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Abstract
We describe a neural network-based tool for the automatic estimation of thin film thicknesses and
scattering length densities from neutron reflectivity curves. The neural network sits within a data
pipeline, that takes raw data from a neutron reflectometer, and outputs data and parameter
estimates into a fitting program for end user analysis. Our tool deals with simple cases, predicting
the number of layers and layer parameters up to three layers on a bulk substrate. This provides
good accuracy in parameter estimation, while covering a large portion of the use case. By
automating steps in data analysis that only require semi-expert knowledge, we lower the barrier to
on-experiment data analysis, allowing better utility to be made from large scale facility
experiments. Transfer learning showed that our tool works for x-ray reflectivity, and all code is
freely available on GitHub (neutron-net 2020, available at: https://github.com/xmironov/
neutron-net) (Accessed: 25 June 2020).

1. Introduction

In the operation of large-scale facilities, costs run into the hundreds of thousands of pounds per day, and the
lead time for researchers applying for beamtime can be months. Therefore, any tool that increases the
efficacy of the measuring period can have a huge impact. In this paper, we present a machine learning (ML)
based data pipeline for neutron reflectivity model selection, which takes a reflectivity curve and uses it to
predict thin film layer properties before sending these predictions and the data to a conventional fitting
program for detailed analysis by the user.

In a traditional reflectometry pipeline, the output of an instrument is given in the format of a three
column ASCII file, despite recent effort to standardise the inclusion of metadata (Open Reflectivity
Standards Organisation (ORSO) 2021). A model for this data is constructed manually using knowledge of
the experimental setup and underlying science. The model can then be fitted according to, for example, a
chi-squared metric, using standard optimisation routines such as differential evolution, genetic algorithms
or similar. This process is currently performed entirely by hand, and often cannot keep up with the pace of
experiments.

In our tool, reflectivity data is taken from an instrument and passed directly to our ML models which
predict the number of layers present as well as those layers’ properties and the data itself are then fed into the
reflectivity analysis Python package refnx (Nelson and Prescott 2019), for fine tuning and interpretation by
the end users. This process is completed automatically in seconds, rather than minutes of repetitive manual
work, and requires no user input. In effect, this lowers the barrier to analysis and reduces the time to obtain
analysed data. We thereby allow users to spend the bulk of their time interpreting results. Modification for
use in other fitting software (Björck and Andersson 2007, Kienzle 2020) is relatively straightforward.

Several other recent attempts have been made towards automation of reflectivity analysis (Greco et al
2019, Carmona-Loaiza and Raza 2020), however, the transformation of the data into layer properties is
non-trivial and no general solution can exist. All approaches thus far have severe limitations, from fixed
inputs or outputs, to extremely simplified systems. Our approach overcomes most of these limitations,
allowing any reflectivity curve as an input and any physically measurable values for an output. We have
limited the implementation demonstrated here to scattering length density (SLD) profiles consisting of a
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maximum of three layers, since the accuracy of predictions will decrease as the complexity increases.
However, the purpose of the tool is not to replace detailed analysis, it is to know the general film properties
quickly and with no effort; for this we deemed three layers sufficient to cover most cases.

We do not remove the need for an expert’s interpretation, we simply automate the tasks which do not
need it. Our pipeline enables on-experiment analysis, informing choices about changing experiment
conditions or samples in operando, saving time and effort.

2. Methods

In neutron reflectivity, the properties of thin films or thin film heterostructures are elucidated by measuring
the reflectivity of a collimated neutron beam from the film surface. This is done as a function of momentum
transfer, Q, which depends on the incident angle, θ, and neutron wavelength, λ, as

Q= 4π
sinθ

λ
.

The reflectivity is governed by the Fresnel reflectivity, decaying with Q−4 for bulk substrate (i.e. a single
interface); see Sivia (2011) for an introduction. When thin films are present on the substrate, interference
occurs and the reflectivity oscillates around the Fresnel curve. For single reflections, this tends to Braggs law
(Bragg and Bragg 1913), and the period of the oscillations,∆Q, is just governed by the layer thickness, d:

∆Q=
2π

d
.

Interpretation of a reflectivity curve is complicated by the fact that multiple reflections can occur, in fact
only a single layer can be solved analytically. The loss of phase information upon reflection makes
determining the layer structure a classic inverse problem, so in practise, to transform from a SLD profile to a
reflectivity curve, the reflectivity is calculated recursively using the Parratt formalism (Parratt 1954), or
similar. As long as the instrument resolution is correctly applied, this results in a dataset which describes
potential experimental data extremely well, and for simulated data gives a known ground truth. This process
is also relatively fast, meaning that a very large amount of training data can be produced inexpensively for a
neural network.

Such a set of idealised, noiseless layer structure data was generated in this manner using refnx (Nelson
and Prescott 2019), with the simulation of 50 000 one-, two- and three-layer sample systems. Realistic
artificial noise was then added to this noiseless data to produce a synthetic dataset as close to real data as
possible. All layers used silicon as a substrate, applied a constant dQ/Q resolution of 2% and used a scale
factor of 1. For each sample, a roughness was randomly sampled from a uniform distribution in the interval
[2,8] Å and applied between all interfaces of that sample. For each system, the layer SLDs were randomly

sampled from a uniform distribution in the interval [−1, 10]×10−6Å
−2
. This range encompasses most

materials likely to be measured. Layer thicknesses were randomly sampled from a Gaussian-like distribution
biased towards thinner layers within the interval [20, 1000] Å. These steps intentionally biased our dataset to
see realistic reflectivity curves, rather than completely random ones. Given our intention to use neural
networks to train on these data, the one-, two- and three-layer samples were shuffled together to remove any
ordering bias that could potentially be introduced.

Each synthetic sample consisted of 500 momentum transfer and reflectivity coordinates (Q, R) spaced

evenly on a logarithmic scale over [0.005, 0.3] Å
−1
; this simulated the experimental difficulty in obtaining

points in high Q. These 500 (Q, R) points were plotted to create a line graph represented as an RGB image or
alternatively an array of dimensions 300× 300× 3. This plot was then converted to greyscale and stored in a
HDF5 file as a 300× 300× 1 array of raw grayscale pixel values. The ground truths for the per-layer SLDs
and thicknesses that we would use to train our networks were normalised between 0 and 1 (LeCun et al 2012).

Since noise in a real measurement is typically caused by counting statistics, we developed a novel
approach to try and reproduce this. For a given Q point, i, the number of measured neutrons, Ni, will be the
product of the true reflectivity, ri, and the number of incident neutrons, µi at that momentum transfer:

Ni = riµi.

To replicate this, we used a measured incident spectrum and converted it into a reflectivity curve in order
to ascertain an estimate for the number of incident neutrons per Q point. Each reflectivity point is then
randomly relocated somewhere in a normal distribution, centred on the ground truth and whose width
depends on the incident flux and the true reflectivity, i.e. number of counts measured at that point. We can
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Figure 1. A diagram of the architecture of our neural networks; the only parts that differ between the classifier and the regressor
are the last dense layers which either classify the number of layers present or predict thickness and SLD values.

modify this by some arbitrary scale factor to allow the noise to be increased or decreased, analogous to
changing the experimental run time.

The core of our ML approach consisted of first designing a classification network that would indicate the
number of thin film layers for a given dataset. This would be then fed into a regression network that would
produce predictions on the SLDs and thicknesses of the layers within the sample system. A holistic approach
was attempted, with an ‘all-in-one’ model that would perform both functions, but an explicit separation of
classification and regression tasks saw better performance, albeit at the cost of increased complexity.

The architectures of both the classification and regression networks were largely the same. An initial
four-layer convolutional neural network (CNN) filters across the greyscale images with max-pooling and
uses rectified linear unit (ReLU) activation functions between the network layers. Such filtering reduces
input images from a 300× 300× 1 input to an 18× 18× 32 representation. This representation is then
flattened to a 1D array of size 10 368× 1 to be passed into a feed-forward dense neural network. This section
includes six dense layers, coupled to dropout layers (Srivastava et al 2014). These layers, bar the last, also use
ReLU activation functions. The sixth layer is where the networks differ, with a softmax activation function
for the classifier, and linear activation functions for the regressors.

The hyperparameters for both the classifier and regressors were a learning rate of 3× 10−5 using Nadam
(Dozat 2016) with Keras default β1, β2, decay and epsilon, and a batch size of 40 images per sample. The
classifier was trained for 80 epochs on 150 000 shuffled curves consisting of an equal number of one-,
two- and three-layer samples (50 000 of each). The regressor for the one-layer samples was trained for
100 epochs (though this network achieves close to its final accuracy after∼10 epochs), and the regressors for
the two- and three-layer samples were trained for 150 epochs. As seen in figure 1 the regression networks
force the models’ distinct output nodes (thickness and SLD) to share parameters until the final layer. This
shared-parameter nature for both types of outputs offered more robust models (Caruana 1993, Baxter 1997,
Ruder 2017).

A generic data pipeline was then constructed in which the trained neural networks sit. The pipeline starts
with Mantid (Arnold et al 2014) processing the raw instrument data (in this case from the Offspec neutron
reflectometer) and outputting a three column CSV file. We take this file and normalise it such that its
maximum reflectivity is 1 to ensure that the input real data is as close to the synthetic training dataset as
possible, thus improving prediction accuracy. The reflectivity data is then plotted, the resulting image
converted to greyscale, and passed through the classifier to determine the number of layers. The prediction is
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then used to select an appropriate regressor that analyses the image to produce SLD and thickness
predictions for all the thin film layers. These predictions are then fed into the reflectivity fitting software
package refnx (Nelson and Prescott 2019) and are used as initial ‘guesses’ for its optimisation algorithms. The
fitting software can then perform its optimisation, getting to a model that likely describes the given sample.
With the Python script running in the background on the experiment directory, users can receive fitted data
in∼10 s with no input.

When applying transfer learning, we took our networks trained on neutron reflectivity data and partially
retrained them with x-ray reflectivity data. We found that the best accuracy was obtained by allowing the
entire network to be trainable. This is in contrast to most transfer learning, where either a few layers are set to
be trainable, or the entire network is fixed, and a few trainable layers are added to the network. We believe the
reason that this approach worked so well, is because x-ray and neutron reflectivity are so extremely similar,
that the differences amount to a small scaling of the predicted values.

To demonstrate one possible application of our tool, we simulated a batch of datasets, with two layers,
one of which became thicker with ‘time’. All other parameters of the sample remained fixed; this effectively
represented an experiment observing a thin film being grown in situ, e.g. in a sputter chamber. The data was
simulated (so we had a known ground truth), and then had noise and background added to make it more
representative of a real measurement. The top layer’s thickness varied in the range [100, 850] Å. The bottom

layer had a fixed 100 Å thickness. The SLDs of the first and second layer were 2.5×10−6Å
−2
and

5.0×10−6Å
−2

respectively.

3. Results and discussion

Before discussing the results, we will make some comments on certain decisions made in the design of the
networks. One of the most noticeable choices was to feed reflectivity data into our ML networks in the form
of images. This was not the first, nor the most obvious approach, however there are several subtleties
associated with our problem that rationalise our decision. Firstly, neutron instruments are not simple black
boxes that give you a set answer. They are configured for each individual experiment and, as consequence,
the output data size changes; we must be able to take account for this in our network input. Secondly, the
data consists of co-ordinates, and what is more, these co-ordinates are in Fourier space. Therefore, the
position of features in the data is important as they correspond to different real space lengthscales. These two
points effectively ruled out the use of a solely densely connected network, as feeding in variable positions is
not possible and so some form of 2D interpolation is necessary since we do need to have a fixed input size. As
a result, we chose to use 300× 300× 1 images as inputs to our network, plotting the data over a fixed Q and
reflectivity range defined by the instrument’s minimum and maximum measurable settings. This has the
benefit of easily allowing zeroes in the data and not causing dead units in the network.

As previously stated, the raw datasets are given as a series of (R, Q) coordinates typically between 50 and
500 points. These, when plotted and converted into a 300× 300× 1 image yield a huge increase in data size,
with seemingly no increase in information content. We found, however, that this data representation is
flexible and generalisable as an input into the network and has tangible performance benefits. Using images,
we found significant improvements in the networks’ accuracy and loss metrics, presumably due to the input
being better suited for the network architecture; CNNs are well designed to extract spatial information, as is
desirable in our case with co-ordinate inputs. After a variety of optimisations, including the use of
data-loading generators, the training times for the networks on a single desktop graphics processing unit
(GPU) were∼6 h for a one-layer system,∼9 h for two-layer system,∼12 for a three-layer system and∼18 h
for the classification network, thus negating some of the drawbacks from using an artificially inflated data
size.

The classifier was trained on one-, two- and three-layer samples (150 000 in total) and achieved an
average accuracy of 95.6% after 80 epochs. This consisted of a 99.7%, 93.1% and 94.0% accuracy for one-,
two- and three-layer samples respectively. The networks were initially trained on noiseless data, as a proof of
the principle and given such perfect data, the classification network achieved an accuracy of 99.7%. Given the
strengths of CNNs for image classification purposes, this result was not particularly surprising. However, the
fact that it was then possible to use a CNN to predict the thicknesses and SLD’s of a reflectivity curve, from
an image of that curve, was intriguing, and may warrant further investigation as an approach. The
discrepancy between this noiseless accuracy and the former is likely due to the indistinguishability of some
two- and three-layer samples in the presence of significant noise.

As one would expect, when realistic noise was added useable information available at high Q decreased.
When deciding how many points to use for the training reflectivity arrays, we found that using many points
to train did not seem to worsen network performance on real data which is made up of fewer points. This is
likely due to the fact that the networks trained to ignore these high Q values. However, increasing the
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Figure 2. Thickness (blue) and SLD (green) predictions from our regression networks vs. their ground truth for one- (top left),
two- (bottom left) and three-layer (right) samples. In each case, a random selection of 160 curves from the simulated test set were
predicted on. The error bars come from applying randomised network dropout on 100 predictions for each curve and taking the
standard deviation. Overlayed are the ideal, prediction= ground truth lines (black).

number of points per sample did significantly improve training losses as more information was available
elsewhere to base predictions on.

From the data shown in figure 2, it is clear that the SLD and thickness values for any single layer are
almost trivially predicted for all thicknesses and SLDs. This may not necessarily have been expected, but is
promising, since the single layer problem is solvable analytically (Sivia 2011). In fact, though not shown, even
a single epoch of training gives results almost comparable to those obtained after 100 epochs. The
implication here is that the network could potentially be trained on less data for these types of systems, and
still achieve a suitable performance. As the number of layers present in a system are increased, the complexity
of the problem naturally increases also. Due to this, we experience a decrease in the accuracy of predictions,
as shown in figure 2, though the accuracy does remain high.

In addition to the prediction, our network also outputs an uncertainty associated with each data point.
This represents the standard deviation of 100 predictions made by the network per data point, with
randomised dropout applied during prediction. The uncertainty is therefore representing that which is
inherent in the network, or model. In this application, this technique has proven well to describe the real
error, since most points have error bars that overlap with the prediction equals ground truth line. We should
note that this approach does not try to directly infer the uncertainty of the prediction, as other concepts do,
e.g. Hafner et al (2018, 2019), but instead functions as a compact Bayesian approximation (Gal and
Ghahramani 2015). A notable benefit of this implementation is that it can be used in any network already
utilising dropout layers, with no change in network architecture required.

We used our network to predict on some real data, taken on the Offspec reflectometer at the ISIS
Neutron and Muon source. We show the normalised data and the corresponding predictions from the
network in figure 3. Also shown in figure 3 are the SLD profiles of the ground truth models obtained via
fitting against the corresponding predicted profiles. The inputs to the pipeline were very much an untreated
reflectivity file, consisting of three column ASCII files (Q, R, dR). For curve 1, this was 434 data points and
for curve 2, this was 129 points; both included some points that were zero. They were both measured at
differing Q points and over different Q range, demonstrating the flexibility of our approach. The predictions
are not perfect, table 1. Comparison of predicted and fitted values for real data passed through the neural
network, but are very usable and are fitted in several seconds by refnx, showing the utility of the tool.

The results of the time varying experiment are shown in figure 4, with an exemplar dataset inset to show
the data being predicted upon. The raw outputs of the network without any subsequent fitting show excellent
agreement with the ground truths. However, the deviation between ground truth and predicted layer 1
thicknesses appears to increase with time. With our training set intentionally biased towards thinner layers,
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Figure 3. Two measured datasets that were fed into our tool (blue and green) with the predictions plotted as reflectivity curves on
top (red and black respectively). Dataset 2 and its predicted curve have been offset by a factor of 100 for clarity. Table 1 presents
the predicted and fitted parameters. Inset are the predicted and fitted SLD profiles of the two datasets for illustrative purposes.

Table 1. Comparison of predicted and fitted values for real data passed through the neural network.

SLD (× 10−6 Å−2) Thickness (Å)

Dataset Predicted Fitted Predicted Fitted

(1) 6.4(3) 6.138(1) 712(45) 715.1(1)
(2) 5.9(3) 5.864(1) 690(37) 721.7(1)

this discrepancy at higher thicknesses is to be expected due to fewer thick layer samples encountered during
training. Despite this, feeding these predictions into refnx’s fitting routine gives perfectly fitted data in a
matter of seconds. This again demonstrates the utility of the approach, as in an experiment where large
changes occur with time, it is often difficult for manual data analysis to keep up with the live data. Our tool
allows the analysis to happen in very close to real time, and with no additional effort.

In addition to this work, we also used our trained network and applied transfer learning to see how well
the ML networks would perform with x-ray reflectivity data. For the regressor trained on two-layer samples,
the transfer learning took∼1 h on a desktop computer with GPU available, and resulted in an average mean
squared error on normalised target values of 0.0068 after 20 epochs of retraining. This compares well with
the neutron results, whose error was 0.0056, showing that our tool is well suited to other reflectivity
applications, and is easily transferrable.

Finally, it is worth remarking on our choice to predict only up to three layers, and all on silicon. These
choices were made for many of the reasons that we do not wish to replace the detailed analysis by the expert
users. For an initial fit, if a reflectivity curve can be relatively well described by one, two or three layers, then
there is little need to add more complexity to fit all the subtler details of the curve, even if the final answer
will have more. For this application at least, we decided that predicating up to three layers with a good guess
would have more utility than predicting four (or more) layers, with less information about those layers. The
choice of a silicon substrate comes from this both acting to prove the method, as well as being the most
common substrate choice for neutron reflectivity. Small amounts of retraining would allow any other
substrate choice to be learnt.
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Figure 4. Thickness (top) and SLD (bottom) predictions for our simulated time-dependent experiment. The system was
composed of two layers on a silicon substrate. The topmost layer (blue) became thicker with ‘time’, where each different depth
corresponds to a separate reflectivity curve. The SLD of the top layer and all bottom layer (green) parameters remained constant.
The data was simulated but had noise and background applied, representative curve inset. The error bars come from applying
randomised network dropout on 100 predictions for each time step’s data and taking the standard deviation.

4. Conclusions

We have created a neural network-based pipeline that is able to quickly predict the scattering lengths and
thickness of up to three-layer systems measured using neutron reflectivity solely from being shown the
reflectivity curves. These predictions are not fits but instead form the input to a reflectivity fitting program
that is able to refine the initial prediction, using conventional search procedures. Our pipeline gives users
semi-fitted data in a few seconds with no input, and massively lowers the barrier to entry for fitting the data
immediately. Using a small amount of transfer learning, the models were also able to predict SLD profiles
from x-ray reflectivity curves with similar accuracies. We view this tool as an extension of automatic data
reduction on beamlines, taking data from an instrument and putting it into a form that is useful for the end
users. The code for this work is open and available on GitHub (neutron-net 2020).
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