V. Then the formula in (2) has to be interpreted
as mp(K, q1) = mp(K, q2) = 0 and mp(K, f ) = p$.
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5. Finally, in the case of maximal restriction with defect δp( f ) = 2, which occurs for distinct p-ring spaces
Vp( f ) < Vp(q1) 6= Vp(q2) < V, there is no rank increment from $ to $p, f , and thus mp(K, q1) =

mp(K, q2) = mp(K, f ) = 0.

6. Construction of p-ring class fields

This section describes how the classification of non-trivial p-ring class fields is prepared by their
construction and rigorous count. The intended class field theoretic illumination of the structure of heterogeneous
multiplets M(Kp, f ) = [(Nc,1, . . . , Nc,m(c))]c| f associated with p-ring class fields Kp, f modulo p-admissible
conductors f over quadratic fields K must pay primary attention to the p-class rank $p of the quadratic base
fields K = Q(

√
d), since $p enters the formula for the multiplicities m(c). More precisely, since the existence of

a torsion free fundamental unit ε > 1 in real quadratic fields K with d > 0, and the occurrence of the 3-torsion
unit ζ3 in the particular imaginary quadratic field K with d = −3 in the case p = 3, exerts a crucial impact on
the codimension of p-ring spaces Vp(c), the invariant $p must rather be replaced by the p-Selmer rank σp of K
which describes all p-virtual units of K, those which arise from non-trivial p-classes and the units in the usual
sense:

σp =

{
$p if p ≥ 5, d < 0 or p = 3, d < −3,

$p + 1 if d > 0 or p = 3, d = −3.
(2)

The secondary attention is devoted to various p-admissible conductors f = q1 · · · qt with an increasing
number t ≥ 0 of prime divisors, starting with unramified extensions having t = 0, f = 1, and continuing
with ramified extensions, beginning with prime or prime power conductors having t = 1, f = q1 with a prime
q1 ∈ P or the critical prime power q1 = p2.

7. Multiplets over imaginary quadratic fields for p = 3

The focus of this section and most of the further sections is on p = 3, where the components Nc,i of
multiplets are cyclic cubic extensions of quadratic base fields K. Here, we begin with imaginary base fields K
having the smallest possible 3-Selmer rank σ3 = $3. The behavior of the particular imaginary quadratic field
K with d = −3 where the extensions Nc,i/K contain pure cubic fields is rather similar to real quadratic base
fields K with σ3 = $3 + 1, and thus the case d = −3 will be treated separately.

Theorem 5. Let K be an imaginary quadratic field with fundamental discriminant d < −3 and trivial 3-class rank
$3 = 0. Assume that f = q1 · · · qτ is a 3-admissible conductor with τ ≥ 1 regular prime or prime power divisors qi (that
is, either qi ≡ ±1 (mod 3) or qτ = 3, d ≡ ±3 (mod 9) or qτ = 9, d ≡ ±1 (mod 3) but not qτ = 9, d ≡ −3 (mod 9)).
Then the 3-ring class field K3, f modulo f of K contains a homogeneous multiplet M(K3, f ) = (N f ,1, . . . , N f ,m) of dihedral
fields with conductor f and multiplicity m = 2τ−1 (singlet, doublet, quartet, octet, hexadecuplet, etc.).

Proof. All 3-ring spaces V3(qi) coincide with 3-Selmer space V = V3 [25, Theorem 3.2, p. 2215].

7.1. Classification of Angell’s 3169 simply real cubic fields

In order to demonstrate the powerful performance of our innovative techniques, we construct all 3-ring
class fields K3, f which contain the normal closures N of the simply real cubic fields L in Angell’s table [11,12]
as abelian extensions of the associated imaginary quadratic base fields K < N.

There arise four values of the multiplicity m = 1, 2, 3, 4, and accordingly simply real cubic fields are
collected in singlets, doublets, triplets and quartets. Nilets with m = 0 complete the view.

The classification of the pure cubic fields, respectively non-pure simply real cubic fields, into differential
principal factorization types was established in [28], respectively [9].

Although the types α and β of pure cubic fields are similar to the types α2 and β of non-pure simply real
cubic fields, we do not mix the classifications, since firstly the existence of radicals among the principal factors
distinguishes pure cubic fields from non-pure simply real cubic fields, and secondly, type γ can only occur for
the former, whereas type α1 is only possible for the latter.
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Results

According to Table 1, the number of all non-pure simply real cubic fields L having discriminants−2 · 104 <

dL < 0 is given by 3134. Together with 35 pure cubic fields in Table 2, the total number is 3169, as announced
correctly in [12].

Table 1. Cubic discriminants in the range −2 · 104 < dL = f 2 · d < 0

Multiplicity DPF
f Condition Total 0 1 2 3 4 α1 α2 β
q ≡ −1 (mod 3) 454 454 454
3 d ≡ +3 (mod 9) 62 62 62
3 d ≡ −3 (mod 9) 58 58 58
9 d ≡ −3 (mod 9) 7 7 21
9 d ≡ −1 (mod 3) 23 23 23
9 d ≡ +1 (mod 3) 20 20 16 4
` ≡ +1 (mod 3) 64 64 49 15

q1q2 ≡ −1 (mod 3) 6 6 12
3q d ≡ +3 (mod 9) 7 7 14
3q d ≡ −3 (mod 9) 3 3 6
9q d ≡ −1 (mod 3) 3 3 6
9q d ≡ +1 (mod 3) 3 3 6
3` d ≡ +3 (mod 9) 1 1 2
q` ≡ ∓1 (mod 3) 1 1 2
1 $3 = 1 2143 2143 2143
q ≡ −1 (mod 3) 196 162 34 87 15
3 d ≡ +3 (mod 9) 24 22 2 4 2
3 d ≡ −3 (mod 9) 22 16 6 13 5
9 d ≡ −1 (mod 3) 5 5
9 d ≡ +1 (mod 3) 9 8 1 2 1
` ≡ +1 (mod 3) 22 19 3 7 2

q1q2 ≡ −1 (mod 3) 2 1 1 3
3q d ≡ +3 (mod 9) 3 1 2 6
9q d ≡ +1 (mod 3) 1 1 3
q` ≡ ∓1 (mod 3) 2 1 1 3
1 $3 = 2 22 22 88

Summary 3163 235 2824 24 58 22 2344 65 725

We emphasize the difference between the number of discriminants (without multiplicities)

2824 + 24 + 58 + 22 = 2928,

and the number of fields (including multiplicities in a weighted sum)

1 · 2824 + 2 · 24 + 3 · 58 + 4 · 22 = 2824 + 48 + 174 + 88 = 3134,

which can be confirmed by adding the contributions to the 3 DPF types α1, α2, β

2344 + 65 + 725 = 3134.

In contrast, 235 is the number of formal cubic discriminants dL = f 2 · dK with fundamental discriminants
dK of imaginary quadratic fields and 3-admissible conductors f for each K, where the relevant multiplicity
formula [25] yields the value zero. So the formal cubic discriminants belong to nilets, i.e., multiplets with
multiplicity m3(K, f ) = 0. The total number of all (actual) cubic discriminants and formal cubic discriminants
is the number of admissible cubic discriminants

2928 + 235 = 3163.

According to Theorem 5, Nilets can only arise for $3 ≥ 1, but not for $3 = 0.
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Table 2. Pure cubic discriminants in the range −2 · 104 < dL = −3 · f 2 < 0

Multiplicity DPF
f Condition Total 0 1 2 3 4 α β γ
q ≡ −1 (mod 3) 11 8 3 3
9 d = −3 1 1 1
` ≡ +1 (mod 3) 10 7 3 3

q1q2 ≡ −1 (mod 3) 6 1 5 5
3q d = −3 5 1 4 4
9q d = −3 2 2 4
3` d = −3 3 1 2 2
9` d = −3 1 1 2
q` ≡ ∓1 (mod 3) 8 2 6 4 2

q1q2` ≡ ∓1 (mod 3) 1 1 1
3q1q2 d = −3 2 2 2
3q` d = −3 2 2 2

Summary 52 20 29 3 11 20 4

According to Table 2, the number of pure cubic fields L with discriminant−2 · 104 < dL < 0 is 35. Actually,
triplets and quartets of pure cubic fields do not occur in this range.

There is a difference between the number of discriminants (without multiplicities)

29 + 3 = 32,

and the number of fields (including multiplicities in a weighted sum)

1 · 29 + 2 · 3 = 29 + 6 = 35,

which can be confirmed by adding the contributions to the 3 DPF types

11 + 20 + 4 = 35.

The total number of all (actual) cubic discriminants and formal cubic discriminants (of the 20 nilets) is the
number of admissible pure cubic discriminants dL = −3 · f 2,

32 + 20 = 52.

8. Multiplets over real quadratic fields for p = 3

We continue with real quadratic base fields K having elevated 3-Selmer rank σ3 = $3 + 1, due to the
existence of a torsion free fundamental unit ε > 1.

8.1. Classification of Angell’s 4804 totally real cubic fields

In order to demonstrate our progressive perspective of classification of heterogeneous multiplets M(K3, f )

into an enigmatic variety of differential principal factorization types, we construct all 3-ring class fields K3, f
which contain the normal closures N of the totally real cubic fields L in Angell’s table [13,14] as abelian
extensions of the associated real quadratic base fields K < N.

Again there arise four values of the multiplicity m = 1, 2, 3, 4, and accordingly totally real cubic fields are
collected in singlets, doublets, triplets and quartets. Formal nilets complete the view.

The classification into differential principal factorization types for non-cyclic totally real cubic fields was
developed in [9,26,27].

Results

According to Table 3, the number of non-cyclic totally real cubic fields L with discriminant 0 < dL < 105

is 4753, in perfect accordance with the results by Llorente and Oneto [32,33], who discovered the ommission
of ten fields in the table by Angell [13,14]. Together with 51 cyclic cubic fields in Table 4, the total number is
4804 (not 4794, as announced erroneously in [14]).
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Again we emphasize the difference between the number of discriminants (without multiplicities)

4652 + 9 + 21 + 5 = 4687,

and the number of fields (including multiplicities in a weighted sum)

1 · 4652 + 2 · 9 + 3 · 21 + 4 · 5 = 4652 + 18 + 63 + 20 = 4753,

which can be confirmed by adding the contributions to the 7 DPF types (α2, α3 do not occur)

16 + 10 + 76 + 106 + 3349 + 79 + 1117 = 4753.

Table 3. Cubic discriminants in the range 0 < dL = f 2 · d < 105

Multiplicity Differential Principal Factorization
f Condition Total 0 1 2 3 4 α1 β1 β2 γ δ1 δ2 ε
q ≡ −1 (mod 3) 3025 2219 806 806
3 d ≡ +3 (mod 9) 396 287 109 109
3 d ≡ −3 (mod 9) 389 284 105 105
9 d ≡ −3 (mod 9) 48 9 38 1 41
9 d ≡ −1 (mod 3) 136 102 34 34
9 d ≡ +1 (mod 3) 127 96 31 8 20 3
` ≡ +1 (mod 3) 402 316 86 20 59 7

q1q2 ≡ −1 (mod 3) 70 30 38 2 38 4
3q d ≡ +3 (mod 9) 46 23 23 23
3q d ≡ −3 (mod 9) 45 19 25 1 25 2
9q d ≡ −3 (mod 9) 5 4 1 9 2
9q d ≡ −1 (mod 3) 14 6 8 8
9q d ≡ +1 (mod 3) 15 5 10 10
9` d ≡ −1 (mod 3) 1 1 1
3` d ≡ +3 (mod 9) 6 1 5 5
3` d ≡ −3 (mod 9) 5 2 3 3
q` ≡ ∓1 (mod 3) 43 13 29 1 29 2

3q1q2 d ≡ +3 (mod 9) 2 1 1 3
1 $3 = 1 3300 3300 3300
q ≡ −1 (mod 3) 275 261 14 4 36 2
3 d ≡ −3 (mod 9) 35 34 1 3
` ≡ +1 (mod 3) 28 25 3 3 6

3q d ≡ −3 (mod 9) 2 1 1 3
1 $3 = 2 5 5 16 4

Summary 8420 3733 4652 9 21 5 16 10 76 106 3349 79 1117

In contrast, 3733 is the number of formal cubic discriminants dL = f 2 · dK with fundamental discriminants
dK of real quadratic fields and 3-admissible conductors f for each K, where the relevant multiplicity formula
[25] yields the value zero. So the formal cubic discriminants belong to nilets, i.e., multiplets with multiplicity
m3(K, f ) = 0. The total number of all (actual) cubic discriminants and formal cubic discriminants is the number
of admissible cubic discriminants

4687 + 3733 = 8420.

Table 4. Cyclic cubic discriminants in the range 0 < dL = f 2 < 105

M DPF
f Condition 1 2 ζ
9 d = 1 1 1
` ≡ +1 (mod 3) 30 30

9` d = 1 4 8
`1`2 ≡ +1 (mod 3) 6 12

Summary 31 10 51



Open J. Math. Sci. 2021, 5, 162-171 169

According to Table 4, the number of cyclic cubic fields L with discriminant 0 < dL < 105 is 51, with 31
arising from singlets having conductors f with a single prime divisor, and 20 from doublets having two prime
divisors of the conductor f . (M denotes the multiplicity.)

We point out that cyclic cubic fields are rather contained in ray class fields over Q than in ring class
fields over real quadratic base fields. The single possible DPF type ζ has nothing to do with the 9 DPF types
α1, α2, α3, β1, β2, γ, δ1, δ2, ε of non-abelian totally real cubic fields in [9].

9. Conclusion and outlook

In this paper, we have classified all multiplets Obj(K3, f ) of non-pure simply real cubic fields L (more
precisely of their normal closures N) according to the associated multiplets of invariants, namely the
differential principal factorization types, Inv(K3, f ), where K3, f denotes the 3-ring class field modulo a
3-admissible conductor f of the imaginary quadratic subfield K < N: (Recall that Obj(K3, f ) = (N f ,i)1≤i≤m
and Inv(K3, f ) = (τ(N f ,i))1≤i≤m, here homogeneously.)

• 2824 singlets of type either (α1) or (α2) or (β), according to Table 1;
• 24 doublets of exclusive type (β, β) (without 3 pure cubic doublets);
• 58 triplets with the following distribution of types:

– 7 triplets of type (β, β, β) for f = 9 singular, $3 = 0,
– 51 triplets sharing common 3-class rank $3 = 1 of K [34, Table 1, pp. 118–121], namely

* 34 triplets of type (α1, α1, α1) for f = q, `, 3,
* 3 triplets of type (α1, α1, β) for f = `, 9 split,
* 5 triplets of type (α1, β, β) for f = q, 3, and
* 9 triplets of type (β, β, β) for f = q, 3, 3q, q`, 9q, finer than [34] since α2 does not occur;

• 22 quartets of exclusive type (α1, α1, α1, α1) (see [35] for details concerning the capitulation).

Similarly, we have classified all multiplets Obj(K3, f ) of non-cyclic totally real cubic fields L (more precisely
of their normal closures N) according to the associated multiplets of invariants, namely the differential
principal factorization types, Inv(K3, f ), where K3, f denotes the 3-ring class field modulo a 3-admissible
conductor f of the real quadratic subfield K < N:

• 4652 singlets of type either (β2) or (γ) or (δ1) or (δ2) or (ε), according to Table 3;
• 9 doublets, 4 of type (γ, γ) for f = 9q, 3q1q2 and 5 of type (ε, ε) for f = 3q, 9q, q1q2, q`;
• 21 triplets with the following distribution of types:

– 1 triplet of type (ε, ε, ε) for f = 9 singular, $3 = 0,
– 1 triplet of type (γ, γ, γ) for f = 9q singular, $3 = 0, and
– 19 triplets sharing common 3-class rank $3 = 1 of K (with considerable refinement of Schmithals’

coarse distinction of only two alternatives [34, Table 2, pp. 122–123]), namely

* 13 triplets of type (δ1, δ1, δ1) for f = 3, q,
* 1 triplet of type (β1, β1, β1) for f = 3q,
* 2 triplets of type (β1, β1, ε) for f = q (conspicuously with symbol “−” in [34]), and
* 3 triplets of type (β1, δ1, δ1) for f = `,

• 5 quartets, 1 of type (α1, α1, α1, α1) and 4 of type (α1, α1, α1, δ1) (more details in [36,37]).

In the same manner, we shall refine more extensive tables by Fung and Williams [18], Ennola and Turunen
[15,16], Llorente and Quer [17] in the new year 2021.

Moreover, we shall provide extensive evidence of the truth of Scholz’ conjecture, which we have proved for
p = 3 in [9], also for p = 5 and p = 7, and probably for any odd prime p.

Data Availability: Implementations of our innovative algorithms in Magma [5–7] may be requested via email.
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