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ABSTRACT
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1. INTRODUCTION
The Whitney numbers of the first and second kind
of Dowling lattices Qn(G), denoted by wm(n, k)
and Wm(n, k), respectively, were defined by
Benoumhani [1] in terms of the generating
functions

mn(x)n =

n∑
k=0

wm(n, k)(mx+ 1)k (0.1)

and

(mx+ 1)n =

n∑
k=0

mkWm(n, k)(x)k, (0.2)

where (x)n = x(x − 1) · · · (x − n + 1) is the
n-th order falling factorial of x. Fundamental
properties of these numbers were already
established by Benoumhani in [1] and [2]. The
numbers wm(n, k) and Wm(n, k) are actually
related to the well-known Stirling numbers of the
first kind s(n, k) and second kind S(n, k) as follow

w1(n, k) = s(n+ 1, k + 1)

and
W1(n, k) = S(n+ 1, k + 1).

One may see Comtet [3] for a more detailed
discussion on some of the properties of
the numbers s(n, k) and S(n, k). Some
generalizations of these numbers were
already considered in [4] and [5]. Another
generalizations are the translated Whitney
numbers of the first kind w̃(α)(n, k) and second
kind W̃(α)(n, k) which were introduced by
Belbachir and Bousbaa [6]. w̃(α)(n, k) and
W̃(α)(n, k) count the number of permutations
of n elements with k cycles such that the
element of each cycle can mutate in α ways,
except the dominant one and the partitions of
the set {1, 2, 3, . . . , n} into k subsets such that
each element of each subset can mutate in α
ways, except the dominant one, respectively.
One may see [6] for a detailed discussion of
these combinatorial interpretations. Also, several
properties for w̃(α)(n, k) and W̃(α)(n, k) were
already presented in [6] as particular cases
of the properties obtained by Hsu and Shiue
[7] for the unified generalized Stirling numbers
S(n, k;α, β, γ) and S(n, k;β, α,−γ). To mention
a few of these properties, we have the triangular

recurrence relations

w̃(α)(n+ 1, k + 1) = w̃(α)(n, k) + (αn)·
·w̃(α)(n, k + 1),

(0.3)

W̃(α)(n, k) = W̃(α)(n− 1, k − 1)

+αkW̃(α)(n− 1, k);
(0.4)

and the horizontal generating functions

(x|α)n =

n∑
k=0

w̃(α)(n, k)x
k, (0.5)

xn =

n∑
k=0

W̃(α)(n, k)(x| − α)k, (0.6)

where

(x|α)n =

n−1∏
i=0

(x+ iα).

On the otherhand, Mangontarum et al [8] in
their attempt to introduce the notion of translated
Dowling polynomials and numbers, established
further properties for the translated Whitney
numbers W̃(α)(n, k). The said identities are the
explicit formula

W̃(α)(n, k) =
1

αkk!

k∑
i=0

(−1)k−i
(
k

i

)
(αi)n (0.7)

and the exponential generating function(
eαz − 1

α

)k
= k!

∞∑
n=k

W̃(α)(n, k)
zn

n!
. (0.8)

Looking at these properties, we immediately see
that

w̃(−1)(n, k) = s(n, k), W̃(1)(n, k) = S(n, k)

and
W̃(α)(n, k) = αn−kS(n, k).

These numbers can be shown to be particular
cases of the r-Whitney numbers wm,r(n, k) and
Wm,r(n, k) of the first and second kind defined
by Mező [4] via

mn(x)n =

n∑
k=0

wm,r(n, k)(mx+ r)k (0.9)

and

(mx+ r)n =

n∑
k=0

mkWm,r(n, k)(x)k, (0.10)

respectively. These numbers were further studied
by Cheon and Jung [5].
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Since fewer attention is given to the translated
Whitney numbers of the first kind, it is then among
the purpose of these paper to establish some
combinatorial properties for the said numbers. To
do so, we start by defining

w∗(α)(n, k) := (−1)k−nw̃(α)(n, k) (0.11)

as the “signed” translated Whitney numbers of
the first kind. Other objectives of this paper are
the following:

1. to establish more properties for the
numbers W̃(α)(n, k), w∗(α)(n, k) and
w̃(α)(n, k) such as other forms of
recurrence relations, some generating
functions, orthogonality and inverse
relations; and

2. to present identities relating the numbers
W̃(α)(n, k) and w∗(α)(n, k) with the
Bernoulli
polynomials which is analogous to the
work of Mező in [4].

2. THE SIGNED TRANSLA-
........TED WHITNEY NUMBERS
...... OF THE FIRST KIND
Note that the generating function in (0.5) can be
expressed as

αn 〈x〉n =

n∑
k=0

αkw̃(α)(n, k)x
k, (0.12)

where 〈x〉n = x(x+1)(x+2) · · · (x+n−1) is the
n-th order rising factorial of x. Replacing x with
−t and making use of the fact that

〈−t〉n = (−1)n(t)n,

gives us

αn(t)n =

n∑
k=0

(−1)k−nw̃(α)(n, k)(αt)
k. (0.13)

Thus, the next theorem is an immediate result.

Theorem 0.1 (horizontal generating function).
The numbers w∗(α)(n, k) satisfy

(t| − α)n =

n∑
k=0

w∗(α)(n, k)t
k. (0.14)

We can see from (0.14) that when n = 0,
w̃(α)(0, 0) = 1. By convention, we set
w̃(α)(n, k) = 0 whenever n < k or n, k < 0. Also,
it will be seen in the next theorem w∗(α)(n, 0) = 0
for n > 0.

Now, since

t(t| − α)n − αn(t| − α)n = (t| − α)n+1,

then from (0.14),

n+1∑
k=0

w∗(α)(n+ 1, k)tk =

n∑
k=0

w∗(α)(n, k)t
k+1 − αn

n∑
k=0

w∗(α)(n, k)t
k

=

n+1∑
k=0

w∗(α)(n, k − 1)tk − αn
n+1∑
k=0

w∗(α)(n, k)t
k

=

n+1∑
k=0

{
w∗(α)(n, k − 1)− (αn)w∗(α)(n, k)

}
tk.

Comparing the coefficients of tk yields the triangular recurrence relation in the next theorem.

Theorem 0.2 (recurrence relations). The numbers w∗(α)(n, k) satisfy the following:

• triangular recurrence relation

w∗(α)(n+ 1, k) = w∗(α)(n, k − 1)− (αn)w∗(α)(n, k); (0.15)
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• vertical recurrence relation

w∗(α)(n+ 1, k + 1) =

n∑
j=k

(−α)n−kw∗(α)(j, k)(n)n−j ; (0.16)

• horizontal recurrence relation

w∗(α)(n, k) =

n−k∑
j=0

(αj)jw∗(α)(n+ 1, k + j + 1). (0.17)

Proof. Replacing k by k + 1 in (0.15) gives

w∗(α)(n+ 1, k + 1) = w∗(α)(n, k)− (αn)w∗(α)(n, k + 1). (0.18)

By applying this repeatedly, we have

w∗(α)(n+ 1, k + 1) = w∗(α)(n, k)− αnw∗(α)(n− 1, k) + α2n(n− 1)w∗(α)(n− 2, k)− . . .

+(−α)n−kn(n− 1)(n− 2) · · · (n− (n− k) + 1)w∗(α)(k + 1, k + 1).

Since
w∗(α)(k + 1, k + 1) = w∗(α)(k, k),

we have

w∗(α)(n+ 1, k + 1) = w∗(α)(n, k)− αnw∗(α)(n− 1, k) + α2n(n− 1)w∗(α)(n− 2, k)

− . . .+ (−α)n−kn(n− 1)(n− 2) · · · (k + 1)w∗(α)(k, k)

=

n∑
j=k

(−α)n−jw∗(α)(j, k)(n)n−j .

For (0.17), we start by solving for w̃(α)(n− 1, k − 1) in (0.18). That is

w∗(α)(n, k) = w∗(α)(n+ 1, k + 1) + (αn)w∗(α)(n, k + 1). (0.19)

Successive application of (0.19) gives

w∗(α)(n, k) = w∗(α)(n+ 1, k + 1) + αn
[
w∗(α)(n+ 1, k + 2) + αnw∗(α)(n, k + 2)

]
= w∗(α)(n+ 1, k + 1) + αnw∗(α)(n+ 1, k + 2) + (αn)2w∗(α)(n, k + 2)

= w∗(α)(n+ 1, k + 1) + αnw∗(α)(n+ 1, k + 2) + (αn)2w∗(α)(n, k + 3)

+ . . .+ (αn)n−kw∗(α)(n+ 1, n+ 1)

=

n−k∑
j=0

(αn)jw∗(α)(n+ 1, k + j + 1),

which is the desired result.

The results in Theorem 0.2 are actually generalizations of the known recurrence relations for the
Stirling numbers of the first kind. These relations are very useful in comuting the values for the
numbers w∗(α)(n, k). More precisely, using (0.4), the following figures showing the first few values for
the numbers w̃(α)(n, k) for α = 2, 3 can be easily obtained.
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n/k 0 1 2 3 4 5 6 7 8 9 10

0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0
2 0 -2 1 0 0 0 0 0 0 0 0
3 0 8 -6 1 0 0 0 0 0 0 0
4 0 -48 44 -12 1 0 0 0 0 0 0
5 0 384 -400 140 -20 1 0 0 0 0 0
6 0 -3840 4384 -1800 340 -30 1 0 0 0 0
7 0 46080 -56448 25984 -5880 700 -42 1 0 0 0
8 0 -645120 836352 -420224 108304 -15680 1288 -56 1 0 0
9 0 9031680 -12354048 6719488 -1936480 327824 -33712 2072 -70 1 0
10 0 -126443520 181988352 -106426880 33830208 -6526016 799792 -62720 3052 -84 1

Figure 1: Some values of w̃(2)(n, k)

n/k 0 1 2 3 4 5 6 7 8 9 10

0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0
2 0 -3 1 0 0 0 0 0 0 0 0
3 0 18 -9 1 0 0 0 0 0 0 0
4 0 -162 99 -18 1 0 0 0 0 0 0
5 0 1944 -1350 315 -30 1 0 0 0 0 0
6 0 -29160 22194 -6075 765 -45 1 0 0 0 0
7 0 524880 -428652 131544 -19845 1575 -63 1 0 0 0
8 0 -11022480 9526572 -3191076 548289 -52920 2898 -84 1 0 0
9 0 231472080 -211080492 76539168 -14705145 1659609 -113778 4662 -105 1 0

10 0 -4860913680 4664162412 -1818403020 385347213 -49556934 4048947 -211680 6867 -126 1

Figure 2: Some values of w̃(3)(n, k)

Identities (0.16) and (0.17) can be best remembered via following figure: As seen in Figure 3,

n/k . . . k k + 1 k + 2 . . . n+ 1

... ↓ ↓
↓ ↓

k w∗
(α)

(k, k)

↓ ↓
↓ ↓

k + 1 w∗
(α)

(k + 1, k)

↓ ↓
... ↓

... ↓
↓ ↓

n w∗
(α)

(n, k)

↘ ↖
↘ ↖
↘ ↖
↘ ←−←−←−←−←− ←−←−←−←−←− ←− ←−←−←−←−←−

n+ 1 ↘ w∗
(α)

(n+ 1, k + 1) w∗
(α)

(n+ 1, k + 2) · · · w∗
(α)

(n+ 1, n+ 1)

←−←−←−←−←− ←−←−←−←−←− ←− ←−←−←−←−←−

Figure 3: Illustration of (0.16) and (0.17)

the values involved in solving for w∗(α)(n + 1, k + 1) and w∗(α)(n, k) using the vertical and horizontal
recurrence relations clearly form a Hockey-stick pattern. Hence, it is safe to say that equations (0.20)
and (0.21) are analogous to the Chu Shih-Chieh’s identities for binomial coefficients (also known as
“Hockey-Stick Identities”) which can be seen in the book of Chen and Kho [9].
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Also, the following corollary is a direct consequence.

Corollary 0.3. The translated Whitney numbers of the first kind satisfy the following vertical and
horizontal recurrence relations:

w̃(α)(n+ 1, k + 1) =

n∑
j=k

αn−jw̃(α)(j, k)(n)n−j , (0.20)

w̃(α)(n, k) =

n−k∑
j=0

(−αn)jw̃(α)(n+ 1, k + j + 1). (0.21)

The next theorem presents the exponential generating function for the numbers w∗(α)(n, k). This is
important in establishing a relationship between the translated Whitney numbers and the Bernoulli
polynomials.

Theorem 0.4 (exponential generating function). The sequence
〈
w̃∗(α)(n, k)

〉
is generated by(

log(1 + αz)

α

)k
= k!

∞∑
n=k

w∗(α)(n, k)
zn

n!
. (0.22)

Proof. Note that (0.14) can be written as

αn(t)n =

n∑
k=0

αkw∗(α)(n, k)t
k (0.23)

Thus,
∞∑
k=0

{
αk

∞∑
n=k

w∗(α)(n, k)
zn

n!

}
tk =

∞∑
n=0

{
∞∑
k=0

αkw∗(α)(n, k)t
k

}
zn

n!

=

∞∑
n=0

αn(t)n
zn

n!

=

∞∑
n=0

(
t

n

)
(αz)n

= (1 + αz)t

= exp {t log(1 + αz)}

Thus,
∞∑
k=0

{
αk

∞∑
n=k

w∗(α)(n, k)
zn

n!

}
tk =

∞∑
k=0

{
[log(1 + αz)]k

k!

}
tk. (0.24)

Comparing the coefficient of tk, gives

αk
∞∑
n=k

w∗(α)(n, k)
zn

n!
=

[log(1 + αz)]k

k!
. (0.25)

This is precisely (0.22).

Note that by definition, (
log(1 + αz)

α

)k
= k!

∞∑
n=k

(−1)k−nw̃(α)(n, k)
zn

n!
. (0.26)
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This can be rewritten as (
− log(1− α(−z))

α

)k
= k!

∞∑
n=k

w̃(α)(n, k)
(−z)n

n!
. (0.27)

Replacing −z with u gives us the following corollary:

Corollary 0.5. The translated Whitney numbers of the first kind satisfy the exponential generating
function (

− log(1− αu)
α

)k
= k!

∞∑
n=k

w̃(α)(n, k)
un

n!
. (0.28)

3. MORE PROPERTIES OF THE TRANSLATED WHITNEY
........NUMBERS OF THE SECOND KIND
Applying the recurrence relation in (0.4), the following tables are obtained for α = 2 and α = 3: In this

n/k 0 1 2 3 4 5 6 7 8 9 10
0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0
2 0 2 1 0 0 0 0 0 0 0 0
3 0 4 6 1 0 0 0 0 0 0 0
4 0 8 28 12 1 0 0 0 0 0 0
5 0 16 120 100 20 1 0 0 0 0 0
6 0 32 496 720 260 30 1 0 0 0 0
7 0 64 2016 4816 2800 560 42 1 0 0 0
8 0 128 8128 30912 27216 8400 1064 56 1 0 0
9 0 256 32640 193600 248640 111216 21168 1848 72 1 0

10 0 512 130816 1194240 2182720 1360800 365232 47040 3000 90 1

Figure 4: Some values of W̃(2)(n, k)

n/k 0 1 2 3 4 5 6 7 8 9 10

0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0
2 0 3 1 0 0 0 0 0 0 0 0
3 0 9 9 1 0 0 0 0 0 0 0
4 0 27 63 18 1 0 0 0 0 0 0
5 0 81 405 225 30 1 0 0 0 0 0
6 0 243 2511 2430 585 45 1 0 0 0 0
7 0 729 15309 24381 9450 1260 63 1 0 0 0
8 0 2187 92583 234738 137781 28350 2394 84 1 0 0
9 0 6561 557685 2205225 1888110 563031 71442 4158 108 1 0

10 0 19683 3352671 20404710 24862545 10333575 1848987 158760 6750 135 1

Figure 5: Some values of W̃(3)(n, k)

section, we establish more combinatorial identities for the translated Whitney numbers of the second
kind.

Theorem 0.6 (more recurrence relations). The translated Whitney numbers of the second kind
satisfies the following recurrence relations:

• vertical recurrence relation

W̃(α)(n+ 1, k + 1) =

n∑
j=k

[α(k + 1)]n−jW̃(α)(j, k); (0.29)

7
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• horizontal recurrence relation

W̃(α)(n, k) =

n−k∑
j=0

(−α)j
j∏
i=1

(k + i)W̃(α)(n+ 1, k + j + 1). (0.30)

Proof. Replacing n by n+ 1 and k by k + 1 in (0.4) gives

W̃(α)(n+ 1, k + 1) = W̃(α)(n, k) + α(k + 1)W̃(α)(n, k + 1). (0.31)

Successive application of (0.31) yields

W̃(α)(n+ 1, k + 1) = W̃(α)(n, k) + α(k + 1)W̃(α)(n− 1, k) + [α(k + 1)]2W̃(α)(n− 2, k)

+ . . .+ [α(k + 1)]n−kW̃(α)(k + 1, k + 1).

Since
w̃(α)(k + 1, k + 1) = w̃(α)(k, k),

then simplifying the right-hand side gives (0.29). Now, if we express (0.31) as

W̃(α)(n, k) = W̃(α)(n+ 1, k + 1)− α(k + 1)W̃(α)(n, k + 1), (0.32)

then successive application of (0.32) yields (0.30).

Figure 6 illustrates the vertical and horizontal recurrence relations in (0.29) and (0.30).

n/k . . . k k + 1 k + 2 . . . n+ 1

... ↓ ↓
↓ ↓

k W̃(α)(k, k)
↓ ↓
↓ ↓

k + 1 W̃(α)(k + 1, k)
↓ ↓

... ↓
... ↓

↓ ↓
n W̃(α)(n, k)

↘ ↖
↘ ↖
↘ ↖
↘ ←−←−←−←−←− ←−←−←−←−←− ←− ←−←−←−←−←−

n+ 1 ↘ W̃(α)(n+ 1, k + 1) W̃(α)(n+ 1, k + 2) · · · W̃(α)(n+ 1, n+ 1)
←−←−←−←−←− ←−←−←−←−←− ←− ←−←−←−←−←−

Figure 6: Illustration of (0.29) and (0.30)

Remark 0.1. When α = 1 in (0.29) and (0.30), the following known identities for the classical Stirling
numbers of the second kind are recovered:

S(n+ 1, k + 1) =
n∑
j=k

(k + 1)n−jS(j, k); (0.33)

S(n, k) =

n−k∑
j=0

(−1)j
j∏
i=1

(k + i)S(n+ 1, k + j + 1). (0.34)

8
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Theorem 0.7 (rational generating function). The numbers W̃(α)(n, k) satisfy the function

∞∑
n=k

W̃(α)(n, k)z
n−k =

1

(1− αz)(1− 2αz)(1− 3αz) · · · (1− kαz) . (0.35)

Proof. We will prove this by induction on k. Now, it is easy to verify that (0.35) holds when k = 0.
Hence, we proceed by assuming that (0.35) holds for k > 0. Applying (0.4),
∞∑

n=k+1

W̃(α)(n, k + 1)zn =

∞∑
n=k+1

{
W̃(α)(n− 1, k) + α(k + 1)W̃(α)(n− 1, k + 1)

}
zn

= z

∞∑
n−1=k

W̃(α)(n− 1, k)zn−1 + αz(k + 1)

∞∑
n−1=k

W̃(α)(n− 1, k + 1)zn−1

= z

(
zk∏k

j=0(1− αjz)

)
+ αz(k + 1)

(
zk+1∏k+1

j=0 (1− αjz)

)

=
zk+1∏k+1

j=0 (1− αjz)
.

This proves the theorem.

Remark 0.2. The well-known classical identity
∞∑
n=k

S(n, k)zn−k =
1

(1− z)(1− 2z)(1− 3z) · · · (1− kz) . (0.36)

can be obtained from (0.35) by setting α = 1.

An equivalent form of (0.35) is
∞∑
n=k

W̃(α)(n, k)z
n =

zk

(1− αz)(1− 2αz)(1− 3αz) · · · (1− kαz)

=
1

αk
· (−1)k(

1− 1
αz

) (
2− 1

αz

) (
3− 1

αz

)
· · ·
(
k − 1

αz

)
=

1

αk
· (−1)k(

αz−1
αz

) (
αz−1
αz

+ 1
) (

αz−1
αz

+ 2
) (

αz−1
αz

+ 3
)
· · ·
(
αz−1
αz

+ (k + 1)
)

=
1

αk
· (−1)

k

〈αz−1
αz
〉
k

.

Multiplying both sides of this equation by xk and summing over yields

∞∑
k=0

{
∞∑
n=k

W̃(α)(n, k)z
n

}
xk =

∞∑
k=0

〈−1〉k
〈αz−1
αz
〉
k

·
(−x
α

)k
k!

.

By the definition of the translated Dowling polynomials D̃(α)(n;x) [8], viz.

D̃(α)(n;x) =

n∑
k=0

W̃(α)(n, k)x
k (0.37)

and the hypergeometric function (or hypergeometric series) is defined by

pF q

(
a1, a2, . . . , ap
b1, b2, . . . , bq

∣∣∣∣ t) =

∞∑
k=0

〈a1〉k〈a2〉k · · · 〈ap〉k
〈b1〉k〈b2〉k · · · 〈bq〉k

tk

k!
, (0.38)

9
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we get
∞∑
n=0

D̃(α)(n;x)z
n = 1F 1

(
1

αz−1
αz

∣∣∣∣− x

α

)
.

Finally, the next theorem is obtained by using Kummer’s formula seen in M. Abramowitz and I. A.
Stegun, eds. [10, p. 505]

e−x 1F 1

(
a
b

∣∣∣∣x) = 1F 1

(
b− a
b

∣∣∣∣− x) .
Theorem 0.8. The translated Dowling polynomials satisfy the generating function

∞∑
n=0

D̃(α)(n;x)z
n =

(
1

e

)x/α
1F 1

(
− 1
αz

αz−1
αz

∣∣∣∣ xα
)
. (0.39)

Before closing this section, we note that several combinatorial properties of the polynomials D̃(α)(n;x)
were first investigated by Mangontarum et al. [8]. Also, generalizations of (0.39) can be seen in [11]
and [12].

4. ORTHOGONALITY AND INVERSE RELATIONS

Theorem 0.9 (orthogonality relations). The translated Whitney numbers satisfy the following:

n∑
k=m

W̃(α)(n, k)w
∗
(α)(k,m) =

n∑
k=m

w∗(α)(n, k)W̃(α)(k,m) = δmn, (0.40)

where δmn =

{
0, if m 6= n
1, if m = n

is called “Kronecker’s delta”.

Proof. Applying (0.14) to (0.6) gives

xn =

n∑
k=0

W̃(α)(n, k)

k∑
m=0

w∗(α)(k,m)xm

=

n∑
m=0

{
n∑

k=m

W̃(α)(n, k)w
∗
(α)(k,m)

}
xm.

Comparing the coefficients of xm and we have

n∑
k=m

W̃(α)(n, k)w
∗
(α)(k,m) =

{
0, if m 6= n
1, if m = n

. (0.41)

By similar method, we also have

(x| − α)n =

n∑
k=0

w∗(α)(n, k)
k∑

m=0

W̃(α)(k,m)(x| − α)m

=

n∑
m=0

{
n∑

k=m

w∗(α)(n, k)W̃(α)(k,m)

}
(x| − α)m.

Comparing the coefficient of (x| − α)m completes the proof.
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Since W̃(α)(n, k) = w∗(α)(n, k) = 0 when n < k, then we have

∞∑
k=0

W̃(α)(n, k)w
∗
(α)(k,m) =

∞∑
k=0

w∗(α)(n, k)W̃(α)(k,m) = δnm. (0.42)

Now, we define Nα to be an infinite matrix with W̃(α)(i, j) as the (i, j)th entries for i, j = 0, 1, 2, 3, . . .
andMα as a similar matrix for w∗(α)(i, j). That is

Mα =


w∗(α)(0, 0) 0 0 0 · · ·
w∗(α)(1, 0) w∗(α)(1, 1) 0 0 · · ·
w∗(α)(2, 0) w∗(α)(2, 1) w∗(α)(2, 2) 0 · · ·
w∗(α)(3, 0) w∗(α)(3, 1) w∗(α)(3, 2) w∗(α)(3, 3) · · ·

...
...

...
...

. . .


and

Nα =


W̃(α)(0, 0) 0 0 0 0 · · ·
W̃(α)(1, 0) W̃(α)(1, 1) 0 0 0 · · ·
W̃(α)(2, 0) W̃(α)(2, 1) W̃(α)(2, 2) 0 0 · · ·
W̃(α)(3, 0) W̃(α)(3, 1) W̃(α)(3, 2) W̃(α)(3, 3) 0 · · ·

...
...

...
...

...
. . .


Then, by (0.42), we have

Nα · Mα =Mα · Nα = I,
where I is the infinite-dimensional identity matrix. Thus, we may conclude that

Mα = N−1
α ,

whereN−1
α is the inverse ofNα and vice versa. In the following corollary, we present the orthogonality

relations for the translated Whitney numbers of the first kind.

Corollary 0.10. The following relations hold:
n∑

k=m

(−1)m−kW̃(α)(n, k)w̃(α)(k,m) =

n∑
k=m

(−1)k−nw̃(α)(n, k)W̃(α)(k,m) = δmn. (0.43)

In the next theorem, we present other inverse relations for the numbers w̃∗(α)(n, k) and W̃(α)(n, k).

Theorem 0.11 (inverse relations). The translated Whitney numbers satisfy the following:

fn =

n∑
k=0

w∗(α)(n, k)gk ⇐⇒ gn =

n∑
k=0

W̃(α)(n, k)fk, (0.44)

and

fk =

∞∑
n=k

w∗(α)(n, k)gn ⇐⇒ gk =

∞∑
n=k

W̃(α)(n, k)fn. (0.45)

Proof. Using the hypothesis,

n∑
k=0

W̃(α)(n, k)fk =

n∑
k=0

W̃(α)(n, k)

k∑
m=0

w∗(α)(k,m)gm

=

n∑
m=0

{
n∑

k=m

W̃(α)(n, k)w
∗
(α)(k,m)

}
gm.

11
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Applying (0.40),
n∑
k=0

W̃(α)(n, k)fk =

n∑
m=0

δmngm = gn. (0.46)

The proof of the converse of (0.44) is similar. For (0.45), we have

∞∑
k=0

{
∞∑
n=k

W̃(α)(n, k)fn

}
(x| − α)k =

∞∑
n=0

{
∞∑
k=0

W̃(α)(n, k)(x| − α)k

}
fn

=

∞∑
m=0

{
∞∑
n=0

w∗(α)(m,n)

∞∑
k=0

W̃(α)(n, k)(x| − α)k

}
gm

=

∞∑
m=0

{
∞∑
k=0

{
∞∑
n=0

w∗(α)(m,n)W̃(α)(n, k)

}
(x| − α)k

}
gm.

(0.40) gives us

∞∑
k=0

{
∞∑
n=k

W̃(α)(n, k)fn

}
(x| − α)k =

∞∑
m=0

{
∞∑
k=0

δkm(x| − α)k

}
gm

=

∞∑
k=0

{
∞∑
m=k

δkmgm

}
(x| − α)k

=

∞∑
k=0

{δkkgk + δkk+1gk+1 + · · · } (x| − α)k

=

∞∑
k=0

{gk} (x| − α)k.

By comparing the coefficients of (x| − α)k and we have

∞∑
n=k

W̃(α)(n, k)fn = gk.

From here, the converse can be deduced.

5. AN APPLICATION TO THE BERNOULLI POLYNOMIALS
The Bernoulli polynomials Bn(x) is known to be defined by the exponential generating function [4]

∞∑
n=0

Bn(x)
zn

n!
=

zezx

ez − 1
, (0.47)

whereBn(0) = Bn are the Bernoulli numbers. A pair of interesting identities relating these polynomials
with the r-Whitney numbers were obtained by Mező [4]. To be precise, we have the following:(

n+ 1

l

)
Bn−l+1 =

n+ 1

mn−l+1

n∑
k=0

Wm,r(n, k)
wm,r(k + 1, l)

k + 1
; (0.48)

(
n+ 1

l

)
Bn−l+1 (r/m) =

n+ 1

mn

n∑
k=0

mk

k + 1
Wm,r(n, k)s(k + 1, l). (0.49)

12
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To obtain an identity that is analogous to (0.48), we first rewrite the exponential generating function in
(0.22) as

∞∑
k=0

w∗(α)(k + 1, l)

k + 1
· z

k

k!
=

1

z
· [log(1 + αz)]l

αll!
. (0.50)

Next, we combine this with the exponential generating function in (0.8). That is,
∞∑
n=0

(
n∑
k=0

W̃(α)(n, k)
w∗(α)(k + 1, l)

k + 1

)
zn

n!
=

∞∑
k=0

(
∞∑
n=k

W̃(α)(n, k)
zn

n!

)
w∗(α)(k + 1, l)

k + 1

=

∞∑
k=0

w∗(α)(k + 1, l)

k + 1
·

(
eαz−1
α

)k
k!

=
zl−1

l!
· αz

eαz − 1
.

From (0.47), we have
∞∑
n=0

(
n∑
k=0

W̃(α)(n, k)
w∗(α)(k + 1, l)

k + 1

)
zn

n!
=

zl−1

l!

(
∞∑
n=0

Bn
(αz)n

n!

)

=

∞∑
n=l−1

{
Bn−l+1

(
n+ 1

l

)
αn−l+1

n+ 1

}
zn

n!
.

The result obtained when we compare the coefficients of zn is stated in the next theorem.

Theorem 0.12. The numbers W̃(α)(n, k) and w∗(α)(n, k) satisfy(
n+ 1

l

)
Bn−l+1 =

n+ 1

αn−l+1

n∑
k=0

W̃(α)(n, k)
w∗(α)(k + 1, l)

k + 1
(0.51)

and (
n+ 1

l

)
Bn−l+1 =

n+ 1

αn

n∑
k=0

αk

k + 1
W̃(α)(n, k)s(k + 1, l). (0.52)

Proof. The proof of (0.52) is similar to (0.51) except that we use the classical known generating
function

∞∑
k=0

s(k + 1, l)

k + 1
· z

k

k!
=

1

z
· [log(1 + z)]l

l!
(0.53)

in place of (0.50).

Note that when α = 1 in equations (0.51) and (0.52), the classical identity in [13] given by(
n+ 1

l

)
Bn−l+1 = (n+ 1)

n∑
k=0

S(n, k)s(k + 1, l)
1

k + 1

is obtained.

As closing, we recall that the translated Whitney-Lah numbers, denoted by ŵ(α)(n, k), were defined
in [6] as the number of ways to distribute the set {1, 2, 3, . . . , n} into k ordered lists such that the
elements in each list can mutate with α ways except the dominant one. These numbers are known to
satisfy the following identities (see [6]):
• triangular recurrence relation

ŵ(α)(n, k) = ŵ(α)(n− 1, k − 1) + α(n+ k − 1)ŵ(α)(n− 1, k); (0.54)
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• horizontal generating function

(x|α)n =

n∑
k=0

ŵ(α)(n, k)(x| − α)k; (0.55)

• relation

ŵ(α)(n, k) =

n∑
j=k

w̃(α)(n, j)W̃(α)(j, k).

(0.56)

The authors would like to direct the attention of
the readers to these numbers. Is it possible
to establish several combinatorial properties for
the Whitney-Lah numbers parallel to the results
in this paper? Perhaps answers can be found
by examining the properties of the classical Lah
numbers given by

n!

k!

(
n− 1

k − 1

)
(0.57)

and

(−1)n−k n!
k!

(
n− 1

k − 1

)
. (0.58)

6. CONCLUSION
In this paper we have defined the “signed”
translated Whitney numbers w∗(α)(n, k) which
opened a path to establishing some properties
for the translated Whitney numbers of the
first. The combinatorial properties obtained in
this paper such as the vertical and horizontal
recurrence relations, the exponential and rational
generating functions and the orthogonality and
inverse relations further develops the study
of the translated Whitney numbers and more
future applications. Moreover, we were able
to derive interesting identities relating the
translated Whitney numbers (the signed and the
second kind) with the well-celebrated Bernoulli
polynomials. Though the said identities are
particular cases of the results of Mező in [4],
they appear to be as compelling as the first work.
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