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1. Introduction

Microcantilever-based sensors have been recently proposed as 
a promising platform capable of achieving very high sensi-
tivity in rheology and mass-sensing applications on extremely 
low volumes of fluids. Rheological properties and mass/
concentration of molecules of interest are often measured by 
shifts in resonance frequency of externally excited cantilevers 
[1]. In fact, attachment of target molecules to the cantilever or 
changes in fluid density or viscosity translate to an increase 
in the probe effective mass and damping that, in turn, induces 
changes in the cantilever resonance frequency. However, the 
main drawback of using an external excitation when operating 
in viscous fluids is the low quality factor (Q) of the resonator 

and, especially for standard acoustic excitation, the presence 
of unwanted modes of oscillations due to the fluid-probe inter-
action. Such unwanted modes make the identification of the 
resonance peak very challenging and require complicated 
tuning and setup procedures [2].

Such poor performance is due to the dramatic decrease of 
the microresonator quality factor when operating in liquid. 
Several strategies have been proposed to overcome such limi-
tation via the exploitation of feedback loops aimed at making 
the frequency response more selective. Q-control is one of 
those strategies used to increase the selectivity of the probe 
frequency response (thus making the resonance peak more 
evident), but the circuit responsible for the enhancement of 
the Q-factor often requires ad-hoc tuning procedures [3].

Similarly, feedback strategies to effectively increase the 
Q-factor in atomic force microscopy imaging applications 
have also been proposed. In this case, highly resonant micro-
cantilevers allow for a decrease of the interaction force with 
the sample [4–6]. Strategies as Q-control [7, 8], parametric 
resonance [9, 10] and self-excitation circuits [11, 12] have 
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allowed these setups to be successfully used for imaging and 
as rheological [13], mass [14] or chemical [8] sensors.

However, embedding the microcantilever in a feedback loop 
can induce undesired behaviours, and the nonlinearities that are 
either introduced in the loop or intrinsic of the canti lever mechan-
ical response can generate poorly-understood phenomena and 
instabilities. Potential sources of nonlinearities include: non-
linear electronic components required for signal conditioning 
[11, 12], nonlinear stress-strain relation of the cantilever mat-
erial subject to large deformations [15, 16] and nonlinear forces 
between the probe and the sample or surrounding viscous fluids 
[17]. As a result, the dynamics of these systems are often very 
complex and several cases of chaos [18] and bifurcations [19, 
20] on the response of the resonators have been reported.

Achieving fine control of the dynamics of the resonators 
can be extremely important to avoid undesired phenomena 
during device operation and to use the most advantageous 
features for a specific application. Therefore, it is crucial to 
develop accurate models to describe the resonator vibrating 
in closed-loops.

In this paper, self-sustained oscillations of microcantilevers 
operating in viscous fluids are induced using a feedback loop 
proposed in [11], in which a controllable phase shifter (PS) 
has been inserted in order to assess the influence of feedback 
delay on the cantilever response. This aspect has often been 
overlooked in the literature, but here it is shown to signifi-
cantly affect the sensor mechanical response, sensitivity and 
reliability. The frequency of self-excited oscillation is studied 
as function of the delay introduced in the circuit by the PS and 
as a function of the rheological properties of the viscous fluid. 
Smooth changes and sudden jumps on the frequency of oscil-
lation are observed. Such nonlinear behaviour is generic and 
has been tested on three different cantilevers operating in two 
different viscous fluids (air and water). The observed jumps are 
expected to occur in any type of device based on this setup and, 
if used in a controlled way, may pave the way for developing 
more reliable and sensitive viscosity and mass sensors, or even 
provide new potentialities to different scanning probe tech-
niques, such as acoustic force microscopy [21]. Two different 

models are proposed to explain the experimental observations 
and to predict the response of the self-excited microcantilever.

The paper is organized as follows: in section 2 the exper-
imental setup is discussed. Special emphasis is given to 
the description and characterization of the PS, which is the 
critical component exploited here to highlight the nonlinear 
behaviours. Experimental results illustrating the nonlinear 
behaviour of the self-excited oscillation frequency are pre-
sented in section 3. In section 4 two mathematical models to 
describe the system are developed and discussed. Predictions 
provided by such models are compared to experimental results 
in section 5. Finally, some conclusions and outlooks for future 
opportunities are discussed in section 6.

2. Experimental setup

A schematic of the experimental setup used to characterise the 
behaviour of microcantilevers oscillating in different viscous 
media is presented in figure 1(A). The cantilever is acousti-
cally excited using a dither piezo and the resulting deflection 
is measured using a four-quadrant detector connected to a R9 
controller (RHK Technology).

The switch S in the diagram allows users to select between 
a classical externally excited configuration (amplitude modu-
lation, AM) and a self-excitation setup (auto-tapping mode, 
AT). In the former modality the dither piezo is externally 
excited by a function generator implemented in the controller 
and the amplitude and phase of the deflection signal are read 
via a lock-in available in the controller itself. In AT mode, the 
measured deflection is fed to an electronic circuit (Elbatech 
srl) composed of an adjustable gain K, a saturator and a PS, 
whose output is connected to the dither piezo voltage input. 
The frequency of vibration of the cantilever is measured by 
feeding the deflection signal to a spectrum analyser embedded 
in the R9 controller (thermal spectrum function).

The experimental setup of figure 1(A) explicitly indicates 
the total delay, τtot, of the signal along the feedback loop. 
As it will be discussed below, this total delay encloses three 

Figure 1. (A) Schematic of the experimental setup. The cantilever is immersed in a viscous medium and excited by a dither piezo. In the 
amplitude mode (AM), the external excitation signal drives the dither piezo at different frequencies. In the autotapping mode (AT), the 
deflection signal passes through the feedback loop, where it is delayed by the phase shifter (PS), amplified by the gain and limited by the 
saturator, being finally fed back to the piezo as a voltage. (B) Detail of a single stage of the PS. Two stages, connected in series, were used, 
each one capable of shifting the signal by at most 180°. Values of C1 and C2 are 4.7 nF and 220 pF in each stage, respectively, and R1 and 
R2 are adjustable from 0–10.4 kΩ. The polarity of the voltage applied to the dither piezo can also be inverted.
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individual contributions from elements of the loop and creates 
a natural phase shift between the excitation of the piezo and 
the motion of the tip of the cantilever.

In addition to the natural phase shift induced by the delay 
τtot, a PS was inserted in the feedback loop to finely con-
trol the phase between dither piezo excitation and cantilever 
deflection. The complete PS consists of two stages connected 
in series, each one working as an all-pass filter able to shift 
the phase of the signal by at most 180°. Figure 1(B) shows the 
detail of the electrical scheme of a single stage. The two stages 
are individually operated by adjusting two potentiometers 
which control the value of two resistors, R1 and R2, between 
0–10.4 kΩ. The phase shift ϕ = −2atan (ωRiCi) introduced 
by each stage of the PS depends on the frequency of oscilla-
tion of the loop, ω , and the values of the resistor and capacitor, 
Ri, Ci. In addition, the polarity of the voltage applied to the 
terminals of the dither piezo that excites the cantilever can 
also be inverted, allowing an extra phase shift of 180° on the 
signal. The two stages of the PS and the inversion of polarity 
in the piezo can be used to shift the signal along the feedback 
loop by a complete cycle (360°). This strategy will be used 
to assess the influence of feedback delay on the cantilever 
response.

A full characterization of each element in the experimental 
setup is described below.

2.1. Dynamics of acoustically excited microcantilevers  
immersed in viscous fluids in AM mode

Three different commercial cantilevers were used in this work, 
covering a wide range of resonance frequencies and stiffness. 
Their specifications and geometries are presented in table 1. 
In addition, two distinct viscous fluids were used to study the 
vibration of each cantilever: air and water.

Each cantilever was characterized at first by performing 
frequency sweeps in AM mode and measuring its frequency 
response in the viscous fluids. The recorded frequency 
response in AM mode, described by both amplitude and phase 
spectra, is discussed below, and will be used in section 4.1 to 
model the AT mode.

2.1.1. Amplitude spectra. One example of amplitude spectra 
of the cantilever CLFC-B immersed in air is presented in the 
top panel of figure  2. The inset shows the presence of two 
distinct resonance modes. The amplitude, A, of the measured 

amplitude spectrum can be fitted via a simple harmonic oscil-
lator (SHO) model for each resonance peak [22]:

A =
A1√(

ω2
01 − ω2

)2
+

(
ω01ω

Q1

)2
+

A2√(
ω2

02 − ω2
)2

+
(

ω02ω
Q2

)2
,

 (1)
where ω is the excitation angular frequency and ω01, ω02, Q1 
and Q2 are the natural angular frequencies and quality fac-
tors of the first and second modes, respectively. A1 and A2 are 
the amplitude of each individual resonance mode and depend 
on the applied external force and the effective mass of each 
mode. The total amplitude, A, is the sum of the amplitudes 
of each mode. For excitation frequencies ω far from ω02, the 
second term of equation (1) is negligible and the behaviour of 
the first mode is captured (and vice-versa).

The parameters ω01, ω02, Q1, Q2, A1 and A2 were used to 
fit the model of equation  (1) to the experimental amplitude 
spectra of the three different cantilevers immersed in different 
viscous fluids. The results of the fits for each cantilever and 
medium are shown in table 2. In some experimental condi-
tions the second mode is not observed (A2  =  0) as it is either 
too damped or falls outside the frequency range of the lock-in 
used for this experiment. Moreover, the presence of multiple 
peaks in the cantilever frequency response, resulting from 
the coupling between the acoustic excitation of the piezo and 
spurious mechanical modes [23, 24], may sometime make 
it difficult to isolate the real resonance peak. In these cases, 
equation  (1) was fitted by starting from the estimates given 
by the thermal noise spectrum and then ‘enveloping’ all the 
forest of peaks measured in AM mode under one single SHO 
peak. The problem of the forest of peaks is thought to have 
its origin in resonances of the liquid cell or even of the dither 
piezo shaker. Strategies such as upgrading the setup with 
acoustic barriers [25] or optical isolation [26] to suppress the 
noise were proposed. In alternative, magnetic or photothermal 
excitation techniques [27, 28] can also be used to avoid this 
problem.

2.1.2. Phase spectra. The total delay block, τtot, shown in 
figure  1(A), encloses three contributions of elements of the 
feedback loop. The first contribution is given by the dither 
piezo and cantilever, τCT, and it is related to the time the 
acoustic waves take to propagate from the dither piezo to 
the cantilever through the material composing the cantilever 
holder. Such propagation translates to a delay between the 
excitation provided by the dither piezo and the deflection of 
the cantilever.

This acoustic delay can be estimated from the slope of the 
phase spectrum of the cantilever, away from the regions where 
the resonance jump occurs. In fact, far from the resonance 
peak, the phase shift due to the cantilever intrinsic resonance 
can be safely neglected and the phase shift (in radians) between 
dither piezo excitation and cantilever deflection simply reads

ϕ (CT (ω)) = −ωτCT, (2)

where ω is the angular frequency of the dither piezo excita-
tion. Note that in AM mode the loop is open, and that the 

Table 1. Manufacturer, material and geometry of the three 
cantilevers used in this work.

ACST-TL CLFC-A CLFC-B

Manufacturer AppNano Bruker Bruker
Material Silicon Silicon Silicon
Length (µm) 150  ±  10 98  ±  1 197  ±  2
Width (µm) 28  ±  5 29  ±  3 29  ±  3
Thickness (µm) 3.0  ±  0.5 2.0  ±  0.2 2.0  ±  0.2
Freq. (kHz)—min/
nom/max

100/150/204 200/293/380 60/71/92

J. Micromech. Microeng. 27 (2017) 095008
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measured delay does not contain information about the other 
components of the circuit.

Figure 2(B) shows the AM mode phase spectrum for the 
cantilever CLFC-B in air, from where a delay τCT = 6.6 µs is 
extracted. The expected jump of 180° around the resonance is 
also observed.

Table 2 shows the delays associated with each individual 
cantilever, extracted using this method in the phase spectra 
measured in air. The values of the measured delays of the 
cantilevers are near one order of magnitude higher than those 
expected considering simply the speed of the acoustic waves in 
the silicon beam. This fact indicates that the delay introduced 
by the cantilever in the loop is mainly due to the connection 
between the dither piezo and the cantilever.

2.2. AT electronics

A dedicated electronic circuit has been developed by Elbatech 
srl based on the basic logic explained in [11] and augmented 

with the adjustable PS described in figure 1(B), which enables 
the phase of the AT feedback loop to be changed in a con-
trolled way.

The PS is composed of two all-pass filters implemented 
using the operational amplifier circuit reported in figure 1(B). 
To characterize its frequency response, the output of the signal 
generator of the R9 controller was connected to the PS input, 
and the shifted output was connected to a lock-in input; this 
allows the user to measure amplitude and phase response of 
the circuit over a wide range of frequency. Figure 3 reports the 
measured phase shifts for different values of the resistors R1 
and R2. The experimental results presented in figure 3 (solid 
lines) are modelled by the transfer function

PS ( jω) = ( p H1 ( jω) H2 ( jω)) e−jωτPS , (3)

where Hi ( jω) = 1−jωRiCi
1+jωRiCi

 represents the transfer function of 
each individual stage of the circuit, and the parameter p is 
used to distinguish between non-inverted or inverted polarity 
on the terminals of the dither piezo (the convention p  =  1 for 

Table 2. Parameters of the SHO model fitted to the amplitude spectra of the cantilevers vibrating in air and water in AM mode. The delay 
of each cantilever, τCT, was experimentally estimated from the phase spectra of the cantilevers operating in air in AM mode, and used as the 
fitting parameter of the nyquist and simulink models to the experimental results.

AM mode amplitude SHO fit AM mode phase
Nyquist 
model

Simulink 
model

f1 (kHz) Q1 A1 (a.u.) f2 (kHz) Q2 A2 (a.u.)
Estimated τCT 
(µs)a Fit τCT (µs) Fit τCT (µs)

ACST-TL Air 155.8 243 4.0  ×  109 — 9.6 10.7 10.7
Water 64.0 7 4.0  ×  109 — 10.1 10.1

CLFC-A Air 297.1 357 2.0  ×  109 — 5.4 4.8 4.8
Water 120.9 11 1.0  ×  1010 — 4.6 4.6

CLFC-B Air 73.2 179 1.0  ×  109 459.6 490 2.1  ×  109 6.6 6.5 6.5
Water — 185.0 8 1.1  ×  1010 6.3 6.3

—Not observed experimentally.
a Using the AM mode spectrum in air.

Figure 2. Frequency response of the cantilever CLFC-B operating in air (AM mode). (A) Measured and fitted amplitude, and (B) 
associated phase of the second resonance mode. The inset in the upper figure shows the spectrum of the two first resonance modes. The 
fitted parameters of the SHO model are shown for each peak (A, Q and f0). In the bottom panel, the delay associated with the cantilever 
(τCT) is estimated by the slope of the phase curve away from the resonance.

J. Micromech. Microeng. 27 (2017) 095008
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non-inverted polarity and p  =  −1 for inverted polarity will be 
followed). It was observed that the delay τPS is required to 
accurately model the experimental results. The presence of 
such delay is due to the propagation of the signals through the 
electronic components and it represents the second contrib-
ution for the total delay, τtot, shown in figure 1(A).

The dotted lines of figure 3 show best fits of equation (3) 
to the experimental results with non-inverted polarity ( p  =  1), 
resulting in a delay τPS = 1.0 µs.

The saturation circuit is implemented using operational 
amplifiers, as described in [12, 29]. Its response can be 
described by the function:

sat(a) =



−σ, a � −σ

a, |a| < σ
σ, a � σ

, (4)

where a represents the signal through the loop and σ is the 
saturation threshold, defined by the user.

The solid wine line in figure 3 shows the measured phase 
delay introduced by the gain and saturator elements as func-
tion of the frequency of the input signal. Ideally such elements 
should not introduce any delay in the feedback loop, but 
experimental data suggest that a pure delay τET = 1.1 µs is 
required to correctly model the system. This delay is the third 
contribution for the total delay, τtot, shown in figure 1(A).

3. Experimental results in AT mode

Experiments were performed by immersing the cantilevers in 
the two different viscous fluids and measuring the frequency 
of the self-excited cantilever oscillation. Such frequency was 
then studied as function of the delay introduced by the PS for 
different values of the potentiometers R1 or R2. The frequency 
of oscillation was measured by feeding the deflection signal 
of the cantilever to a spectrum analyser and acquiring the FFT 
spectra (thermal mode available in the R9 controller).

When the values of R2 were gradually increased (keeping 
a fixed polarization on the dither piezo and R1 value) the 

oscillation frequency of the loop was observed to change pro-
gressively. A sudden jump on the oscillation frequency was 
then observed for very small variations of R2, and then the 
smooth changes on the frequency of oscillation resumed. The 
sudden jumps on the frequency of oscillation were observed 
either within the first resonance mode or between two adja-
cent resonance modes.

This behaviour is illustrated in figure  4, which shows a 
jump within the first mode of the ACST cantilever operating 
in air, when the values of R2 are swept up, using non-inverted 
polarization on the piezo (p  =  1) and R1  =  0.01 kΩ. The fre-
quency of oscillation decreases progressively with the increase 
of R2 (from violet to green solid curves), before jumping to a 
much higher value (from green to black curves) with a very 
small change in R2 value (from 1.08–1.10 kΩ). Finally, the 
frequency of oscillation keeps decreasing with the increase 
of R2 (from black to red curves). It can also be observed that 
there is a component of motion of vibration at high frequen-
cies that becomes more visible as the jump approaches. The 
inset of figure 4 shows the self-sustained oscillations of the 
loop as function of the values the potentiometer R2.

The measured frequencies of oscillation enclose the nat-
ural fundamental frequency of the cantilever ACST in air, 
as shown in table 2 (155.8 kHz). This general behaviour was 
observed for all the studied cantilevers and viscous fluids. The 
sudden jumps were observed to occur more often within the 
first resonance mode than between adjacent resonance modes, 
as the amplitude of the second mode is usually much smaller 
than the amplitude of first mode.

Such results clearly highlight the need of considering the 
phase shift when modelling any feedback loop used to excite 
the cantilever and the possibility to exploiting it to modify the 
cantilever mechanical response.

4. Mathematical modelling

In order to explain the nonlinear behaviour observed in the 
experiments described in section  3, here two distinct math-
ematical models are proposed.

Figure 3. Characterization of the two stages of the PS for different values of R1 and R2. The accurate fit of the transfer function of the 
PS should incorporate an acoustic delay of τPS = 1.0 µs. The electronic components of the AT circuit (excluding the PS) were also 
characterized and modelled as a pure delay of τET = 1.1 µs.

J. Micromech. Microeng. 27 (2017) 095008



J Mouro et al

6

The first approach is based on a graphical method that 
exploits the Nyquist stability criterion—a classical result in 
feedback control theory—to determine the frequencies of 
oscillation of the circuit and to predict the sudden jumps. This 
strategy requires the use of the fitted parameters of the SHO 
model applied to the AM mode spectrum of each cantilever 
immersed in the viscous fluids (frequencies, quality factors 
and amplitudes shown in table  2). Although such model is 
capable of providing good predictions, it requires users to fit 
several parameters on experimental data and such data may 
not be always readily available.

The second approach approximates the cantilever behav-
iour with a single-degree-of-freedom equation of motion of a 
nonlinear resonator that can be easily simulated numerically. 
In this approach, the hydrodynamic force that acts on the 
vibrating cantilever is modelled using Sader’s hydrodynamic 
function [30] and of the viscosity and density of each viscous 
medium are incorporated into the mass and damping param-
eters of the resonator. Therefore, it is possible to solve the 
equation of motion without any need of fitting experimental 
values.

4.1. Nyquist stability criterion

The schematic of the experimental setup shown in figure 1(A) 
is an example of Lure’s system, where linear systems (canti-
lever dynamics, gain, delay and PS) are feedback connected 
via a nonlinear function (saturator). In such a system, the onset 
of stable self-sustained oscillations results from a competi-
tion between the feedback gain, which constantly amplifies 
the motion of the cantilever (inducing instability), and the 
presence of the nonlinear saturation, which limits the system 
trajectories and stabilizes the system dynamics on stable self-
sustained oscillations. Given that the resonant response of 
the microcantilever effectively acts as a band-pass filter, the 
harmonic balance technique can be successfully exploited 
to better understand and predict the system behaviour (see 

[11] for an example of successful application of such tech-
nique for imaging applications). This technique assumes that 
every periodic output signal of a nonlinear block (subjected 
to a sinusoidal input signal) can be approximated by the first 
terms of associated Fourier series, i.e. the nonlinearity output 
is approximated by a sinusoidal wave having the same fre-
quency as the input. This approximation is reasonable since 
the resonator possess intrinsic band-pass filter characteristics 
that attenuate the low frequencies and higher harmonics [31]. 
Within this framework, the saturator described in section 2.2 
(equation (4)) can be replaced by an amplitude-dependent 
‘gain’, called describing function,

ψ(a) =




1, 0 � a � σ

2
π

[
sin−1

(
σ
a

)
+ σ

a

√
1 −

(
σ
a

)2
]

a > σ
.

 (5)
Equation (5) shows that if the amplitude a of the input signal 
is smaller than the threshold σ defined by the user, the gain is 
unitary and the output signal is the same as the input signal. 
If the amplitude of the signal is higher than the threshold 
value, the output signal is decreased with respect to the input 
signal, which contributes to stabilizing the oscillation of the 
cantilever.

According to such approximation, a condition for exist-
ence of self-sustained oscillations on the feedback loop shown 
in figure 1(A) reads [31]

y(t) = pCT ( jω)ψ(a)KPS ( jω) e−jωτtot y(t)

⇒ pCT ( jω)ψ(a)KPS ( jω) e−jωτtot = 1,
 

(6)

where e−jωτtot is the transfer function of the total delay 
(τtot = τCT + τPS + τET), K  represents the self-excitation loop 
gain, PS ( jω) is the transfer function of the PS (the same of 
equation (3) but omitting the delay τPS, which is already con-
tained in τtot), CT( jω) is the transfer function of the cantilever 
(equation (1)) and p = ±1, depending on the polarity applied 
on the terminals of the dither piezo.

Figure 4. Frequency response of the ACST cantilever operating in air in AT mode. The value of the resistor (R2) of the PS is swept up 
while keeping R1 and polarity constant (R1  =  0.01 kΩ and p  =  1). The frequency of oscillation decreases as R2 increases, except when a 
sudden jump occurs from low to high values of frequency. It can be noted that the component of the motion at high-frequency increases 
progressively as the jump approaches. The inset shows clearly the jump in frequency values when the potentiometer R2 is swept up.
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Condition (6) is equivalent to stating that the gain of the 
loop must be unitary and can be simplified to

pG ( jω)Kψ(a) = 1, (7)

with G ( jω) = CT ( jω) e−jωτtot PS ( jω). Since the gain K  and 
the describing function ψ(a) are real functions for each value 
of amplitude a and oscillation frequency, equation (7) can be 
re-written as [31]:

{Re [G ( jω)] + jIm [G ( jω)]}Kψ(a)± 1 = 0, (8)

which, by its turn, can be decomposed into two real equa-
tions [31, 32]: {

1 ± Kψ(a)Re [G ( jω)] = 0
Im [G ( jω)] = 0.

 

(9a)
    (9b)

The condition imposed by equation (9b) states that the total 
phase shift around the loop must be an integer multiple of 2π 
radians. The oscillation frequency is determined by this condi-
tion. Using the oscillation frequency, equation (9a) can then 
be solved to calculate the amplitude of vibration (this step is 
not needed for the results discussed in this paper).

When the circuit is initially turned on, the frequency of 
the white noise that satisfies the condition of equation  (9b) 
is initially amplified by the gain. Later, the gain and saturator 
will compete to stabilize an oscillation with an amplitude that 
also satisfies equation  (9a). In the absence of the saturator, 
the trajectories of the resonator would be naturally limited by 
the force that the dither piezo can exert on the cantilever base 
or by the intrinsic mechanical nonlinearities of the cantilever 
[11, 12].

Given the highly nonlinear nature of equation  (9), they 
need to be solved numerically to predict the oscillation fre-
quency and amplitude of vibration. In this case, equation (9b) 

is re-written by substituting the individual transfer functions 
of the cantilever, total delay and PS in G ( jω):

Im

[(
A1

( jω)2
+ ω01

Q1
jω + ω2

01

+
A2

( jω)2
+ ω02

Q2
jω + ω2

02

)

×
(

p (1 − jωR1C1)

1 + jωR1C1
× 1 − jωR2C2

1 + jωR2C2

)
e−jω(τCT+τPS+τET)

]
= 0.

 
(10)

Equation (10) is then solved using Matlab® to find the fre-
quency of self-sustained oscillation. The parameters appearing 
in this equation can be estimated as described in section 2 by 
the spectra obtained in AM mode. The delay associated with 
the piezo and cantilever, τCT, is used as the fitting parameter 
of the model to the experimental data and the final results are 
shown in table 2.

Nevertheless, some remarks on solving equation  (10) 
graphically must still be done: equation  (10) states that the 
frequency of self-oscillation will be such that the imaginary 
part of G ( jω) equals zero, i.e. the Nyquist diagram inter-
sects the horizontal axis, but does not point out explicitly 
which crossing the frequency of oscillation corresponds to. 
However, the Nyquist stability criterion states that only the 
frequency ωauto  corresponding to Im [G ( jωauto)] = 0 and 
Re [G ( jωauto)] > Re [G ( jω)] (ω > 0) corresponds to stable 
oscillations [31]. By comparing the predictions given by this 
model with the experimental data, it was also established that 
the solutions for non-inverted polarity on the piezo (p  =  1) 
correspond to the positive outer crossing of equation  (10), 
whereas solutions for inverted polarity (p  =  −1) correspond 
to the outer crossing with the negative horizontal axis.

Figures 5 and 6 will be used to illustrate how this model 
is able to explain the observed phenomena. Figure 5 presents 

Figure 5. Nyquist diagrams of the transfer function G ( jω) of the cantilever ACST in water, for different values of R2, to illustrate jumps of 
the oscillation frequency inside the first resonance mode (R1  =  2.25 kΩ, p  =  1 and τCT = 10.1 µs, τPS = 1.0 µs and τET = 1.1 µs). Only 
the first mode is considered in the transfer function of the cantilever (CT ( jω)). A) Increasing R2 causes a clockwise rotation of the diagram, 
changing the location of the crossing of the curves (parameterized by frequency) with the zero of the Im axis. B) Close-up of the region of 
crossings: the outer crossing of the purple curve (small R2) with the axis occurs for the part of the curve with low values of frequency. The 
outer crossing of the green curve (large R2) with the axis occurs for the part of the curve with high values of frequency.
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the Nyquist diagram of G ( jω) (equation (10)) for the case of 
the ACST cantilever vibrating in water (used parameters are 
shown in table  2). In this experiment, R2 was swept up, as 
in the case discussed in figure 4, using non-inverted polarity 
(p  =  1) and a fixed R1  =  2.25 kΩ. Figure  5(A) shows that 
an increase in R2 causes a clockwise rotation of the Nyquist 
diagram of G ( jω), as it increases the overall phase shift in 
G ( jω). These curves are parameterised by frequency and, 
in this specific case, only consider the first mode (A2  =  0 in 
equation (10)). Figure 5(B) shows that the frequency associ-
ated with the positive outer crossing of the Nyquist diagram 
of G ( jω) with the zero of the Im axis changes as the value of 
the potentiometer R2 increases. Furthermore, at a certain value 
of R2, the crossing moves from a low-frequency region of the 
G ( jω) curve (purple line) to a high-frequency region of the 
curve (green line). These two mechanisms explain the shifts 
and jumps on the oscillation frequency of the loop inside the 
first mode, as was experimentally observed and plotted in 
figure 4.

Finally, according to this model, there exists a specific 
value of R2 that will cause both the low and high-frequency 
parts of the curve G ( jω) to cross simultaneously the zero of 
the Im axis. In this case, the oscillator will work in a bistable 
state [33]. This was also observed in figure 4, where, as the 
jump approached, the presence of the high-frequency motion 
started to be visible (green line).

Figure 6 illustrates one of the less common cases in 
which the sudden jumps on the oscillation frequency of the 
loop occur between consecutive resonance modes, as it was 
observed for the cantilever CLFC-B operating in air, using 
non-inverted polarity (p  =  1) and a fixed R1  =  0.82 kΩ. 
In these cases, the transfer function G ( jω) has to contain 

information about the two resonance modes (A2  ≠  0 in equa-
tion (10)) and the resulting Nyquist diagram is slightly more 
complex: each resonance mode corresponds to a big circle in 
figure 6(A). Furthermore, the entire region of low-amplitude 
(the plateau between peaks shown in the inset of figure 2(A)) 
is barely visible in figure 6(A), since the values are very small 
and close to the origin. Figure 6(A) shows that, as before, an 
increase in the values of R2 cause a clockwise rotation on the 
Nyquist diagram of G ( jω). Since these curves are parameter-
ised by frequency, the frequency associated with the positive 
outer crossing of the Nyquist diagram with the zero of the Im 
axis changes as the values of the potentiometer R2 increase, 
which explains shifts in the frequency of oscillation of the 
loop. In addition, as seen in figure 6(B), at a certain value of 
R2 the outer crossing moves from the big circle on the curve of 
G ( jω), relative to the first mode (purple line), to the smaller 
circle, relative to the second mode (green line). This explains 
the observed jumps between consecutive resonance modes.

Finally, it is worth pointing out that for the jumps 
between different modes to occur, the second mode of the 
cantilever immersed in a specific viscous fluid must have a non- 
negligible amplitude when compared with the amplitude of 
the first mode.

4.2. Dynamical numerical model: hydrodynamic force

The approach described in section  4.1 is able to correctly 
predict the cantilever behaviour but it requires several param-
eters to be estimated from experimental data. To avoid such 
fitting procedure, here the cantilever is approximated via a 
nonlinear single-degree-of-freedom resonator working in 
a feedback loop. The total force exerted by the fluid on the 

Figure 6. Nyquist diagrams of the transfer function G ( jω) of the cantilever CLFC-B in air, for different values of R2, to illustrate jumps of 
the oscillation frequency between the first two resonance modes (R1  =  0.82 kΩ, p  =  1 and τCT = 6.5 µs, τPS = 1.0 µs and τET = 1.1 µs). 
The two first resonance modes are considered in the transfer function of the cantilever (CT ( jω)), as shown in the inset of figure 2(A). 
The Nyquist diagrams, parameterised by frequency, show the presence of two distinct circles, corresponding to each of the resonance 
modes. (A) Increasing R2 causes a clockwise rotation of the diagram, changing the location of the crossing of the curves (parameterized by 
frequency) with the zero of the Im axis. (B) Close-up of the region of crossings: the outer crossing of the purple curve (small R2) with the 
axis occurs for the part of the curve (big circle) that represents the first mode. The outer crossing of the green curve (large R2) with the axis 
occurs for the part of the curve (small circle) that represents the second mode.
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vibrating continuous beam depends on the viscosity and den-
sity of each viscous medium and is calculated using Sader’s 
hydrodynamic function [30]. This total hydrodynamic force 
is thought as a combination of normal and tangential terms, 
correspondent to the pressure and viscous forces that act on 
every surface of the immersed beam. The first is an inertial 
term, described by the weight of the layer of fluid that the 
beam displaces as it moves. The second term is proportional 
to the velocity of the beam and accounts for the viscous drag 
force exerted by the fluid on the moving cantilever. These two 
components can therefore be described as an added mass, mA, 
and an added damping coefficient, cA [34, 35]:

mA =
π

4
ρW2LΓ′ (11)

cA =
π

4
ρW2LωΓ′′ (12)

where Γ′ = a1 + a2
δ(ω)

W  and Γ
′′
= b1

δ(ω)
W + b2

(
δ(ω)

W

)2
 are 

expressions to approximate the hydrodynamic function of a 
rectangular cantilever [34], which depend on the constants, 
a1  =  1.0553, a2  =  3.7997 and b1  =  3.8018 and b2  =  2.7364 

[34]. The parameter δ (ω) =
√

2η
ρω  is the thickness of the layer 

of fluid that surrounds the beam, which depends on the fluid 
viscosity, η, the fluid density, ρ , and on the angular frequency 
of oscillation, ω . L and W represent the length and width of the 
cantilever, respectively [35].

The single-degree-of-freedom equation  of motion that 
describes the vibration of the cantilever immersed in a viscous 
fluid in the feedback loop is therefore given by [33]

(mct + mA) ÿi(t) + (ci + cA) ẏi(t) + kiyi(t) = F(t), (13)

where the dot stands for time derivative and F(t) is the forcing 
term from the dither piezo. mCT = LWTρc is the total mass 
of the beam, where T  and ρc are, respectively, the thickness 

of the beam and the density of the constituent material, while 
ci = 2πf0i mCT/Qi, ki = (2πf0i)

2mCT and yi are the intrinsic 
damping coefficient, stiffness and displacement associated to 
the i-th resonance mode, respectively. In the previous terms, 
f0i  is the natural frequency of each mode, which can be exper-
imentally measured or estimated by analytical equations [36], 
while Qi  is the quality factor of each mode. The total displace-
ment of the resonator is the sum of the displacements of each 
mode, i.e. y(t) = y1(t) + y2(t), considering only the first two 
modes.

The force from the dither piezo that acts on the microcanti-
lever in equation (13) is described by

F(t) = sat (KyPS (t − τtot)) , (14)

where τtot is the self-excitation loop total delay, K is the feed-
back gain and yPS is the output of the PS. The function sat() 
describes the saturator detailed in section 2.2 by equation (4), 
with user-defined threshold value σ.

A block diagram of the dynamical model is shown in 
figure 7. The red dashed arrows show the parameters that have 
to be used as inputs of the model. The value of the delay τCT 
introduced by the piezo and cantilever is used as the fitting 
parameter of the model.

Figure 7 shows that the mass of the cantilever, mCT, is first 
used to calculate the spring constant, ki, and intrinsic damping 
coefficient, ci, of each mode, using experimental or estimated 
values for the resonance frequencies, f0i , and quality factors, 
Qi , respectively. Then the constants a1, a2, b1, b2, the geom-
etry of the cantilever and the properties of the viscous fluid (η 
and ρ) are used to calculate the added mass and damping coef-
ficient of the system, through equations (11) and (12).

The function of the saturator, described by equation  (4) 
in section  2.2, is implemented with user-defined threshold 
value, σ. Similarly, the transfer function of the PS, described 
by equation  (3) in section  2.2 (but omitting the delay τPS, 

Figure 7. Block diagram of the dynamical model. All the parameters that are used as inputs are highlighted with a dashed red arrow. The 
hydrodynamic force that acts on the vibrating beam is calculated from the properties of the fluid and the cantilever geometry and each 
resonance mode is defined by its own spring constant. The delays associated with the PS and electronics were estimated from experimental 
data, and the delay introduced by the piezo and cantilever was used as the fitting parameter of the model.

J. Micromech. Microeng. 27 (2017) 095008



J Mouro et al

10

which is already contained in τtotal), is implemented with user-
defined values of the potentiometers R1 and R2, and polarity 
on the terminals of the piezo (p  =  1 or p  =  −1). The values of 
C1 and C2 are 4.7 nF and 220 pF, respectively. The values of 
the delays associated to the PS, τPS = 1.0 µs, and electronic 
components gain plus saturator, τET = 1.1 µs, were estimated 
as explained in section 2 and are fixed in the model, in the 
parameter τtotal. Finally, the value of delay introduced by the 
piezo and cantilever, τCT, is used as the fitting parameter of 
the model to the experimental results. The results are shown 
in table 2.

Equation (13) is then solved in time-domain using Simulink 
until the steady-state is reached, and the frequency of self-
oscillation, fosc, is extracted.

5. Comparison between model predictions and 
experimental results

To highlight the crucial role played by the feedback phase 
shift, experiments were conducted by immersing the cantile-
vers in the two viscous fluids (air and water), and measuring 
the frequency of self-oscillation as a function of the values 
of R1, R2 and the polarity of the dither piezo. The typical 
proto col was sweeping up the value of one of the potenti-
ometers, while keeping the other parameters constant. The 
polarity of the piezo was then changed and the potentiometers 
sweep repeated. In this section, all the experimental results 
are compared with the results modelled by the two strategies 
discussed in section 4. The experimental and simulated fre-
quencies of oscillation were plotted against the phase shift 
introduced by the PS:

Phase (PS (ω)) = −2atan (ωR1C1)− 2atan (ωR2C2)− ωτPS + πP.
 (15)

Equation (15) is a direct calculation of the phase of the PS 
transfer function given by equation (3), where ω  is the mea-
sured or simulated angular frequency of oscillation in the 
loop, C1  =  4.7 nF and C2  =  220 pF are capacitances of the 
capacitors used in the architecture of each stage of the PS, R1 
and R2 are the used values of the potentiometers in the exper-
imental sweeps and in the models, τPS is the delay associated 
with the PS (τPS = 1.0 µs estimated in section 2.2) and the 
parameter P is used to describe the phase changes due to the 
inversion of polarity on the dither piezo (P  =  1 if p  =  1 or 
P  =  0 if p  =  −1).

Figure 8 shows the complete set of results for the canti-
lever CLFC-B immersed in air and water. The black circles 
represent the experimental measurements and the red trian-
gles and blue diamonds represent the results obtained with the 
Nyquist approach (section 4.1) and the dynamical model (sec-
tion 4.2), respectively. Figure 8(A) presents a case where the 
jump occurs between the first and second resonance modes, 
while figure 8(B) shows a jump occurring within the second 
resonance mode. The values of delay of the cantilever, τCT, 
were used as the fitting parameter of the models to match the 
precise location of the jumps.

Figure 9 presents additional results obtained with different 
cantilevers working in the viscous media. Figures 9(A) and 
(B) show jumps on the oscillation frequency within the first 
resonance mode.

As discussed, the condition for the existence of self-
sustained oscillations is that the total phase shift around the 
feedback loop must be an integer multiple of 2π radians. 
The observed shift of the oscillation frequency corresponds 
to the cantilever adjusting its phase (and hence its oscillation 
frequency) so to compensate the delay imposed by the other 
components of the feedback loop. Therefore, it is expected 
that the observed nonlinear phenomena repeat themselves 

Figure 8. Experimental and modelled (Nyquist approach and dynamical model) frequencies of oscillation plotted as a function of the 
phase shift introduced by the PS when the values of R1 and R2 are swept up. Results for the cantilever CLFC-B immersed in two different 
media: (A) air; (B) water. The delays of the cantilever used for each medium were fit to match the precise location of experimental jump of 
oscillation frequencies and are shown in table 2.
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every 2π radians, being fairly independent of the delay intro-
duced by the electronic components of the loop, τET, and by 
delay introduced by the piezo and cantilever, τCT.

Table 2 shows that the values used to fit the models in each 
viscous fluid are closely related to the values measured using 
the phase of AM mode spectra of each cantilever in air. In all 
conditions, the proposed models are able to correctly describe 
the nonlinear behaviour of the microcantilever within 15% 
error and can be used to predict the behaviour of the cantile-
vers in viscous fluids working in AT configuration.

6. Conclusions

In this work the non-linear behaviour of microcantilevers 
oscillating in viscous fluids and excited by a non-linear feed-
back loop is studied. The feedback loop comprises a linear 
gain, a non-linear saturator and a PS. The delay introduced by 
the PS in the loop can be controlled by two potentiometers and 
it is shown to play a crucial role in controlling the response 
of the self-excitation loop. Non-linear phenomena, such 
as sudden jumps in the oscillation frequency, are observed 
and modelled by two different strategies. The first strategy 
requires parameters obtained from the open-loop frequency 
response of the cantilevers vibrating in the viscous fluid and 
is based on feedback theory and the Nyquist stability crite-
rion. The second strategy consists on numerically solving the 
equation of motion of the resonator in closed loop, exploiting 
the knowledge of the hydrodynamic function and without 
requiring prior experimental data fitting. Both models capture 
accurately the non-linear behaviour of the closed-loop and can 
be used to predict the response of this system when used as a 
mass or rheological sensor.

The experimental results and the models described in this 
paper highlight the importance of the delay and phase shifts 
that are intrinsically present whenever a feedback scheme is 
used to manipulate the probe dynamical response, but that are 
very often neglected in the literature. It is expected that similar 
behaviours will be present for other feedback approaches such 
as Q-control and parametric resonance.

Moreover, the understanding of the observed non-linear 
behaviour opens exciting opportunities for the development 
of a novel class of rheology, chemical and mass sensors using 
self-excited microcantilevers. In fact, the self-excitation 
mechanism analysed here allows for very high signal-to-noise 
ratio in frequency measurements and automatically tracks the 
oscillation frequency without requiring any external frequency 
sweeps and the associated forest of peaks. Furthermore, the 
location of the frequency jump can be easily controlled via 
the PS, thus opening the possibility of placing it at a particular 
fluid viscosity/added mass to realize an extremely sensitive 
threshold detector for such quantities. On the other hand, by 
placing such jump far away from the region of viscosity/mass 
of interests, the proposed microsensor output is smooth, as 
requested by most of the applications.
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