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ABSTRACT

Extracts of St. John’s Wort (Hypericum perforatum) are known to cause interactions with
certain conventional drugs. Herein, we focus on two clinically relevant concepts. First, St.
John´s Wort has been used by people of all ages as an herbal treatment for depression
without medical prescription. Second, diazepam-like substances called endogenous
benzodiazepines are found in cases of acute liver failure without previous exposure to
diazepam. Currently diazepam has over 500 brands name and well marketed throughout
the world and became one most frequently prescribed medication in different form (oral,
injectable, inhalation and rectal forms) for four decades.  Based on this concept, we
investigated diazepam biotransformation by incubation of a widely accepted in vitro
organotypical culture model with Hypericum methanolic extract, powdered drug, infusion,
oil, and with the pure Hypericum compounds hyperforin and hypericin. The amounts of the
preparations and compounds were chosen according to the recommended daily
medication doses. We measured the activities of ethoxyresorufin-O-deethylase (EROD),
ethoxy coumarin O-deethylase (ECOD) and the potential induction of diazepam
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metabolites (desmethyldiazepam, temazepam and oxazepam) during biotransformation.
None of the preparations or substances induced EROD or ECOD. However, different
preparations did induce the formation of desmethyldiazepam and temazepam. The
strongest activity was caused by the extract, followed by the powdered drug and
hyperforin. All preparations and compounds increased the formation of the diazepam
metabolite oxazepam, but only the extract, the drug powder and the pure compounds had
marked effects. Therefore, we report here the potential interference of St. John´s Wort
with all three metabolites of diazepam in an organotypical sandwich model that can be
utilized to study potential interaction of metabolites of many drugs with herbal ingredients
in preclinical stage of drug discovery process.

Keywords: In vitro model; pharmaceutical screening; primary porcine hepatocytes; drug-drug
interactions, cytochrome P450; St. John’s Wort.

1. INTRODUCTION

Newly developed drugs have to undergo rigorous preclinical safety evaluations. Until
recently these have mainly been performed in animal models. Since the predictive power of
rodent trials is limited and their ethicality is questioned, there is increasing interest in suitable
in vitro models. Human hepatocytes are the first choice for the study of hepatic metabolism.
However, due to their limited availability larger pharmaceutical screenings are difficult.
Hence, alternatives are required that approximate as closely as possible the qualitative and
quantitative biotransformation characteristics of human hepatocytes.

Extracts of St. John’s Wort are well established as an herbal anti-depressant. In recent
years, a number of interactions of St. John’s Wort extract have been reported with several
co-administered drugs, e.g., oral contraceptives, the anti-coagulants phenprocoumon [1] and
warfarin [2], the anti-asthmatic theophylline [3], the immunosuppressant cyclosporin [4,5]
and the HIV protease inhibitor indinavir [6]. Clinical trials with healthy volunteers showed a
decrease in plasma levels of digoxin [7], phenprocoumon [8], and amitriptylin [9] and a
change in the 6--OH-cortisol/cortisol ratio in urine [10,11] after oral administration of St.
John’s Wort. Karliov reported [12] a case report about a drug interaction between
cyclosporin A and Hypericum perforatum in orthotopic liver transplantation.

Very interestingly, different types of Hypericum preparations, e.g., tea, red oil, expressed
juice, powdered herb and alcoholic extract exhibit differing clinical interaction potential
[11,13-15]. The predominant importance of the hyperforin content for the clinical interaction
potential of a given Hypericum preparation is particularly highlighted by the study of Mai et
al. [11] who compared a regular methanolic Hypericum extract with the same extract after
selective removal of hyperforin.

Herein, we focus on two clinically relevant concepts. First, St. John´s Wort has been used by
personas of all ages as an herbal treatment for depression without medical prescription.
Second, diazepam-like substances called endogenous benzodiazepines are found in cases
of acute liver failure without previous exposure to diazepam [16]. Based on this concept, we
tested the induction potential of all possible forms of St. John´s Wort in the biotransformation
of diazepam by a widely accepted in vitro organotypical culture model. We investigated the
screening potential in two different test series with six different St. John’s Wort preparations
and two compounds. The first series tested a methanolic extract (Jarsin 300), powdered



British Journal of Pharmaceutical Research, 4(15): 1840-1860, 2014

1842

Hypericum drug, Hypericum infusion and an oil for their potential to interact with CYP 1A
(EROD, ethoxyresorufin-O-deethylase), CYP 2B (ECOD, ethoxycoumarin-O-deethylase) and
isoenzymes of the CYP 2C and 3A groups that are involved in diazepam metabolism. The
known inducers 3-methylcholanthrene (3-MC, inducing EROD), phenobarbital (PB, inducing
ECOD) and dexamethasone (DEX, inducing CYP 3A4) were used as positive controls. The
second series tested the extract, three different powdered drugs and the compounds
hyperforin and hypericin for their effect on diazepam metabolism. Again, DEX was used as
the control inducer. Generally, diazepam biotransformation led to the formation of three
metabolites (desmethyldiazepam, temazepam, oxazepam) typically found in vivo in humans.
Previously, we have reported that drug metabolizing enzymes are highly expressed in an
organotypical sandwich model but not in a collagen gel-coated model [17].

2. MATERIALS AND METHODS

2.1 Chemicals

Chemicals were purchased from various sources: CaCl2, glucagon, and KCl were from
Merck (Darmstadt, Germany); collagenase, fetal calf serum, and William’s Medium E were
from Biochrom (Berlin, Germany); L-glutamine, penicillin, and streptomycin were from
GIBCO (Eggenstein, Germany); insulin was from Hoechst (Frankfurt, Germany); Hypericum
preparations, hyperforin, hypericin and Cremophor RH 40 were from PhytoLab
(Vestenbergsgreuth, Germany); DMEM was from Cellconcepts, (Umkirch, Germany); and
HBSS was from PAA Laboratories (Linz, Austria). All other chemicals were purchased from
Sigma (Steinheim, Germany).

2.2 Cell Isolation

The protocol for cell isolation can be found elsewhere or in our previous report [17]. Briefly,
female pigs (German Landrace, 6-8 weeks old, body weight 20-30 kg) were obtained from
the animal breeding institute at Mariensee, Germany. The animals were hepatectomised and
the livers transferred to the lab in sterile cold Ringer buffer. Cells were isolated according to
a modification of the methods described by Seglen [18] and Hoogenboom et al. [19]. The
liver was perfused at 37ºC with buffer A, containing KCl 6.71mM, NaCl 142mM and HEPES
10mM substituted with EGTA 0.2mM. When the excreting buffer stayed clear, the organ was
perfused with the same volume of buffer B (same as buffer A but without EGTA) to wash out
the EGTA. Afterwards 500 ml of buffer C, containing KCl 6.71mM, NaCl 66.75mM, HEPES
10mM, glucose 11mM, and collagenase 130kU l-1 (type IV CLS), were recirculated through
the liver for 5 min followed by addition of 10ml CaCl2 (200mM) and further recirculation for
half an hour. The organ was then cut into pieces and placed into sterile 4ºC cold buffer D
containing 10% of HBSS (10x), HEPES 10mM, BSA 2.0g l-1, glucose 5.56mM and CaCl2
2mM. The liver cells were released from the liver, the suspension filtered through a nylon
membrane (pore size 100 µm, Jürgens, Hannover, Germany), and then centrifuged at 55g
for 5 min. The resulting pellet was resuspended in buffer D and washed three times. The
cells were next resuspended in culture medium and counted in a haemocytometer in the
presence of trypan blue and NaCl. The mean viability was 89%  3%.

2.3 Organotypical Sandwich Model of Primary Porcine Hepatocytes

Primary porcine hepatocytes were enclosed within two layers of collagen as described in
Bader et al. [17]. Briefly, collagen solution was used to moisten 24-well cell culture plates to
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form first collagen layer (100 -200 µm) before application of the primary porcine hepatocytes
cells. Plates were cultivated with a density of 2.5∙105 cells per well. The cells were seeded
and attached for two hours before medium exchange. Two days later a covering collagen gel
layer (100-200µm) of 250µl per well was applied and hardened for one hour, when serum-
free medium was added. Cells were cultivated at 37ºC with 5% CO2 and saturated with
water vapor. William’s Medium E supplemented with 5% fetal calf serum, 453kU l-1 penicillin,
310µM streptomycin, L-glutamine 9mM, prednisolone 1.88 µM, glucagon 4.5nM and insulin
180 U l-1 was used as the culture medium for the first two days. After the second collagen
gel layer was added, the culture was continued under serum-free conditions for the following
cultivation period. Culture medium was changed daily. The overall experiment design of
organotypical sandwich model of primary porcine hepatocytes to evaluate the potential
interaction of major drug metabolites with diazepam is given in Fig. 1.

Fig. 1. Organ typical sandwich model of primary porcine hepatocytes to evaluate the
potential interaction of major drug metabolites with diazepam

2.4 Preparation of Test Solutions

After the sandwich culture was set up, solutions of the different St. John’s Wort preparations
and compounds were added. The extract, the powders and the oil were dissolved in 5%
cremophor solution for one hour. Cremophor was shown in preliminary analytical trials to
dissolve the different classes of Hypericum compounds in a concentration representing their
relative occurrence in each of the tested preparations. The infusion was prepared with
boiling water for ten minutes and adjusted afterwards to 5% cremophor RH 40. Hyperforin
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and hypericin were dissolved in DMSO. Three different dilutions of the preparations (1%,
0.1% and 0.01%) and of the compounds (1%, 0.01%, and 0.0001%) were prepared in
culture medium. The amounts of the preparations and compounds were chosen according to
the recommended daily doses of the corresponding medications (see Table 1).

The concentrations of the Hypericum preparations investigated here corresponded to the
recommended daily dose of the drug.

Table 1. Concentration of Hypericum preparations

Preparation Input of drug equivalent [mg l-1]
Extract 9000
Powder 3000
Infusion 9000
Hypericum oil 240

To determine the influence of the solvent, the extract was not only dissolved in cremophor
RH 40 but also dissolved in DMSO. After incubation for two, three and four days, the cells
were thoroughly washed to remove the Hypericum preparations. Afterwards, medium
containing substrate was added, and the biotransformation activities of the hepatocytes were
determined. Model inducers (5µM 3-MC for EROD, 1.5mM PB for ECOD, 200 µM DEX for
CYP 3A4) were used to control for the viability and physiological performance of the cells.
Furthermore, two solvent controls (Cremophor and DMSO) and a blank control were carried
out.

2.5 Assays of Constituents in Hypericum Preparations and Test Solutions

The composition of the different Hypericum preparations and the respective test solutions
(Table 2) was determined by quantitative HPLC methods (PhytoLab GmbH,
Vestenbergsgreuth, Germany). Chemical structure of the different St. John’s Wort
compounds is given in Fig. 2.

Fig. 2. Chemical structure of the different St. John’s Wort compounds
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Table 2. Concentration of compounds in culture medium

Test concentration [%] ng ml-1 culture medium
Hyperforin Hypericin Flavonoide

Extract (Cremophor) 1 626.8000 32.2000 1928.7000
Extract (Cremophor) 0.1 62.6800 3.2200 192.8700
Extract (Cremophor) 0.01 6.2680 0.3220 19.2870
Extract (DMSO) 1 284.0000 2.5000 2007.0000
Extract (DMSO) 0.1 28.4000 0.2500 200.7000
Extract (DMSO) 0.01 2.8400 0.0250 20.0700
Powder 1 1 9.0000 33.9000 758.0000
Powder 1 0.1 0.9000 3.3900 75.8000
Powder 1 0.01 0.0900 0.3390 7.5800
Powder 2 1 61.2000 12.3000 1437.0000
Powder 2 0.1 6.1200 1.2300 143.7000
Powder 2 0.01 0.6120 0.1230 14.3700
Powder 3 1 50.0000 37.0000 1069.0000
Powder 3 0.1 5.0000 3.7000 106.9000
Powder 3 0.01 0.5000 0.3700 10.6900
Tea 1 8.1000 17.1000 1599.0000
Tea 0.1 0.8100 1.7100 159.9000
Tea 0.01 0.0810 0.1710 15.9900
Oil 1 1.6800 3.8400 1.9000
Oil 0.1 0.1680 0.3840 0.1900
Oil 0.01 0.0168 0.0384 0.0190
Hyperforin 1 100.0000
Hyperforin 0.01 1.0000
Hyperforin 0.0001 0.0100
Hypericin 1 100.0000
Hypericin 0.01 1.0000
Hypericin 0.0001 0.0100

2.6 Ethoxyresorufin-O-Deethylation (EROD) Assay

Deethylation of ethoxyresorufin is CYP 1A-mediated. Hepatocyte cultures were incubated
with 50µM of 7-ethoxyresorufin and an equal quantity of dicumarol to prevent further
biotransformation of resorufin by cytosolic diaphorase. Aliquots of the supernatant medium
were withdrawn after one hour and stored frozen at -20ºC until analysis. After thawing,
resorufin conjugates were cleaved using β-glucuronidase 100U ml-1 in acetate buffer at 37ºC
overnight. Aliquots of the treated samples were mixed with glycine buffer (1.6 M, pH 10.3).
Afterwards, formation of resorufin was quantified by fluorometry (LS-5, Perkin-Elmer,
Überlingen, Germany) with an excitation wavelength of 530nm and an emission wavelength
of 580nm. The spectrofluorometer was calibrated using resorufin standards.

2.7 Ethoxycoumarin-O-Deethylation (ECOD) Assay

Deethylation of ethoxycoumarin is mediated by CYP 2B6. The assay was performed
similarly to the EROD assay. Hepatocyte cultures were incubated with 70µM 7-
ethoxycoumarin. Aliquots of the medium were withdrawn after one hour and stored frozen at
-20ºC until analysis. After thawing, umbelliferone (7-hydroxycoumarin) conjugates were
cleaved using 100Uml-1 β-glucuronidase in acetate buffer at 37ºC overnight. Aliquots of the
treated samples were mixed with glycine buffer. Then, formation of umbelliferone was
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quantified by fluorometry with an excitation wavelength of 360nm and an emission
wavelength of 460nm. The spectrofluorometer was calibrated using umbelliferone standards.

2.8 Diazepam Biotransformation

Hepatocyte cultures were incubated with 20µg ml-1 diazepam. Aliquots of the medium were
withdrawn after one hour and stored frozen at -20ºC until analysis. After thawing, the
samples were extracted with ethyl acetate and evaporated with nitrogen. Afterwards the
substrate and product concentrations were determined by isocratic RP-HPLC. (detection
wavelength: 236nm; mobile phase: water/methanol/acetonitrile). Analysis of diazepam and
metabolites by HPLC: One microgram of midazolam (as internal standard) and 20μl 4M
NaOH were added to 1ml of each probe. After adding 100μl isopropanol, probes were
extracted after 30 min with 5ml ethyl acetate and centrifuged 10 min at 200g. The ethyl
acetate phase was evaporated under nitrogen atmosphere and the remnant was dissolved in
120μl of the HPLC mobile phase, consisting of acetonitrile+ methanol+0.04% triethylamine
(40+10+50 v/v) pH 7. Of this, 80μl was loaded onto an HPLC Nucleosil®-100-5 C18 HD-
column from Macherey-Nagel, Germany. The HPLC equipment was from Merck and Hitachi
and consisted of an L7100 HPLC pump, an L7200 autosampler, an L7450 UV detector, a
D7000 interface module and an HPLC system manager running on a Compaq computer.
The flow rate of the mobile phase was 0.8ml min−1 and the column temperature was 22ºC.
For the quantification of temazepam, desmethyldiazepam and oxazepam standards of 10ng
to 10μg were extracted and measured as described above.

2.9 Statistics

The enzyme activities measured here were transformed into relative values using the
corresponding solvent control. To better illustrate the average interaction potential of a
preparation or compound, the mean values were taken of the single effects (n = 3) on each
metabolite referring to all concentrations and induction periods. Results in tables and figures
are expressed as means ± SD. Student’s t-tests were used to assess the statistical
relevance of the all acquired data. Values of p smaller than 0.05 were considered statistically
significant.

3. RESULTS AND DISCUSSION

3.1 EROD (CYP 1A) and ECOD (CYP 2B)

EROD is an important marker of cytochrome P450 1A activities in hepatic microsomes of
pigs [20]. Four different Hypericum preparations were assayed for their influence on drug
metabolism by CYP 1A and 2B: extract (80% MeOH), powder 1, infusion, and oil. After
treatment with St. John’s Wort, the activities of both EROD and ECOD were found to be
within the same range as the solvent controls. None of the tested preparations had a
significant effect regardless of the concentration or duration of treatment (Fig. 1). However,
the corresponding model inducers 3-MC and PB induced an increase of 213% and 280%,
respectively, in enzyme activity. Neither EROD and ECOD were affected by the St. John’s
Wort preparations (Fig. 3). A positive effect means an induction of the enzyme's activity,
whereas a negative effect means an inhibition of the activity. None of the investigated
preparations showed a significant effect on ECOD or EROD. Only the model inducers 3-
Methylcholanthrene (3-MC) and phenobarbital (PB) were able to induce the enzymes.
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Fig. 3. Induction potential of four different St. John´s wort preparations on EROD (A)
and ECOD (B)

3.2 Diazepam Metabolism (CYP 2B6, 2C and 3A)

Diazepam is metabolized by multiple CYP isoenzymes: CYP 2B6, 2C8, 2C9, 2C19, 3A4 and
3A5 demethylate diazepam to form the intermediate product desmethyldiazepam. Diazepam
is hydroxylated via an alternative pathway to temazepam by CYP 3A4, 3A5 and 2C19. Both
intermediate products are further metabolized to form the end product oxazepam by the
corresponding concurrence reaction [21,22]. Hence, three different products must be
regarded in diazepam metabolism: Desmethyldiazepam, temazepam and oxazepam. In the
first series, the same four Hypericum preparations were investigated for EROD and ECOD
activity. The second series tested the extract dissolved in DMSO, two more drug powders,
and the compounds hyperforin and hypericin.
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3.2.1 Desmethyldiazepam

This intermediate product is formed by N-demethylation of diazepam. Fig. 3 shows the
average proportional effects of each preparation and constituent on desmethyldiazepam
formation. The data of the first series show a strong inductive effect of the extract on all of
the liver cell isolates. Furthermore, induction was distinctly dose-dependent (Fig. 4A): higher
concentrations of the extract had stronger effects. Powder 1 and the infusion also had an
inducing effect on desmethyldiazepam formation, but this was considerably weaker.
Hypericum oil had no effect. Except for hypericin and the oil, both of which showed a weak
but negligible inhibiting influence, all preparations induced the formation of
desmethyldiazepam. Remarkably, the extract induced metabolism when dissolved in
cremophor RH 40 but inhibited it when dissolved in DMSO (see Table I). The highest
induction was reached with the model inducer DEX.

In the second series, the extract dissolved in cremophor again showed the strongest
inductive effect. Dissolved in DMSO, it had an inhibitory effect. Hyperforin induced the
formation of desmethyldiazepam (Fig. 4B). In contrast, hypericin had a weak inhibiting effect.
Overall, the strongest effects were observed for all preparations after two days of treatment
(Fig. 4B).

2.2.2 Temazepam

This intermediate product is formed by hydroxylation of diazepam. Fig. 5 shows the average
proportional effects of each preparation and constituent on temazepam formation. As
already seen in the results for the metabolite desmethyldiazepam, the extract had the
strongest inducing effect. Here too, there was a clear dose-dependence. Powder 1 and the
infusion had an inducing but weaker influence on this metabolite. Again, Hypericum oil did
not show any inducing effect (Fig. 5A).

The second series showed that the inducing effect of powders 2 and 3 on temazepam was
similar to that of the extract. The influence of powder 1 was distinctly lower. However, the
effects of the extract and of powders 1 and 2 were markedly dose-dependent; the extract
dissolved in DMSO had an inhibitory effect. Although hyperforin had a dose-dependent
inducing effect, hypericin inhibited the formation of temazepam (Fig. 5B). The strongest
effects were observed after two days of Hypericum treatment. In summary, the investigated
preparations and compounds had very similar effects on both intermediate products of
diazepam metabolism. Hypericin had a clear inhibiting influence on this metabolite, while the
influence of the oil was weak and negligible. All the other preparations were able to induce
the formation of temazepam. Additionally, the extract induced metabolism when dissolved in
cremophor RH 40 but inhibited metabolism when dissolved in DMSO (see Table I). DEX was
used as a model inducer.

2.2.3 Oxazepam

This metabolite represents the end product of diazepam metabolism. It is formed either by
hydroxylation of desmethyldiazepam or by N-demethylation of temazepam. Fig. 5 shows the
average proportional effects of each preparation and constituent on oxazepam formation. All
isolations showed a very strong induction of CYP 3A by DEX. The extract and powder 1 had
the strongest inducing effects on oxazepam formation (Fig. 4). The Hypericum infusion had
about half of this induction potential, and even the oil exhibited a low inducing effect on the
formation of this metabolite.
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A: First series

B: Second series

Fig. 4. Induction potential of different St. John’s Wort preparations and compounds
on the diazepam metabolite desmethyldiazepam

The second series revealed that the compounds hypericin and hyperforin in particular
exhibited considerable dose-dependent induction. Powder 3 had the strongest inducing
effect on this metabolite. Induction of the formation of oxazepam by powders 2 and 1 was
weaker. As with the other metabolites, the extract had an inhibitory effect when dissolved in
DMSO. Again, the strongest effects were observed after two days of Hypericum treatment
(Fig. 6). Overall, there was generally good agreement with regard to the effects of the
different preparations and compounds as measured in the two series with the different
metabolites. All preparations and compounds were capable of inducing the formation of
oxazepam. Again, the effect of the extract depended on the solvent. When the extract was
dissolved in cremophor RH 40 metabolism was induced, but when dissolved in DMSO
metabolism was inhibited. The model inducer DEX had a very strong inducing effect on
oxazepam.
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A: First series

B: Second series

Fig. 5. Induction potential of different St. John’s Wort preparations and compounds
on the diazepam metabolite temazepam

2.3 Induction Concentration and Period

The experiments were performed with three different Hypericum concentrations and three
different incubation times. In almost all cases, the highest concentration of a preparation and
constituent caused not only the highest metabolite concentration but also the maximum
effect. The effects of the extract, powder 1 and hyperforin were distinctly dose-dependent, as
shown in Fig. 7. Although the highest metabolite concentration was found after three days of
treatment, the strongest effects in the corresponding untreated controls were observed after
two days of Hypericum application. The experiments were carried out with three different
Hypericum concentrations and for three different periods of time. In almost all cases, the
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highest concentration of a preparation and constituent caused the highest metabolite
concentration. The effects of extract, powder 1 and hyperforin in particular were markedly
dose-dependent.

A: First series

B: Second series

Fig. 6. Induction potential of different St. John’s Wort preparations and compounds
on the diazepam metabolite oxazepam
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A: Extract

B: Powder 1

C: Hyperforin

Fig. 7. Dose-dependent changes in desmethyldiazepam (DMD) concentration by the
extract, powder 1 and hyperforin
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When a patient takes medicine, food and beverages may often be taken with the medication.
Mostly patients consume tea without a physician's prescription. However, this increases the
chances of interactions with the prescribed drug that could change the pharmacokinetic
profile, block the drug's efficacy or even create toxicity. Ruschitzka et al. [5] reported acute
heart transplant rejection due to St. John's wort. Interestingly, unwanted pregnancy has
been associated with the use of St John’s wort in women taking oral contraceptives [23]. In
addition, St. John's Wort has potential to interact with a number of drugs such as
Theophylline [3], phenoprocumon [8], Dioxin [7], HIV protease inhibitors [6], and selective
serotonin re-uptake inhibitors [24].  Mills et al.  [25] determined the methodological quality of
clinical trials that examined possible interactions of St John’s wort with conventional drugs,
and they gave a safety suggestion that clinicians and patients should beware of possible
decreases in the systemic bioavailability of conventional drugs when taken concomitantly
with St John’s wort.

Over the past decade, toxicological research on the interactions between St John’s wort and
drugs has increased. Herein, we investigated the induction by St John’s wort of diazepam
biotransformation in an in vitro organotypical cellular model.  Diazepam is a type of sedative-
hypnotic drug called a benzodiazepine. It has anxiety-relieving effects and it has been used
worldwide for approximately forty years to treat a wide range of conditions such as insomnia,
alcohol withdrawal, epilepsy and other neuropsychiatric disorders, and it is routinely used in
other surgical arenas. However, benzodiazepine is associated with hepatic encephalopathy,
which is possibly cause by endogenous benzodiazepine and elevated ammonia levels.
Basile et al. [16] detected diazepam in patients suffering from acute liver failure with hepatic
encephalopathy without previous exposure to diazepam. Basically, the liver and the brain
interact in numerous ways to ensure normal brain functioning. St John’s wort is the seventh
biggest botanical supplement [26], and in some countries like Germany it is commonly
prescribed for mild treatments, especially in children and adolescents [27]. Furthermore, it
has been used for more than 200 years and 111 million daily doses of hypericum extract
have been taken in Germany alone.

The World Health Organization reports that 80% of people worldwide rely on herbal
medicines for some aspect of their primary health care. In the last 20 years in the United
States, the use of herbal medicine has increased along with dissatisfaction with the cost of
prescription medications. In Germany, roughly 600 - 700 plant-based medicines are currently
available and are prescribed by approximately 70% of German physicians. About 60 million
Americans (1 in 5) use complementary and alternative therapy, and it was estimated that
20% of patients regularly taking prescription drugs were also taking herbal medicine, which
suggests that about 15 million Americans are at potential risk for herb-drug interactions.
Also, about a third of patients reported they seek complementary and alternative therapies
for health promotion and disease prevention [28,29]. Some herbal medicines may cancel the
effect of a prescription drug; others may reduce it, or even exaggerate it. So it is clinically
essential to at least screen for the most commonly used daily herbal supplements. We
hypothesize based on this study that in vitro organotypical sandwich models will facilitate the
easy and rapid screening of a wide range of herbal –drug interactions.

None of the Hypericum preparations and compounds studied here affected CYP 1A (EROD)
or CYP 2B (ECOD) activity. Most of the preparations did affect CYP 2C and 3A, but there
were clear differences between the preparations. The perceptible tendencies of the different
preparations confirmed in regard to the cytochrome P450-dependent metabolism of
diazepam corresponded very well between the two intermediate products
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desmethyldiazepam and temazepam. A similar hierarchy was also found for the end product
oxazepam. Only the constituent hypericin differed in its influence on the metabolites.

Most remarkable were the different influences of the extract. When dissolved in cremophor
RH 40, the extract generally showed the highest induction potential of all tested
preparations. In contrast, when dissolved in DMSO it consistently inhibited the formation of
the different metabolites. Analysis of the two extract solutions revealed that mainly the
flavonoids were dissolved in DMSO, while the more lipophilic compounds hyperforin and
hypericin were not found in the expected amounts. In the cremophor solution, however, the
relative concentrations of all the analyzed compounds corresponded to those of the original
extract; this was also the case for the other preparations. Table 2 displays the
concentrations (measured by PhytoLab GmbH & Co. KG, Vestenbergsgreuth) of the
different compounds of the investigated Hypericum preparations in culture medium. These
results suggest that the specific composition of a St. John’s Wort preparation plays an
important role in its overall interaction potential and that hyperforin may mainly be
responsible for the observed effects. Although there was also induction of oxazepam
formation by hypericin, it seems unlikely that this compound contributes to interactions in
vivo due to its relatively low concentration in Hypericum products as compared with the
hyperforin content of Hypericum extracts.

The results of Moore et al. [30] support these findings. Three different St. John’s Wort extract
preparations and pure hyperforin were found to induce CYP 3A4 in human hepatocytes,
while hypericin and different flavonoids appeared primarily inactive. Roby et al. [11] found
induction of CYP 3A by St. John’s Wort in vivo. Bioavailability data for hyperforin, hypericin
and other Hypericum compounds have been published by Biber et al. [31] and flavonoids are
well known to be only poorly absorbed in the intestines.

In contrast, our data suggest that the effect of flavonoids is inhibition. Markowitz et al. [32]
make a similar assumption. Flavonoids are well known to have an inhibiting effect on the
human CYPs 3A4, 1A2, 2B and 2E1. Quercetin in particular, one of the compounds of St.
John’s Wort, is considered to be a potent inhibitor of CYP 3A4 [32] and 1A2 [33]. However,
flavonoids do not seem to be of any importance for the clinical interaction potential of
Hypericum. Hypericum tea, which has a high flavonoid content but is practically devoid of
hyperforin  [14] and a hyperforin-free methanolic extract had no significant clinical effect on
the pharmacokinetics of Digoxin [14] or Cyclosporin [13].

The interaction profile that is the most well documented by case reports, clinical
observations and volunteer studies is that of the St. John’s Wort preparation “Jarsin 300®,”
which was also the methanolic extract used in our studies. The published data [1-3, 5-10]
indicate that it has an inductive effect on the metabolism of multiple drugs, which is in good
accordance with our results. Moreover, our data are congruent with those of Moore et al. [30]
and Wentworth et al. [34], who found the constituent hyperforin to be a highly potent
activator of the pregnane X receptor (PXR), an orphan nuclear receptor known to induce
hepatic CYP 3A gene expression in response to xenobiotics [35,36]. In contrast, hardly any
PXR activity was found for hypericin or Hypericum flavonoids. These results explain the
effects of the particular constituents found in our research.

Our investigations show that in vitro studies with primary porcine hepatocytes are a valuable
tool for the detection of drug-drug interactions. This not only applies to isolated compounds
but also to complex herbal drug preparations. Zhao et al. [37] investigated the applicability of
different in vitro systems (mouse, rat and dog microsomes) in comparison to human
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microsomes. They found that the models phylogenetically closest to man are both
qualitatively and quantitatively the most suitable for screening for interactions. The best
results were obtained with canine microsomes, and the least suitable were the results
obtained with murine microsomes. In vitro models offer the advantage of reduced complexity
of the study system and the ability to evaluate intrinsic metabolic potentials and mechanisms
with respect to a specific reaction [38]. These data are essential for understanding and
predicting drug interactions.

Some reports have indicated that the organotypical sandwich culture model facilitates the
preservation of certain liver characteristics, including cuboidal morphology of hepatocytes
with features such as bile canaliculi, tight junctions, and gap junctions [39-44]. In a previous
study, we used a modified sandwich technique and corresponding hormonal culture medium
composition that provided the basis for a demonstration that this model correctly reflected
the species dependence of their in vivo metabolism of the antihypertensive drug urapidil and
its metabolites [45], suggesting that this model is the best for the prediction of the
metabolism of xenobiotics. Furthermore, we have already reported on the maintenance of
phase I and phase II metabolic activity of ethoxyresorufin, ethoxycoumarin and testosterone
metabolism in rat and human hepatocytes over a period of two weeks at a level comparable
to freshly isolated cells [46]. The expression of CYP211 enzymes is generally lost in cell
culture, but we found in our previous study higher metabolites in our organotypical model
than in freshly isolated cells [46]. This indicates that there are many possible ways of
obtaining higher expression of other cytochrome P450 enzymes in an organotypical model.
This is a very important fundamental point for further investigation regarding drug
biotransformation as well as drug–drug interactions for better and safer drug production as
well as for reducing post-market drug withdrawals. Further research is needed to know the
full potential of St. John's Wort to interact with drugs. However, in vitro organotypical
sandwich models are likely to serve as valuable platforms for identifying drug-herbal
interactions and other potential toxic effects of a wide range of herbal materials for both
short-term and long-term observation.

As pigs are phylogenetically closely related to humans, porcine hepatocytes could represent
a suitable and more accessible model for in vitro screening of drug interactions. Recently,
we evaluated the interspecies differences of rat, porcine, and human hepatocytes on the
basis of liver-specific functions and biotransformation of testosterone in an organotypical
sandwich model and found that porcine hepatocytes are much closer to primary human
hepatocytes [47].

The use of conventional in vitro collagen-coated hepatocyte cultures has been strongly
criticized both for toxicity studies and preclinical drug development because cultured
hepatocyte rapidly lose liver-specific functions in monolayer culture. Furthermore,
pharmacological and toxicological studies of the biotransformation of drugs require that cell
culture models express the appropriate drug-metabolizing enzymes. Therefore, we adapted
the modified sandwich liver culture model [48] to porcine cells, originally based on Dunn et
al. [49,50]. Cells were cultivated as a coculture of parenchymal and nonparenchymal liver
cells in a 3D configuration in the modified sandwich model [48]. This technique provides an
adequate microenvironment for the restabilization of the architecture of the liver cells and
provides a morphological reorganization that corresponds closely to that observed in vivo.
With this technique, liver-specific functions can be maintained for several weeks. This is
crucial for kinetic and toxicological studies on the biotransformation of different
pharmaceuticals [51]. However, there have been few studies evaluating the collagen
sandwich as a system for measuring herbal drug interactions. Here we used the most
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accepted organotypical model (based on our previous report [52] which is a form of the
sandwich model modified for better hepatic liver functions than conventional culture,
including biotransformation  [44,45,47,52]. For this reason, we used the organotypical model
for this study.

4. CONCLUSIONS

Our results show interference of St. John´s Wort with all three of these major metabolites of
diazepam in such an organotypical sandwich hepatocytes model. St. John´s Wort induce the
formation of desmethyldiazepam and temazepam.  The strongest activity was caused by the
extract, followed by the powdered drug and hyperforin. However, in vitro organotypical
sandwich models are likely to serve as valuable platforms for identifying drug-herbal
interactions and other potential toxic effects of a wide range of herbal materials for both
short-term and long-term observation. It was found that the constituent hyperforin to be a
highly potent activator of the pregnane X receptor (PXR), an orphan nuclear receptor known
to induce hepatic CYP 3A gene expression in response to xenobiotics. In contrast, hardly
any PXR activity was found for hypericin or Hypericum flavonoids. These results explain the
effects of the particular constituents found in our research. In vitro models offer the
advantage of reduced complexity of the study system and the ability to evaluate intrinsic
metabolic potentials and mechanisms with respect to a specific reaction. These data are
essential for understanding and predicting drug interactions. Our investigations show that in
vitro studies with primary porcine hepatocytes are a valuable tool for the detection of drug-
drug interactions. This not only applies to isolated compounds but also to complex herbal
drug preparations. This porcine models phylogenetically closest to man are both qualitatively
and quantitatively the most suitable for screening for interactions.
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