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ABSTRACT

We compare two ways of calculating the optical response of metallic nanoparticles
illuminated by near field dipole sources. We develop tests to determine the accuracy of the
calculations of internal and scattered fields of metallic nanoparticles at the boundary of the
particles and in the far field. We verify the correct transport of energy by checking that the
evaluation of the energy flux agrees at the surface of the particles and in the far field. A new
test is introduced to check that the surface fields fulfil Maxwell's equations allowing
evaluation of the validity of the internal field. Calculations of the scattering cross section
show a faster rate of convergence for the principal mode theory. We show that for metallic
particles the internal field is the most significant source of error.

Keywords: Nanoparticles; electromagnetic scattering; energy flux; nanophotonics.
1. INTRODUCTION

Many of the recent developments in Nanophotonics imaging and sensing are based on the
interaction of metallic particles with sources of radiation located at sub wavelength distances
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from the particles [1]. The necessity to understand howto optimize experimental set-ups and
to extract the optical properties of the nanoparticles from the experimental results has been
a strong driver of the demand for accurate modeling of the interaction between incoming
light and nanoparticles [2]. In Near Field Optical Microscopy in illumination mode one is
interested in calculating the light originating from near field interactions after it passes into
the far field region, where the detector is placed [3]. For other forms of microscopy and for
surface enhanced spectroscopy and sensing, one needs to find the energy flux near the
surface of the nanoparticles. Because fully analytical calculations are possible only for the
few shapes for which the Maxwell's equations admit separation of variables, it is important to
develop tests for assessing the ability of different methods to calculate quantities of interest
such as cross sections, field intensities and energy fluxes that have different convergence
rates with respect to computational parameters. Several efficient techniques have been
developed to study scattering in non-spherical particles [4-8]. In this paper we compare two
implementations of the recently developed theory of the principal modes (TPM) for internal
and scattering fields [9-12], with the Discrete Sources Method (DSM)[13], which is very fast
and able to calculate the fields at any point in space. All these algorithms are able to treat
non-spherical particles, and are based on the decomposition of internal and scattered fields
into sums of fields produced by electric and magnetic
multipoles distributed inside and/or outside the particles [13-15]. The principal mode theory
is semi-analytical and based on the decomposition of internal and external fields into
orthogonal modes which are the generalization of Mie's solutions [16] to non-spherical
particles and whose amplitudes are found by projecting the incident fields on the modes
themselves. The explicit determinations of internal and scattering modes are used to find
resonances [9] and develop control methods [12]. On the contrary, theDSM determines the
amplitude of internal and scattered multipoles by solving an overdetermined system of
equations. For these methods we compare the error in the boundary conditions at the
surface and we find how well these methods satisfy exact relations for the scattered energy
flux and for internal and scattered fields.

2. METHODOLOGY

We compare the performances of TPM and DSM using the same number and distribution of
electric and magnetic multipoles inside and outside the particles and the same set of points
on the surface of the particles. We have used a grid of 8,000 points on the generatrix of the
surface [10,17] for all the results shown in this paper and we have checked the numerical
convergence, see the discussion in the following section.

The internal and scattered fields excited by a given incident field are determined by
satisfying the boundary conditions,

ﬁ(p)x(ﬂ(p)écm (p>j:ﬁ(p>x§cmf<p>, M

where p is a point on the surface andn is the unit vector normal to the surface,

F° =[E,H]T is the incident field, Fvi/s are sets of v electric and magnetic multipoles
summed to represent the internal and scattered fields, indexedi and s respectively, at that
point. Sampling the multipoles on the generatrix of the surface leads to the (m X n) matrix L,
where m is the number of sampling points and » the number of multipoles, which is the
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same starting point for all the methods used here. Gauss-Legendre quadrature points are
used both for the sampling of the fields and also for surface integration along the generatrix
line [10].

The DSM directly solves for the expansion coefficients of the multipoles, cf//s, in a least
squares sense typically by using Gaussian elimination. Alternatively the over-determined set
of linear equations Lx = f can also be solved by using the decomposition, L = QR , where O

is a square matrix whose columns are orthogonal and R is an upper triangular matrix [18].
The number of columns of Q is the rank of R, i.e. the dimension of the largest invertible

minor of R . Theoretically the multipoles used are linearly independent, so O should have »

columns if using exact numerical precision. In practice, some of the multipoles give rise to
columns of L that appear linearly dependent when using finite numerical precision; QR
algorithms where the number of columns of ¢ are determined by a user defined upper

bound on the ratio between the largest and the smallest eigenvalues (the estimated
condition number) of R, are available [18]. The eigenvalues of R that would give rise to a
poorer condition number are removed, and the corresponding columns of O are eliminated.

This procedure effectively reduces the number of the functions used to span the solution by
eliminating the functions that are most effected by numerical noise.

The TPM method instead constructs »n pairs of internal and scattered modes that are
orthogonal on the surface, each consisting of a linear combination of the multipoles. This is

achieved by considering submatrices (mxn, )L, and (mxn )L of L (i.e. L=L +L and
n = n; +n ) formed by sampling the internal and scattered modes, respectively. We then find
internal and scattered orthonormal modes using either the decompositions L, =QR,,

L. =Q.R_ or the singular value decompositions L. =U.S,V;, L, =U_S V.. The matrices U,,

U,, V,, ¥, are unitary and the matrices S,, S, are diagonal and positive. As with the QR
decomposition, numerical noise can be reduced by setting the smallest terms in the matrices

S., S, to zero and eliminating the corresponding columns and rows of U,, U, and 7, V.

We then use the singular value decomposition of either 00, or of U U, to find the principal

modes, i.e. two sets of internal and scattered modes that are correlated pairwise on the
surface of the particle. For each incident field, the internal and scattered fields are found by
projecting the incident fields on to the principal modes [9]. The amplitude of the n" internal
principal mode is obtained by using the expression,

i _ln_(l.n'sn)jn .fO )

a. =

' 1_(ln'sn)

Similarly the amplitudes of the modes in the scattered space can be obtained by changing

the sign of Eqn. (2) and exchanging the sets of principal internal and scattered modes, i,
and s, respectively, where the projection of the incident field is given by f0 = ﬁx(ﬁxFo)

.Note that unlike the DSM, in the principal mode theory one can control separately the
numerical solutions for the subspaces of the internal and scattering multipoles.
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3. RESULTS AND DISCUSSION

We investigate the validity of the numerical solutions to the scattering problem calculated via
three different methods; DSM using QR decomposition hereafter referred to as QR, TPM
using solely Singular Value Decomposition (SVD) and also a TPM combination of both
algorithms (QR+SVD). To provide a fair comparison between algorithms we limit the rank of
the output for each method via regularization to be the same for all methods and study the
effect of incrementing that limit. Simulations were run for two distinct particle types, a
nanodisc of radius 400nm and depth 35nm and a nanorod of length 400nm and diameter
35nm, with rounded edges. Other than geometry, the two particles differ in the type of
sources used to represent the fields. For the rod multipole sources are distributed along the
symmetry axis in the real space whereas for the disc the sources are located in the complex
space effectively making them ring sources distributed concentrically along the particle
radius [14]. The particles were illuminated by a near field source of wavelength 720nm
comprised of a combination of electric and magnetic point dipoles located 50nm from the
particle surface. The approximate locations of the near field source, moved to obtain
average values for some tests by using different locations and polarisations, are highlighted

in Fig. 1.
r\

eo 0 0(9)o o o o0

L)

Fig. 1. Sampling points of near field excitation for a rounded gold nanodisc and
nanorod. The red points indicate the approximate location of the near field source as
it was scanned over the gold nanoparticles at a height of 50nm, for a rod with
dimensions (I=400nm, d=35nm) and a disc (d=800nm, z=35nm). The blue circles
indicate the location of the near field source for the differential scattering cross
section and Stratton-Chu measurements. There are 15 sampling points for each
particle (the centre of the disc was sampled with 3 different polarisations.) All of the
following simulations were performed using these particles.

Firstly, we compare the convergence of the solutions by plotting the differential scattering
cross sections (DSCS), the angular variation of the electric field intensity in the far field [13],
of each of the three methods by increasing the rank from an effective minimum. These
results were obtained by calculating the light scattered by the excited particles into the far
field along the generatrix line, ¢ = 0, sampling 6 at equal intervals between the poles of the

particle’s symmetry axis at 0 and 1, shown in Fig. 2. We observe that for minimal rank there
is an obvious advantage to the TPM methods, which while not fully converged show the
main features of the spectrum at the correct angles. The QR solution however, for both the
rod and disc particles, fails to even approximately produce these features of the solution
when the rank is minimal. As the rank is increased both TPM methods converge more
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rapidly than the pure QR solution which requires the maximum rank achievable with the TPM
methods to show full convergence, for the disc, and approximate convergence for the rod.
Note that with these particular source configurations the upper bound on the rank obtainable
for SVD and QR+SVD when no limit is imposed is almost half that observed for the QR
algorithm.
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Fig. 2. Convergence of differential scattering cross sections (DSCS) along the
generatrix line with increasing rank. The DSCS, in arbitrary units, for the three
different algorithms plotted against the far field angle 8, varied incrementally between
0 and 1T between the poles of the particle’s symmetry axis showing convergence with
increasing rank of the solution matrices for a (a) disc and (b) rod.

As we are solving the scattering problem by using a surface method we test the numerical
validity of the surface fields primarily through the fractional L, surface error, where the norm
of the surface field residual is calculated in terms of each input field [10],

2

- rie s
— 3)
|/

Where the tangential components of the incident, internal and scattered fields projected onto
the particle surface are represented by fO, fi, and f* respectively. Due to the cylindrical
symmetry of the particles we are able to separate components of the fields according to their
angular phase dependence exp(im¢), where m is the component of the optical angular

momentum along the symmetry axis. Convergence of the fractional L, error test was
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checked with varying sized grids, ranging from 6000 to 12000 points, and a small oscillation
of the computed value was observed but with a maximum deviation of ca. 6% of the results
shown in Fig. 3. As we would expect from the results of the DSCS, SVD and QR+SVD
perform much better with minimal rank and produce an acceptably small (less than 4%) L,

error on the disc for |m| <2, as shown in Fig. 3. As we increase the rank, we find that QR
catches up with the TPM methods and that we have an error of less than 10% of the incident
field for |m| < 6. Increasing the rank further for the pure QR case does produce an even

lower L, error and it does begin to outperform the other methods at high |m| . The rod particle
is much easier to integrate and we observe a very low residual up to |m| =7 however due to

the limited radius of the particle only the fields for|m| < 2 are non-negligible. For this type of

particle, QR must retain a much higher rank of the composite matrices to perform as well as
the TPM methods and so with limited rank the L, error fluctuates strongly as the near field
source is scanned across the particle.

The error in the propagation of the scattered fields can be determined by comparing the
integral of the Poynting vectors on the surface and also at infinity [13]. As with the L, error
this test was checked for convergence by varying the number of grid points and the
maximum deviation from the results reported in Fig. 3 was ca. 0.05%. This flux ratio gives an
indication as to the quality of the scattered field produced by evaluating the error in the
propagation of the special functions and for the disc particle all methods perform similarly
despite the large difference in DSCS results and L, error, particularly with minimal rank. For
the rod particle however, we only expect valid results from the flux ratio where the scattered
field is non-negligible. Again, the QR method cannot compete with the TPM methods
particularly with minimal rank however it does eventually perform as well when the rank is
steadily increased beyond what is shown in Fig. 3.

A further test of the validity of the calculated fields is the introduction of the Stratton-Chu test
at infinity, where the scattered field can be compared with an exact solution of Maxwell's
equations, and the Internal field should be exactly zero [13];

] h, ! y r
E&C (er):% S{e Xe‘y(r').ke’ ><[ éc(,r )Xer]}ezkser-r dS(r') e, EDS (4)

N

" h ' ) .
E; .(e)=0= ik {er xe, (r')+ o X[ () er]}e_lkie”'r dS(r') e, € D, (5)
4798 C ’

1

Here, E_ . is the electric field calculated for a point at infinity, &, is the wave number in the
internal and scattering media, the constant C, =./¢, /u, Where ¢ and u, are the
relative permittivity and permeability in the internal and scattering media respectively, e,

and &, are the tangential components of the surface electric and magnetic fields, e is the

unit vector towards the evaluation point in the far field, »' is the point on the surface S and
D_ is the scattering domain.
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Fig. 3. Fractional L, surface error and flux ratio between the particle surface and the far field for
a gold (a)-(d) nanodisc and (e)-(h) nanorod for the three solution methods plotted against the
absolute value of the index of optical angular momentum, m, of the field. All points shown are

the averages p of the 15 sampling points indicated in Fig. 1 and the error bars show the

standard deviation o = \/1 / (n - I)Z(xn - ,Lt)2 . The black dashed line indicates the ideal value
n

in all plots.
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We use the asymptotic form of the multipole sources [13], E,, to evaluate the field

calculated using from the scattered field as (|£,|-|E, .|)" /|E,| . The convergence of the

Stratton-Chu test for the scattered field was again tested by varying the grid size and
showed a maximum discrepancy of the order 1E-6 when compared with the asymptotic
values. A much larger fluctuation in results at wide angles was observed for the test of the
internal field, which uses a different kernel to the scattered. In Fig. 4 we again see evidence
that the disc particle is particularly difficult to integrate when compared to the rod which gives

excellent results over all the m channels for each method. For the disc only up to |m| <4 at

low rank and |m| < 6 at higher rank give a value close to the value of the asymptotic sources

for the scattered field, a result similar to that observed for the flux ratio. In fact the Stratton-
Chu test proves to be a more stringent test of the scattered field than the flux ratio. The
Stratton-Chu test on the internal field of the disc appears to indicate that there is a problem
with the field. The field is evaluated along a line in the far field from zero to 7, and is non-
zero for wide angles around 7z /2. This is due to the fact that the grid along the curved edge
of the particle is particularly difficult to integrate and has not converged for this number of
grid points. To indicate this more clearly, in Fig. 4c we plot also the Stratton-Chu test for the
internal field, calculated using QR+SVD on the surface of the disc, expanded out onto a
sphere with radius equal to that of the disc, where it convincingly passes this test for all m
channels at all angles. The QR algorithm appears to perform better for the internal field than
the other methods but this is due to the fact that it assigns the sources significantly smaller
amplitudes when solving for the fields at the particle boundary, as such the values calculated
at infinity also appear smaller. To the best of our knowledge the Stratton-Chu test is the first
procedure developed to evaluate the quality of the internal field.

We have observed that for low rank that there is a clear advantage to using a method which
splits the space into two subspaces not only for the extra information about the system which
is obtained but also for the accuracy in the calculations performed. There is also another
advantage to using the TPM methods, due to the sequential way in which the surface fields
are calculated using SVD they can be written out to be used again for a different excitation of
the same particle. While, for the initial calculation QR proves to be slightly quicker, as shown
in Table 1., for multiple calculations SVD and QR+SVD need only calculate the fields once
and the subsequent calculations are significantly faster, by a factor of ~5 for QR+SVD and
~7 for SVD.

Table 1. Total computational time for a full solution of the scattering problem for the

disc particle using an AMD Opteron Processor 6344 2.6 GHz system averaged over 5

runs. For QR+SVD and pure SVD we highlight the time taken for the initial calculation
and also subsequent calculations for the same particle where the fields are

read back in
_Algorithm CPU time(s)
QR 509
SVD+SVD(initial) 1302
QR+SVD(initial) 972
SVD+SVD/QR+SVD(read) 182

572



Physical Science International Journal, 4(4): 565-575, 2014

Rank 300 Rank 480
o ’,'Q ‘X
= X
5 @7 X
(%] -
w X
P ¥
w

.
sVvD - =
20

QR+SVD --3¢--
QR+SVD* d

Rank 100 Rank 300
1.2e-06 o) 1.2e-06 f
1e-06 - 1e-06 [
N;{ e N;{ e ;‘i
= 8e07 | =  8e07 7 “,t
"5  6e07 | "5 6e07 A
3 3 PR
u 4e-07 - ul 4e-07 7 !
< <C \
uw uf & \
= 2e-07 + X = 2e-07 Pl k

[Es.cl

Fig. 4. Evaluation of the internal and scattered fields using the Stratton-Chu test at
infinity for the disc (a)-(d) and rod (e)-(h) particles. Plotted, for each of the three
algorithms, are the average fields, Es.c, calculated at 15 different points along 6 from 0
tom,@=0 for different scattering channels m. The scattered fields are compared with
exact solutions of the Maxwell equations E,. Fig 4c) shows an additional plot,
QR+SVD*, where the internal field calculated on the surface of the disc was expanded

onto the surface of a sphere of equal radius
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4. CONCLUSION

In conclusion we have shown that the TPM - by separately considering the internal and
scattered subspaces of the electromagnetic fields —has a faster convergence with the
number of functions used to expand these solutions than the Discrete Source Method
implemented through QR decomposition. In addition to evaluating the fractional error in the
calculated solutions at the particle surface, we have also quantitatively tested the quality of
the numerical evaluation of the transport of energy away from the particle. However this
does not reveal errors in the field inside of the particle, hence we have demonstrated that the
Stratton-Chu relations offer an excellent metric for validating the reliability of both the internal
and scattered fields, providing the first general test for the internal field. For metallic particles
these tests reveal that the internal field is the most significant source of numerical error in
these calculations. We have also shown that for particles with large aspect ratio, such as
those considered here, the accuracy of the surface quadrature is extremely important, this
suggests that integration via adaptive grids may be beneficial in improving the accuracy of
the calculations.
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