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Abstract 
A topological structural design approach is presented which is based upon the 
implementation of a two phase evolutionary optimization algorithm in con-
junction with a finite element analysis code. The first phase utilizes a conven-
tional genetic approach which performs a global search for the optimal design 
topology. Dual level material properties are specified within the genetic encod-
ing and are applied to each individual element in the design mesh to represent 
either design material or a void. The second phase introduces a rule based re-
finement which allows for user design intent to accelerate the solution process 
and eliminate obvious design discrepancies resulting from the phase one search. 
A series of plate design problems are presented where the objective is to minim-
ize the overall volume of the structure under predefined loading and constraint 
conditions. The constraints include both stress and deflection considerations 
where stress is calculated through the use of a commercial finite element pack-
age. The initial plate example incorporates a coarse mesh, but a gradual decrease 
in element size was employed for the remaining cases examined. Replacement 
of the phase one search with a set of randomly generated designs is demon-
strated in order to form a greatly reduced design space which drastically in-
creases the efficiency of the solution process. Comparison results are drawn 
between the conventional genetic algorithm and the two phase procedure. 
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1. Introduction 

Structural optimization has evolved considerably over the years to the point 
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where it now represents an important design tool. During this evolution, 
progress has been made on the analysis side, the optimization side and the coor-
dination between analysis and optimization. From the very beginning, structural 
optimization was viewed as a computationally intensive task and much of the 
effort was placed on efficiency. The implementation of sensitivity analysis for 
generating gradient information for size and shape optimization is one aspect of 
this early work. A review of the history as well as progress in structural optimi-
zation up to the turn of the century is available from a number of sources [1] [2] 
[3] [4] and [5]. The push to extend structural optimization into the topological 
realm resulted in several interesting new approaches. Most notably, the work of 
Bendsoe [2] introduced the concept of homogenization and material density 
variation. This work was important as the logical design approach is to consider 
an initial mass of material and to shape it in the optimal form for the design cri-
teria imposed. Several alternative approaches were also introduced, building 
upon this concept, and taken as a whole; they define a design strategy based on 
the implementation of a genetic or evolutionary algorithm.  

Topological optimization in conjunction with genetic algorithms has been 
implemented for the design of simple structures involving truss and beam ele-
ments [6] and [7] and also for plate elements [8] [9] and [10]. Topological opti-
mization is closely linked to the conceptual design process as it does not require 
an initial design from which to work. A survey of other evolutionary algorithm 
applications in the structural design area is presented by Kicinger, et al. [7] and a 
demonstration of how a solution generated by a genetic algorithm is equivalent 
to one generated by a more traditional optimization approach is presented by 
Xie [8]. This traditional optimization approach presented by Xie [8] possesses 
limitations as solution convergence is exclusively dependent on the randomness 
of the genetic algorithm search. Presented within this research is a second phase 
approach to the generic algorithm through the injection of domain specific 
knowledge in the form of a rule based encoding scheme to enable increase solu-
tion convergence for the most optimum design. Evolutionary Structural Opti-
mization (ESO) is an evolutionary method for exclusively removing elements 
through material property characterization which has been demonstrated by 
Yang, et al. [11] and a Bi-directional Structural Optimization version (BESO) of 
the approach which can add or delete elements has been developed [12]. Both 
approaches simulate design enhancement through element removal, however 
the BESO approach possesses the ability to also add elements to strengthen re-
gions enabling more diverse design outcomes. While these design techniques are 
referred to as evolutionary as a design is modified over a period of iterations, 
they are not driven by a genetic or evolutionary optimization code. Finally, the 
concept of robust design has been utilized to drive a topological optimization by 
Kim [13]. The concept of a robust design is important as most available design 
techniques produce solutions which may be highly sensitive to small changes in 
design conditions or material properties.  
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The discretized nature of computational structural analysis provides a direct 
link to the encoding used in a genetic optimization algorithm. If each element is 
represented by an individual position in the chromosome, topological modifica-
tion can be carried out by removing or adding individual elements. The removal 
of elements may easily be handled through the assignment of a weak material 
property which effectively eliminates the element, but does not require any 
re-meshing. Using this approach, a region, or allowable design space, can be 
identified and meshed into elements. The genetic algorithm will then select the 
elements required for the design topology which best satisfies the design criteria 
and constraints. Often, however, the result of an evolutionary structural optimi-
zation contains obvious flaws that an experienced designer would not allow. 
This is a result of the fact that a mathematical abstraction of the “real” design 
problem is being operated on by the optimization algorithm. In order to elimi-
nate these design flaws, some knowledge of the structural design process must be 
embedded within the optimization process. Overall, the encoding or chromo-
some string of a traditional genetic algorithm is proportional to the complexity 
of the problem, however knowledge based encoding approach is independent of 
problem size and does not proportionally grow in complexity. A smaller know-
ledge based encoding scheme eliminates traditional genetic algorithm solution 
flaws, increases solution convergence time, and provides feedback to the end us-
er regarding which key features of information were the most essential when de-
riving the final solution.  

The fields of expert systems and neural networks may be utilized in order to 
capture elements of the manual design process. This may, however, limit the de-
sign to known techniques and procedures which removes the possibility of 
creating a novel or revolutionary design. The best of both worlds would be a 
process which exploits the benefits of a global optimization process, but is 
guided or influenced by domain specific knowledge. This is possible within the 
framework of a genetic algorithm. This process may well maintain the global 
nature of the search as well as to allow for an adaptive framework over time as 
rules are modified to improve performance. A simple framework is presented, 
but this framework provides a rich development platform for more sophisticated 
structural design optimization approaches. 

A number of different encodings are possible with a genetic algorithm for to-
pological design. In order to be a useful design tool, however, the desire is to let 
the algorithm have complete control over the topology of the design. This means 
the algorithm must be capable of deleting as well as adding elements or features 
to the design. For a plate design, only the loading and ground locations should 
be specified initially along with a feasible region of space in which the design 
must fit. Each analysis of a structure is time consuming which brings up the is-
sue of efficiency. Design population size must be limited, which in turn limits 
the effectiveness of the approach. The traditional genetic algorithm exploits suc-
cessful design content, but this is not the same as exploiting design knowledge. A 
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two phase genetic algorithm for robust topological design is developed herein. A 
series of design problems utilizing plate elements is presented and the results of 
the two phase algorithm are contrasted to those generated by a traditional ge-
netic algorithm. Only loading conditions, restraints and geometric boundaries 
are specified for each problem.  

2. Background 

The plate optimization procedure considered here operates through the assign-
ment of different material properties throughout a predefined meshed design re-
gion. In order to simplify the concept, only two different material property val-
ues are introduced. For a plate design, the logical material property to consider 
is the modulus of elasticity. The first material property value represents the in-
tended design material such as that for steel or aluminum. The second material 
property value corresponds to an extremely weak material which adds little to 
the structural integrity of the design. The utilization of a weak material allows 
for extreme topological change to occur without requiring a re-mesh for the 
elements and eliminates the problem of generating a singular stiffness matrix. 
The stiffness matrix for the finite element analysis of the design is assembled 
with material property information provided by the genetic encoding on an ele-
ment by element basis. The final topology of the design may be identified by 
simply removing the elements formed of the weak material. This is not intended 
to provide a final, highly detailed design, but rather a topology which may be re-
fined in order to generate such a design.  

The plate design process investigated incorporates a genetic algorithm pro-
grammed in Microsoft Visual Basic [14], and CAEFEM [15], a finite element 
solver which performs a linear static analysis for each design topology considered. 
The plate design mesh is constructed using Femap [16], a three dimensional 
CAD package, which generates a neutral file that the finite element solver can 
read and evaluate. This neutral file [17] documents the geometry as well as all of 
the material properties and other parameters of each plate design investigated. 
The genetic algorithm generates designs through the alteration of the material 
property of each plate element within the selected neutral file. The alteration of 
material properties can generate a realm of diverse topological designs, where 
each design is processed by altering the neutral file and passing it on to the finite 
element solver. The element stresses and the nodal deflections are computed by 
the finite element solver and subsequently, this information is utilized to eva-
luate the objective function and constraints which are defined by the optimiza-
tion formulation. The specific form of objective function in this application was 
chosen to be the minimization of the total volume of a plate based design subject 
to predefined loading and constraint conditions. Stress and displacement limits 
served as structural constraint bounds.  

A major issue of concern in the assignment of an alterable material property 
for each element in the defined mesh is the total number of elements considered. 
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As the number of elements increases, the complexity as well as the time required 
for solution by the optimization algorithm increases significantly. On the other 
hand, the number of elements required to define the fundamental design topol-
ogy will generally be considerably below that required for a detailed design anal-
ysis. Another approach is to limit the optimization to a specific region of a de-
sign, where the topology of other regions is already fully defined. Meshing at 
several levels of detail is considered in the examples which follow. This is some-
what equivalent to the refinement provided by a variable length encoding [13] 
which could be implemented in order to automate the overall process. The fun-
damental question which must be addressed is whether a rule based genetic al-
gorithm is capable of solving a realistic structural design problem with a rea-
sonable amount of computational effort. The process is inherently parallel in 
nature which could lead to significant reduction in computational time but not 
in computational effort. Extensions to problems involving three dimensional 
solid objects are straightforward, using the same design optimization strategy 
with an expanded genetic encoding. 

3. Problem Formulation and Phase One 

Two separate genetic optimization formulations are introduced. The first 
represents a traditional encoding, where each element in the defined structural 
region has its own binary variable in the encoding string. This formulation is 
developed in this section. The development of the rule based extension follows 
in the next section. The plate design examples investigated were all subjected to 
identical stress and displacement constraint conditions. Each plate design was 
also restricted to the same spatial design volume, although the discretization lev-
el or element size was varied. The dimensions of the spatial design volume con-
sisted of eighteen cm in the x direction, thirteen cm in the y direction, and a 
thickness of 0.5 cm in the z direction. Directional forces consisting of 67 new-
tons in the x, y and z directions were applied at coordinate locations (15, 3.25, 
0.5) and (12, 9.75, 0.5) where the units are in cm and the origin is at the lower 
left corner of the bottom surface of the specified plate design volume. The use of 
multidirectional forces allow for an optimal yet robust topological design to be 
acquired. The concept of robust design optimization has been effectively dem-
onstrated by Sandgren and Cameron [18] for truss structures as well as an au-
tomotive inner body panel. Mesh sizes ranged from twenty four to two hundred 
thirty four elements. The maximum allowable stress constraint was set at 140 
MPa and a maximum allowable displacement constraint was defined to be 0.635 
cm. The objective function used to evaluate each design is based upon the 
amount of volume removed from the original mesh. This objective function val-
ue is equal to the total element volume of weak material present in each design 
as specified by the genetic algorithm encoding.  

The formulation of the objective function and constraints for the plate design 
examples considered is as follows:  
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where 1, ,i = ⋅⋅⋅  number of constraints 

( )1g x  correlates to stress and ( )2g x  displacement 
The encoding value for each element has a value of zero if the element is as-

signed to the design material and one if it is assigned to the weak design materi-
al. This way, the summation of volume to be maximized in Equation (1) consists 
of the total volume of weak material elements, or alternatively, the volume of 
material removed. In the constraint equations, Slimit and Dlimit are the maximum 
allowable stress and displacement values while Smax(calculated) and Dmax (calcu-
lated) are the maximum computed values for the design being analyzed over all 
of the elements considered. The formulation of Equation (2) generates ratios, 
which allow for normalization of constraint violation in the disparate magni-
tudes of the displacement and stress values as well as to allow for a consistent 
graphical representation over the diverse set of designs within each genetic pop-
ulation. Both constraint equations produce positive values for any design which 
does not exceed the design limits.  

Material properties of each plate element were designated to be either the in-
tended design material, AISI 4340 steel, or a substantially weaker material with a 
modulus of elasticity of 2 MPa. Additionally, Poisson’s Ratio was assigned a val-
ue of 0.32 for all elements in each plate design investigated. The modulus for the 
weak material may be defined as any reasonably small value as long as it is sig-
nificantly less than that of the selected design material. The main function of this 
material property is to prevent the formulation of a singular stiffness matrix 
within the finite element algorithm and to avoid the necessity of re-meshing the 
design region. The assumption is made that low stress magnitudes in plate ele-
ments assigned the weak material property are deemed to be practically non-
existent. Steel material properties were represented the by the encoding value of 
0, while weak material properties are assigned the encoding value of 1. These as-
signed numeric values correspond to defined material properties generated 
within Femap which are encoded within the genetic algorithm for material 
property manipulation of each element. A sample string is shown below for a ten 
element plate. 

Sample string {0, 1, 1, 0, 0, 0, 1, 0, 0, 1} 
For this string, elements one, four, five, six, eight and nine are formed from 

steel, while elements two, three, seven and ten are formed from the weak materi-
al. The assignment of order in the encoding string is directly related to the ele-
ment number in the design mesh. Since the design mesh remains constant 
throughout the optimization process, the encoding strategy is valid throughout 
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the search. 
Based upon the structure of the sample string, an initial set of designs are 

generated randomly and the genetic algorithm methodology begins. Both cros-
sover and mutation operations are applied by the genetic algorithm, and ulti-
mately new generations of offspring or designs are formed. The method of cros-
sover involves the selection of two parent designs where material properties or 
chromosomes within each chosen design string are interchanged at a random 
position, forming two new offspring designs. Parent designs are selected ran-
domly, based on their overall fitness value, which considers the value of the ob-
jective function as well as any constraint violation. A single numeric value for 
each design is formed through the use of an exterior penalty function. Using the 
penalty function allows parent design strings which meet or exceed predefined 
constraint values to be assigned an overall fitness value solely based upon the 
objective function value. Parent designs which fail to meet the constraint crite-
ria, are reduced in value by a penalty function. A typical penalty function is 
represented by the equation 

( ) ( ) ( ){ }2
–

i iP x f x R g x= ∑                    (3) 

for   1, ,i = ⋅⋅⋅  number of constraints 
where 

( ){ } ( )
( ){ } ( ) ( )

0; 0

;  0
i i

i i i

g x for g x

g x g x for g x

= ≥

= <
 

In this equation, f(x) represents the objective function value at the design 
point x, which specifies how much material was removed from the spatial design 
region. The penalty factor, R is a numeric value which continually increases 
from an initial value by a user specified amount as the optimization proceeds. 
This allows an early exploration phase where some constraint violation is al-
lowed, but builds a penalty over time so that later designs are pulled toward the 
feasible design region. Lastly, the array gi(x) represents the constraint value for 
each of the defined constraints. Additional background on penalty function 
theory and operation is provided by Gen and Cheng [19]. The penalty function 
or specific fitness value for each population member determines which members 
of the population are best suited for producing new design offspring, resulting in 
the term parent designs. An in depth discussion of parent selection as well as the 
genetic optimization process is given by Goldberg [20] and Davis [21].  

Mutation is a random occurrence of an altered material property value within 
an arbitrarily selected parent design string which occurs during a crossover op-
eration. This random alteration allows for the possibility of a solution to be gen-
erated which could not result from any combination of the encoding strings 
represented in the current population. Although a random occurrence, the 
probability of mutation is user specified and normally set at a relatively low val-
ue. If the mutation probability is set too high, the search becomes more of a 
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random search rather than an ordered search. Toward the end of the search 
process, most progress is made through mutation as most of the design content 
in the original population of designs has been exploited or lost. In a computa-
tionally expensive problem environment, such as structural design, it is impor-
tant to have a reasonable mutation rate as the population size must be limited. 

Once the crossover of traits between parent designs has been completed, 
stresses and displacements for each of the offspring designs are calculated and 
evaluated in the stress and displacement constraint functions. Element stresses 
and nodal displacements are immediately available once the finite element anal-
ysis algorithm, CAEFEM, has completed the analysis. Now the evolutionary 
process has commenced. This evolutionary process begins with the selection of 
new parent designs from the current generation. Once all parent designs have 
bred new offspring, one generation has been completed. The total number of 
generations of offspring produced is a user specified variable, which is application 
specific. The effectiveness of a specified set of input parameter values may be 
observed through feedback from the graphical user interface.  

4. Phase Two 

The second phase of the optimization process is designed to refine the best de-
sign or designs from the phase one search through the implementation of do-
main specific knowledge provided by the user in the form of rules. These rules 
are created by the user and encoded into a design string similar to the element 
selection string within the phase one search. Upon the conclusion of phase one, 
a global search has been performed which should result in a reasonably good de-
sign, which is at or close to a feasible design topology. Since by nature, the ge-
netic optimization process tends to make good progress early in the optimiza-
tion, the location of a set of reasonable design points does not require many 
generations to be executed in the phase one search. Alternatively, the phase one 
search can be done away with entirely and replaced by a set of randomly gener-
ated designs. While this process may lead to a local minimum, depending upon 
the diversity of the randomly selected designs generated, it allows for large 
problems to be solved using the greatly reduced encoding length of the rule 
based search. The alternatives supported by the two phase design optimization 
methodology lead to a rich set of alternatives which can be implemented to bal-
ance computational effort with the scope of the global search. 

The fundamental operation of the genetic algorithm remains identical to the 
phase one operation, with the exception of the development of rule strings which 
are mated and offspring rule sequences which are introduced to further refine 
the final solution(s) from the phase one search. Each time the genetic algorithm 
has located a rule sequence for which both stress and displacement constraints 
are satisfied and an improvement in the objective function is achieved, the im-
proved design replaces the current design. This rule based refinement is based 
upon the single row encoding scheme illustrated in Figure 1. 
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Figure 1. Phase two operation layout. 

 
This specific encoding example consists of ten columns, where each column 

or block position contains information that is necessary in order to execute one 
or more of the rules. This particular encoding method allows for up to three 
rules to be executed simultaneously. The first position in the encoding string de-
termines how many rules are to be executed in order to modify the current de-
sign. This leaves three groups of three block positions to provide the information 
necessary to execute specific rules. The first of the three block position values 
determines which rule to execute. The second and third block position values 
provide any additional information necessary to execute the selected rule (i.e. 
specific element to manipulate). This encoding method is repeated throughout 
the remaining two block sets which compose the remainder of the encoded row. 
This encoding methodology provides the foundation for the development of de-
sign strings which are injected into the genetic algorithm to refine the best de-
sign(s) from phase one. Phase two has the ultimate goal of determining the best 
rule sequence, from a global perspective, which refines a previously located de-
sign point from the phase one search or the current design(s) in the phase two 
search.  

Five rules were developed for demonstrating the operation of the phase two 
search process. Each rule works independently or in a synchronized manner 
with multiple rules in order to achieve an improvement in the objective function 
which is to reduce the overall volume of the current plate design. Listed below 
are the five rules developed.  

1) Rule one indicates that for a randomly selected element, the material prop-
erty is switched from its current material property to its opposite (i.e. weak ma-
terial property to the design material property or vice versa).  

2) Rule two switches the material properties of two randomly selected plate 
elements with one another.  

3) Rule three locates the element of maximum stress. Upon the location of the 
element of maximum stress, if applicable, the optimizer alters the weak material 
property of the element to the design material property.  

4) Rule four locates the element of maximum displacement, and alters the 
material property of the element to the design material property if the current 
material property was designated a weak material.  

5) Rule five locates the element of minimum stress and switches the material 
property to the weak material property if the design material property was in-
itially present. 

Each of the rules has a unique assignment of the rule block positions which 
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provides the information required to process the rules for a given topological 
plate design. In all cases, the first of the three block positions represents the rule 
number, which is an integer from one to five. The second block position is an 
integer representing the element number selected for modification (when re-
quired) and the third block position is only applicable for rule number two 
where it is an integer identifying the second element number selected for rule 
execution.  

In order to clarify the interpretation of the rule encoding, consider the fol-
lowing string. 

{ }Sample string 3,2,12,56,5,21,13,1,33,44=  
As the first position has a value of three, all three rules represented by the 

string will be executed on the current plate design. The next three blocks in the 
encoding designate that rule two is to be executed which will exchange the ma-
terial properties of elements twelve and fifty-six. The next block of three values 
indicates that rule five will be executed which relies on stress information from 
the finite element analysis (element of maximum stress) and therefore does not 
require the values in the following two fields (21 and 13). The material property 
of the element which has the maximum stress value will be altered to the design 
material if it is not already designated as such. The final three fields will execute 
rule 1 which will alter the material property of the thirty third elements to the 
value opposite the current setting. The last position, 44, is not required in order 
to execute this rule. The three modifications are made to the design and then it is 
evaluated for objective function and constraint values. If the design is improved, 
it is saved for future consideration by the genetic algorithm.  

Other rules than those specified may be more effective in the phase two 
process, but the algorithm will adapt through the genetic process to locate the 
best rules and combination of rules. The rules are controlled by the genetic algo-
rithm which in turn is utilized to modify a previously specified plate design. It 
should be noted that the rules are not required to be good design rules. For ex-
ample, rule number four may be seen to be of limited value since the reduction 
of displacement at a nodal position will be influenced by all elements along the 
load path and particularly, those elements close to a ground position. The beauty 
of the rule based process is that good rules will be executed and bad rules will be 
avoided as the search progresses. At the end of the search, the user can see which 
rules or combination of rules lead to design improvements during the search. 
This can lead to rule refinement or even the discovery of a new design strategy. 
This links the process closely with learning and memory which are fundamental 
to any successful design process.  

5. Results 

The plate design examples differ only in the number of elements involved in the 
meshing of the design space. The specific input parameters utilized for each of 
the design exercises including population size and number of generations of  
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Table 1. Overview of population and generation sizes assigned to each plate considered. 

Number of 
Plate Elements 

Phase One 
Population Size 

Phase One 
Generations 

Phase Two 
Population Size 

Phase Two 
Generations 

24 

88 

140 

234 

48 

176 

280 

468 

24 

143 

140 

420 

100 

100 

100 

100 

40 

40 

40 

40 

 
offspring utilized for both the phase one and phase two search processes are do-
cumented in Table 1. From this table, it is noted that both the population size as 
well as the number of generations required increased as the number of elements 
increased in the phase one search. These parameters for the phase two search 
remained constant, regardless of the number of plate elements contained in the 
design space mesh. This is a direct correlation to the length of the encoding 
string which increases for phase one as the number of elements increases, but 
remains fixed for the phase two search component. This once again shows the 
promise of the design process using a rule based approach. Regardless of the size 
of the problem, the phase two search remains the same, reduced size. The results 
for each of the four mesh densities will be reviewed in detail. The phase one 
search is equivalent to a traditional genetic optimization, while the two phase 
search procedure represents the rule based, global search process. 

6. Example One 

The first example utilized a twenty four element mesh to fill the designated de-
sign space with the predefined loading and constraint conditions established for 
all of the examples. The 0.5 cm. thick plate is fixed in all directions along the left 
edge, and two nodal forces were applied which consisted of sixty seven Newtons 
in the x, y, and z directions. A maximum stress constraint of 140 MPa and a 
maximum displacement constraint of 0.635 cm. were imposed as well. The phase 
one population size and number of generations produced were 48 and 24 respec-
tively. The resulting plate design from the phase one search is illustrated in Fig-
ure 2. The dark shaded regions within Figure 2 represent the elements which 
were assigned the design material. The light regions indicate elements which 
were assigned the weak material and are treated as voids. The element number-
ing proceeds from left to right by rows, starting at the bottom row. The final ob-
jective function value for the design shown in Figure 2 was 67.25 cm3. This 
represents the volume removed from the original design region.  

The phase two search consisted of a population size and number of generations 
produced of 100 and 40 respectively. The phase two search refined the phase one 
design to that shown in Figure 3. This design can be seen to be a much “cleaner” 
design and contains no obvious design flaws other than the diagonal attachment 
of several elements. This problem could be resolved by adding appropriate  
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Figure 2. Phase one solution. 

 

 

Figure 3. Phase two solution. 
 

constraints or by other means [19] [20] [21] and [22]. This issue is not dealt with 
on the examples presented as only the design topology is desired and refinement 
of this topology is considered as a separate task. While the result pictured in 
Figure 2 from the phase one search contains elements that are beyond the point 
of force application, the phase two result does not contain such elements. The 
total volume removed for this design is improved to a total of 87.75 cm3. The 
results remain rather crude due to the selected course mesh size and this leads to 
the question of whether the design would improve with a decreased mesh size.  

Graphical representations for both displacement and stress versus element 
number are provided below in Figure 4 and Figure 5 upon the conclusion of 
phase two operation. The cyclical nature of the plots is a direct result of the ele-
ment numbering scheme. The elements of highest stress and displacement are 
identified as element one and element five respectively. The maximum stress and 
displacement values fall slightly below the values allowed for the design. The 
large mesh size does not allow for the removal of any more material as eliminat-
ing one additional element would have lead to a design which violated the con-
straints. This once again is an indication that further improvement might be 
possible with a finer mesh.  

Plots of both the objective function and constraint values versus generation 
graphs are provided in Figure 6 and Figure 7 which represent the genetic algo- 
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Figure 4. Displacement versus plate element. 

 

 

Figure 5. Stress versus plate element. 
 

 

Figure 6. Objective function versus generation. 
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Figure 7. Constraint versus generation. 
 

 
Figure 8. Objective function versus generation. 

 
rithm behavior for the phase one search process. These graphical representations 
correspond to the final solution illustrated in Figure 2. Figure 6 indicates that 
the solution was located by the eighth generation and Figure 7 indicates that 
both the displacement and stress constraints were satisfied. The displacement 
constraint can be seen to be near its prescribed bound, while the stress constraint 
is far from being active.  

Figure 8 and Figure 9 provide the solution history for the phase two search 
process. Figure 8 contains a plot of the objective function for each generation of 
designs produced and from this plot it can be seen that little improvement in the 
phase one design is produced after the tenth generation. The resulting objective 
function from the phase two search was enhanced from 68.25 cm3 to 87.75 cm3 
which resulted in an additional thirty percent increase in the amount of material 
removed from the design. The overall stress and displacement values, shown in 
Figure 9 document that the phase two solution lies closer to the stress constraint 
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Figure 9. Constraint versus Generation. 

 
limit compared to the phase one solution.  

7. Example 2 

The first decrease in the mesh size for the prescribed design region resulted in an 
increase in the number of plate elements from twenty-four to eighty-eight. All 
other design parameters remained at identical levels as in the previous design 
example. Solutions for both the phase one and phase two search are provided 
below in Figure 10 and Figure 11. 

An examination of Figure 10 compared to the phase one solution for the 
course mesh from Figure 2 shows a significant change in the design topology. 
The objective function value was improved from the previous phase one solution 
of 68.25 cm3 to a value of 93.07 cm3. A more refined design was located upon the 
conclusion of the phase two search which is illustrated in Figure 11. The phase 
two search solution improved the objective function value to 97.06 cm3 and re-
moved extraneous elements from the phase one solution. The element identifi-
cation numbers are provided for the elements formed from the actual design 
material in Figure 11, which correlate to the graphical representations for the 
element stress and displacement values.  

The displacement and stress values for each plate element upon the conclu-
sion of the phase two search process are presented graphically in Figure 12 and 
Figure 13. The nodal numbering scheme which is determined by the mesh ge-
nerator makes it more difficult to identify specific element values, but it is clear 
from these graphs that both stress and displacement values are below the speci-
fied design limits. This once again points toward the possibility of a reduced 
mesh size allowing for even more material removal. 

The progress of the genetic algorithm throughout the phase one search 
process is provided below through graphical representations of objective func-
tion value and constraint values versus generation, as shown in Figure 14 and 
Figure 15. The search did not converge until over one hundred generations had 
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been produced and the displacement constraint was active at the phase one de-
sign solution. 

The phase two optimization progress is plotted in Figure 16 and Figure 17. 
The phase two process converged in approximately ten generations and while  

 

 
Figure 10. Phase one solution. 

 

 

Figure 11. Phase two solution. 
 

 
Figure 12. Displacement versus plate element. 
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Figure 13. Stress versus plate element. 
 

 

Figure 14. Objective function versus generation. 
 

 

Figure 15. Constraint versus generation. 
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Figure 16. Objective function versus generation. 

 

 

Figure 17. Constraint versus generation. 
 

neither the stress nor displacement constraints were fully active, the design stress 
is approaching the specified limiting value. In this design exercise, the phase two 
search resulted in a more modest reduction of additional material, but the re-
sulting design can be seen to be more refined in nature. The other interesting 
point of note is that the phase two result reduced the amount of material re-
quired for the design while increasing the safety margin of the design with re-
spect to both displacement and stress criteria. 

8. Example 3 

Based upon the results achieved with the twenty-four and eighty-eight element 
plate design examples, it seems like a reasonable assumption that additional 
mesh reduction may allow for a further increase in the volume of material re-
moved from the original design region. A one hundred forty element plate was 
constructed to investigate this possibility. Design topologies corresponding to 
the phases one and two results are illustrated in Figure 18 and Figure 19. An  
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Figure 18. Phase one solution. 

 

 

Figure 19. Phase two solution. 
 

examination of Figure 18 reveals that the phase one global search solution had 
several disassociated elements in the final design as well as elements beyond the 
load application points which are both indicators of the level of difficulty this 
size problem presents for a traditional genetic algorithm in locating a refined 
solution. Once again, the phase two solution remedies the design discrepancies 
and produces a fairly refined design. 

Graphical representations of displacement and stress values for each plate 
element in the final design after the phase two operation are provided in Figure 
20 and Figure 21. From these plots it can be seen that both constraints are satis-
fied, although both are approaching the design limits imposed on the optimiza-
tion formulation.  

The behavior of the genetic algorithm is presented graphically for the phase 
one solution in Figure 22 and Figure 23. An objective function value of 88.59 
cm3 was located after approximately one hundred twenty generations of phase 
one operation as illustrated in Figure 22. This represents an interesting result as 
this is less material than for the phase one solution for the eighty-eight element 
design previously executed. This may be an indicator that the population size  
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Figure 20. Displacement versus plate element. 

 

 

Figure 21. Stress versus plate element. 
 

 

Figure 22. Objective function versus generation. 

https://doi.org/10.4236/ajcm.2017.73023


D. Webb et al. 
 

 

DOI: 10.4236/ajcm.2017.73023 311 American Journal of Computational Mathematics 
 

 

Figure 23. Constraint versus generation. 
 

 
Figure 24. Objective function versus generation. 

 
needs to be increased, but this would have a dramatic impact upon the solution 
time required. The constraint value versus generation graph displayed in Figure 
23 reveals that the final phase one design satisfied both the stress and displace-
ment constraint criterion.  

Graphical representations of the phase two search process are illustrated 
within Figure 24 and Figure 25. Only ten generations were required to reach 
the final design solution. The objective function value was increased from 88.59 
cm3 to 92.76 cm3 while maintaining acceptable stress and displacement design 
criterion. Once again, the volume of material removed is slightly worse than for 
the previous example. Both displacement and stress constraints are shown to be 
satisfied throughout the phase two process in Figure 25.  

9. Example 4 

The final plate design exercise investigated is composed of two hundred thirty 
four plate elements which are subjected to the previously defined loading and  
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Figure 25. Constraint versus generation. 
 

 

Figure 26. Phase one solution. 
 

 

Figure 27. Phase two solution. 
 

constraint conditions. Phase one genetic input parameters consisted of popula-
tion size and number of generations of 486 and 420 respectively. Figure 26 and 
Figure 27 display both the phase one and phase two genetic optimization solu-
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tions. The phase one result is difficult to interpret as the final topology is not as 
well defined as for the previous plate examples considered. This fact is attributed 
to the substantial increase in the number of plate elements in this example which 
magnifies the difficulty in generating a solution through the use of a traditional 
genetic algorithm. Conversely, the phase two design shown in Figure 27 
represents reasonable design solution, where elements are reconfigured and 
connected with surrounding elements and are no longer located beyond the de-
fined nodal loading conditions. This is perhaps the best indicator of the power of 
the phase two approach as significant redesign was necessary in order to refine 
the phase one solution. 

Displacement and stress values versus plate element number are presented 
graphically in Figure 28 and Figure 29. Both the displacement constraint and 
the stress constraint are seen to be active.  

Objective function and constraint values versus generation graphs are pro-
vided below which plot the progress of the phase one genetic optimization 

 

 
Figure 28. Displacement versus plate element. 

 

 

Figure 29. Stress versus plate element. 
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Figure 30. Objective function versus generation. 

 

 

Figure 31. Constraint versus generation. 
 

search. A steady increase in the objective function value for the phase one search 
is noted in Figure 30; however converged constraint values are not as evident 
within Figure 31, even after 400 generations. Additional generations might con-
tinue to slowly improve the objective function. The final objective function value 
attained upon the conclusion of the phase one search was 60.00 cm3. This is sig-
nificantly below the values reported previously for the larger mesh sizes and 
once again demonstrates the traditional phase one genetic search process is not 
adequate to solve a problem with this number of elements with a limited popula-
tion size. From Figure 31 it is noted that both stress and displacement con-
straints are active at the conclusion of the phase one search.  

Figure 32 and Figure 33 below display the phase two genetic behavior for 
both objective function value and constraint values versus generation. The ob-
jective function was increased to a value of 94.00 cm3 in less than ten generations 
of offspring. This value is comparable with the best results achieved with the 
courser mesh sizes and is particularly significant in light of the poor progress  
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Figure 32. Objective function versus generation. 

 

 

Figure 33. Constraint versus generation. 
 

made during the phase one search process. Additionally, the constraint versus 
generation graph illustrated in Figure 33, is clearly indicates that both design 
constraints are active at the solution.  

10. Extensions and Further Insight 

The results presented to this point clearly point out the limitations of the phase 
one or conventional application of a genetic algorithm in setting the material 
properties for the topological optimization. The quality of the solution generated 
was reduced considerably at each mesh refinement stage and in the last case in-
volving two hundred and thirty four elements, very little useful topology detail is 
available after the phase on e search process. The rule based, phase two imple-
mentation is remarkably more efficient and is capable of developing fairly re-
fined topologies in within a very limited number of generations. This is due to 
several factors, the main two being the ability to infuse problem specific know-
ledge into the search and the reduction in the size of the solution space in the 
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problem formulation. This brings up the issue of how much, if any, of a phase 
one search is required in the topological optimization. The other issue which 
deserves some additional consideration is the post evaluation of the rule usage 
during the phase two search process. Both of these issues will be addressed 
briefly. 

In order to test the algorithm with a limited phase one search component, the 
88 element plate problem was revisited. A phase one search was conducted with 
an extremely limited population size, 25, and for only 25 generations. The best 
final population member was then passed directly to the phase two search 
process which utilized a population size of 100 rule strings for a total of 40 gen-
erations. The final topology from the phase two search is presented in Figure 34. 
The final amount of material removed was 98.38 cm3. This is actually slightly 
higher than the final two phase solution presented in Example 2, although the 
final topology is very similar to that presented in Figure 11. The objective func-
tion value and the constraint values versus generations conducted in the phase 
two search process are documented in Figure 35 and Figure 36. Thus by reduc-
ing the total phase one function and constraint evaluations by over a factor of 
40, did not damage the value of the final result. The limit of the reduction of the 
phase one search would be to stop the phase one search after the first generation 
which would produce a set of randomly generated designs. Utilizing this ap-
proach, the design space, or encoding length in the genetic algorithm, for a mesh 
containing tens of thousands of elements would be on the order of ten or twenty 
elements. Solving this size problem repeatedly, is demonstrated to be and ex-
pected to be far more efficient with respect to the number of function and con-
straint evaluations. 

The issue of which rules are implemented and which of those rules were suc-
cessfully utilized in the solution process provides an important look at how the 
general topological optimization process can be improved over time. The distri-
bution of rule utilization for the solution of the 88 element problem with the re-
duced phase one search is shown in Figure 37. It was mentioned in the early 
discussion in the selection of the rules that rule number four was not constructed  

 

 
Figure 34. Final topology for plate design with reduced phase I search. 
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Figure 35. Objective function versus generation. 

 

 

Figure 36. Constraint versus generation. 
 

 

Figure 37. Rule Distribution for Successful Design Moves. 
 

in a way that would improve the solution. This fact is documented in Figure 37 
where it is indicated that the rule was never utilized successfully in the search. 
This information can be used to replace the rule with another, more appropriate 
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rule. The distribution of the remaining four rules shows a dominance of rule 
number five, and lesser dependence on rules one, two and three. This means that 
for this particular case, the search was improved most often through the removal 
of material in regions of low stress. This is not an unexpected result, but the 
usefulness of building some randomness into the rule base is documented by the 
high rate of use of rules one and two. The interesting part of the rule develop-
ment process over time, is that a better understanding of the optimization and 
design process is developed. This is a rare feature among any topological opti-
mization procedure. 

These insights to the rule development process and the ability to reduce or 
eliminate the phase one search process highlight the promise of the rule based 
approach. The implementation tested is one of a wide variety of similar algo-
rithms which could have been constructed. Further understanding of the rule 
development process is needed as well as additional testing on larger topological 
design problems. The post process review of the successful rule distribution 
could be expanded to include rule interactions which would also provide useful 
design information. Based on the results achieved to date, however, the method 
promises to provide an effective design tool for structural design which provides 
insights into the solution process that are unavailable by most other approaches. 
The process represents a unique combination of an evolutionary search which is 
guided by domain specific knowledge.  

11. Summary and Conclusions 

The inclusion of domain specific knowledge in the form of design rules was im-
plemented within the framework of a genetic algorithm and tested on a series of 
structural design problems involving plates. Each problem was subjected to 
identical boundary and loading conditions as well as the same original prede-
fined design volume. The problems involved four different mesh sizes for the 
prescribed design region. The topology was defined by the assignment of ma-
terial property values to each of the elements through the genetic encoding of 
the optimization algorithm. Two material values were assigned, a normal value 
for the intended design material and a value which represents a significantly 
weaker material which represents a void.  

The results clearly demonstrate the lack of effectiveness of the traditional ge-
netic algorithm implemented for the phase one search for this class of problems. 
The final designs generated by the phase one search are “dirty designs” as they 
contain obvious design flaws. The convergence of the phase one search was 
found to be slow which made it difficult to assign the population size required 
for a true global search to be performed. As the mesh was refined to form small-
er elements, the problem size increased to the point where a reliable solution 
could not be located through the phase one search alone.  

The addition of the second phase, rule based genetic algorithm was found to 
be extremely effective in cleaning up the design resulting from the phase one 
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search. This process was found to require a very small number of generations, 
even when the number of elements assigned to the design region grew. The re-
sult from the phase one search was improved by the phase two search in all de-
sign cases considered. The issue of the topology generated as the number of ele-
ments increased was interesting. When relatively few elements were assigned, 
the final design was easily defined and clearly related to the design generated by 
the phase one search. As the number of elements increased, the final design to-
pology represented a better design (less weight), but as the number was in-
creased farther, the final design actually decreased in the measure of quality.  

The level of difficulty certainly increases with the number of elements consi-
dered and this may partially explain this phenomena. Another possibility is that 
the topology is shifting from a global level to a microscopic level of detail. With 
large elements, the fundamental form of the structure is the major result. The 
approach clearly does not generate a final detailed design, but a clear topology is 
evident from which to form a final design. As the mesh is formed of smaller ele-
ments, the topology shifts to a finer grain which actually allows for more of a grain 
type structure to be formed such as that represented by a foam or matrix material 
containing small patterns of voids. Additional experimentation will be required in 
this area. 

The two phase approach can be implemented in a host of different ways and 
the effectiveness of the resulting algorithm may improve in the process. Certain-
ly, however, the initial results are promising. Completing the phase one search 
before implementing the phase two process may not be as efficient as a mixture 
of the phase one and phase two search where the phase two process operates on 
the entire phase one population. The development and representation of rules is 
also an area which requires further experimentation. The use of the rule history 
for improvement of the process is also an open area for further research. In any 
case, the basic methodology has been demonstrated and shown to be an effective 
approach to topological optimization. It certainly exceeds the performance of a 
traditional genetic based approach.  
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