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Abstract
Containment of epidemic outbreaks entails great societal and economic costs. Cost-effective
containment strategies rely on efficiently identifying infected individuals, making the best possible
use of the available testing resources. Therefore, quickly identifying the optimal testing strategy is
of critical importance. Here, we demonstrate that machine learning can be used to identify which
individuals are most beneficial to test, automatically and dynamically adapting the testing strategy
to the characteristics of the disease outbreak. Specifically, we simulate an outbreak using the
archetypal susceptible-infectious-recovered (SIR) model and we use data about the first confirmed
cases to train a neural network that learns to make predictions about the rest of the population.
Using these predictions, we manage to contain the outbreak more effectively and more quickly
than with standard approaches. Furthermore, we demonstrate how this method can be used also
when there is a possibility of reinfection (SIRS model) to efficiently eradicate an endemic disease.

Compartmental epidemiological models provide a simple and powerful mathematical framework to capture
the main features of a disease outbreak in a population [1, 2]. They consider how a disease spreads in a finite
population of individuals over a time interval. The individuals are compartmentalized into categories based
on their epidemiological condition. The first such model, known as the susceptible-infectious-recovered
(SIR) model, was proposed in 1927 by Kermack and McKendrick [3] and is still widely employed today [4].
In the SIR model, there are three categories: susceptible individuals that have never been infected; infectious
individuals that are currently infected; and recovered individuals that have previously been infected and are
now immunized against the disease. Initially, all individuals are susceptible except for a limited group of
infectious individuals, who seed the disease.

In the event of a disease outbreak, it is often desirable to attempt to contain or eradicate it. Different
factors influence how effective a containment strategy is, including the characteristics of the disease and of
the population [5, 6]. However, these characteristics are often difficult to measure or model precisely,
especially for novel diseases during their first outbreaks [6–13]. The World Health Organization provides
some general guidelines for strategies to prevent disease spread [14], which include travel restrictions, social
distancing, and enforced quarantine. In particular, the isolation of potentially infected individuals is often
the most effective measure to limit the spread of the infection. The safest approach would be to isolate and
quarantine all individuals regardless of their epidemiological condition. However, this cannot be
implemented and maintained on a large scale for a prolonged period because of its societal and economic
deleterious effects [15].

In order to implement efficient, cost-effective strategies to contain an outbreak, it is therefore critical to
promptly identify infectious individuals. The most straightforward approach would be to test all the
individuals and immediately identify and isolate/treat the infectious ones [16]. In a real-life large-scale
epidemic, however, extensive testing is not usually feasible because of economic and logistic constraints
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[17–19]. Therefore, the containment of the disease requires interventions also on individuals who have not
been tested yet, which again entails societal and economic costs [20].

Here, we demonstrate that machine learning can be used to identify an optimized test strategy, i.e. which
are the individuals that is most beneficial to test. Specifically, we introduce a neural-network-powered
strategy [21, 22] for testing and isolating individuals, even though the parameters of the model are not
known and infectious individuals can be asymptomatic. The neural network (NN) informs the decision on
which individuals should be tested and isolated. Modelling a disease outbreak using the SIR model [3, 4], we
demonstrate that, for an equal number of quarantined individuals, the neural-network-informed strategy
manages to contain the disease outbreak more effectively than alternative standard contact-tracing strategies,
while autonomously and dynamically adapting to the specifics of the outbreak using only the information
about the first confirmed cases. Furthermore, since for many diseases immunity is not lasting, we also
demonstrate how the neural-network-informed approach can be used to efficiently prevent a new disease
from becoming endemic when there is a possibility of reinfection (SIRS model). We envision that similar
methods can be employed in public health to control epidemic outbreaks and to eradicate endemic
diseases.

1. Results

1.1. Epidemic outbreak model and containment strategies
We model an epidemic outbreak using an agent-based SIR model [1, 23] (see details in section 3.2), where
the population consists of N = 105 individuals distributed uniformly on a square lattice with 320× 320 cells,
resulting in an average density of 0.98. The individuals move as random walkers on the lattice [24, 25] being
each confined to a region with an average radius of r= 10 cells [26]. All their positions are updated
simultaneously at each time step. Each individual always belongs to one of the SIR categories (figure 1(a)). At
the beginning of the simulation, 50 individuals (0.05% of total population) are randomly selected and made
infectious (I). The rest of the population, instead, is initialized as susceptible (S). The disease is transmitted
with probability β when susceptible and infected individuals are occupying the same cell, to mimic the
short-range interactions necessary for disease spreading. An infected individual has a probability γ of
recovering in each time step, after which it becomes immunized against the disease. We choose the values of
β and γ to have a stochastic evolution with basic reproductive number in the range of those observed for
typical viral diseases such as influenza [27, 28] or Covid-19 [29, 30] (see supplementary note 1 and
supplementary figure S1 (available online at stacks.iop.org/MLST/2/035007/mmedia)). Each individual is
also characterized by a ‘temperature’, which slightly increases as the disease develops; the temperature is
normally distributed and corresponds to 36.8± 1.0 for healthy (i.e. susceptible and recovered) individuals,
and to 37.4± 1.2 for infectious individuals (figure 1(b)), so that there is a significant overlap between the two
distributions and, thus, some individuals can be ‘asymptomatic’. We let the model evolve for 150 time steps,
which can be thought of as the days of an epidemic outbreak that lasts approximately six months, but can
easily be rescaled to fit another time scale.

Figure 1(c) provides an example of the free evolution of the outbreak in the absence of any containment
measures. By t= 20, the disease has spread from the initial infectious individuals creating a few hotspots.
These hotspots steadily grow (t= 50) until most of the population has been infected (t= 100) and the
outbreak starts to subside. Figure 1(d) shows how the fraction of individuals in each category varies over
time: as the disease spreads, the number of susceptible individuals steadily decreases and the number of
recovered ones increases, while the number of infectious individuals initially grows and then slowly decreases
until the outbreak ends because essentially the whole population is immunized.

The spread of the disease can be controlled by enacting containment measures. For example, figures 1(e)
and (f) show the evolution of the outbreak when potentially infectious individuals are isolated based on
standard contact tracing [18, 19, 31, 32] (see details in section 3.3). At each time step, a fixed number of tests
(Ntest = 100≪ N) are performed to assess whether individuals are infectious. The value of Ntest is set low
enough to simulate a limited access to testing so that only a small portion of the population can be tested
(15% in 150 time steps). The individuals to be tested are selected randomly from the susceptible individuals
with the highest temperature, i.e. those that show more clear symptoms. Selecting the individuals to be tested
in this way presents two advantages compared to a purely random testing strategy: it avoids a slow start (with
an initial probability of success around 1/2000), and it is more representative of reality (where symptomatic
cases first indicate an outbreak). For simplicity, we assume that the test never fails and that there is no delay
between performing the test and receiving the result. However, we remark that the task of identifying the
infectious individuals is made harder by the fact that some of their temperatures are in the healthy range
(figure 1(b)), making them asymptomatic. The individuals who test positive are quarantined: from that time
step on, they neither move nor interact with the rest of the population. For the tested individuals, the
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Figure 1. SIR model and containment strategies. (a) We consider a population of 105 individuals moving on a square lattice
(320× 320 cells). Each individual can be either susceptible (S, grey), infectious (I, orange), or recovered (R, black). At each time
step, the susceptible individuals become infectious with probability β when they occupy the same cell as an infectious individual,
and the infectious individuals recover with probability γ becoming immunized against the disease. (b) Temperature of individuals
that are healthy (S and R, 36.8± 1.0) and infectious (I, 37.4± 1.2); note the range of asymptomatic individuals, i.e. infectious
individuals with temperature in a healthy range. (c) Disease spread at times t= 20, 50, 100 in the absence of any containment
measures and (d) corresponding fraction of the population in each category; unchecked, the disease spreads to almost all the
population. (e) Disease spread using standard contact tracing to isolate potentially infectious individuals starting at t= 20
(dashed vertical line) and (f) corresponding fraction of the population in each category; the disease spreads more slowly than in
(a), but is not contained. (g) Disease spread when a total lockdown is implemented at t= 20 (dashed vertical line) preventing any
further spread of the disease and (h) corresponding fraction of the population in each category. See also supplementary video 1.

isolation is temporary, so the system knows when they stop being infectious and can safely return to interact
with the rest of the population.

Due to the limited number of tests, quarantining only the individuals that test positive is not enough to
contain the outbreak. It is therefore necessary to use contact tracing to isolate also individuals who have not
been tested. (While testing starts from the first time step, contact tracing and isolation of individuals starts
only at t= 20.) For all detected infectious individuals, we trace back their previous contacts up to 50 time
steps in the past. Within this group of individuals that interacted with confirmed cases, we test those with the
highest temperature. We rank the other individuals according to their number of contacts with infectious
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individuals, and, given the same number of contacts, according to their current temperature. We isolate a
number of individuals until reaching a predetermined fraction of the population (here, 25%) (see details in
section 3.3).

It is interesting to compare the free evolution of the outbreak (figures 1(c) and (d)) with the case with
isolation based on contact tracing (figures 1(e) and (f)). While at t= 20 both outbreaks are similar, the
containment measures take hold almost immediately, significantly reducing the size of the outbreaks and the
fraction of individuals that are infectious at the same time. The epidemic outbreak remains confined to a few
areas reaching only a part of the population (figure 1(e)) and the curve of infected individuals is flatter
(figure 1(f)). We remark that, despite its success in slowing down the spread rate of the disease, also the
strategy relying on isolation of potentially infectious individuals identified by contact tracing does not lead to
a complete suppression of the outbreak, as can be seen from the fact that nearly 20% of the population is
infectious still at t= 150.

Complete eradication of the disease is in principle possible by adopting an unrealistic total lockdown,
where the whole population is quarantined simultaneously (figures 1(g) and (h)). From t= 20, all
individuals are isolated so that they cannot move or interact. Figure 1(g) shows how this leads to an almost
immediate containment of the disease hotspots. More interestingly, figure 1(h) shows how the fraction of
infectious individuals quickly drops down and, unlike for the free evolution (figures 1(c) and (d)) and the
contact-tracing isolation (figures 1(e) and (f)), reaches zero by t= 120, so that the disease is extinguished by
the end of the simulation.

Different containment strategies lead to different evaluations of the outbreak. The free evolution
(figures 1(c) and (d)) and the total lockdown (figures 1(g) and (h)) approach represent the two limiting
policies, leading to the least and the most effective containment. The contact-tracing isolation (figures 1(e)
and (f)) achieves an intermediate level of containment, but does not achieve eradication of the disease,
despite isolating up to about 25% of the population.

1.2. Neural-network-informed testing
It would be desirable to achieve disease eradication as in the total-lockdown strategy (see figures 1(g) and
(h)), but isolating only part of the population as in the contact-tracing strategy (see figures 1(e) and (f)).
To achieve this, we propose a strategy that employs a NN to inform which individuals to test and isolate.

The schematic of the NN we employ is shown in figure 2(a) (see details in section 3.4). In general, a NN
receives some inputs, elaborates them through of a series of hidden layers of artificial neurons, and returns an
output [33]. In our case, the input consists of contact-tracing information for a given individual n for the last
10 time steps. Specifically, we provide the NN with five time series: R4,n(t), R8,n(t), R16,n(t), C

i
n(t), and

C i
n/C

tot
n (t). The first three indicate the number of tested infectious individuals within a distance r= 4, 8, and

16 cells from the considered one. C tot
n (t) is the total number of contacts (i.e. defined as individuals occupying

the same cell at the same time) and C i
n(t) is the number of contacts with confirmed infectious individuals.

Then, the NN elaborates this information through three dense layers of artificial neurons. Finally, the NN
outputs a value p, representing the risk of being infectious at the current time step, between 0 for a putatively
healthy individual and 1 for a putatively infectious individual. Individuals with p> 0.995 are immediately
isolated, while individuals with p∈ [0.5, 0.995] are slated to be tested, starting from the individuals with the
highest temperatures until the depletion of all available tests. In this way, we manage to freeze the infectious
individuals that are easy to identify, while optimizing the deployment of the available tests: we use the tests
principally to achieve a better understanding of the extent and distribution of the disease.

NNs are supervised machine learning methods and, therefore, require training [33]. In general, the
training of a NN is performed by providing the NNs with a series of inputs and corresponding known
outputs [33]. In our case, we can only use for training individuals that have already been tested within each
run of the simulation (see details in section 3.4). Therefore, we start training at t= 20, when we have tested
2000 individuals. In subsequent time steps, the size and accuracy of the training data set increases with the
number of performed tests, so we repeatedly retrain the NN to improve its performance. This leads to a
positive feedback loop, where a better-trained NN selects more efficiently individuals for testing, which in
turn provides better insights into the disease distribution, which finally improves the training data set
available to further improve the performance of the NN.

Figure 2(b) depicts the snapshots of the system at t= 20, 50, 100. The colour code is the same as that used
in figure 1, with the addition of frozen individuals (F) indicated in light blue. Until t= 20, the outbreak
evolves freely, analogously to figure 1(c), while enough data are accumulated to train the NN. From t= 20
and onward, the neural-network predictions are used to inform which individuals to isolate and test. By
t= 50, all outbreaks have been identified and surrounded by frozen individuals. Subsequently (t= 100), the
outbreaks remain under control and are prevented from spreading, in stark contrast with the wide spread of
the disease in free evolution (t= 100 in figure 1(c)).
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Figure 2. Improved outbreak containment using neural-network-informed testing. (a) Structure of the NN. The inputs (table on
the left) are R4,n(t), R8,n(t), R16,n(t), C i

n(t), and C
i
n(t)/C

tot
n (t), where Rr,n is the number of confirmed infectious individuals in a

radius r from the individual n, C i
n is the number of contacts that individual n has had with confirmed infectious individuals, and

C tot
n the total number of contacts for individual n; for each parameter, the input includes the history during 10 time steps

([t− 9, t]). The NN analyses these inputs through three dense layers and outputs a value p from 0 (individual predicted to be
healthy) to 1 (individual predicted to be infectious): individuals with p> 0.995 are directly quarantined, and individuals with
p∈ [0.5, 0.995] are tested starting from individuals with the highest temperatures until the depletion of the available tests.
(b)–(d) Disease evolution when the testing and isolation strategy is determined based on the output from a NN: (b) Snapshots of
susceptibles (S, grey), infectious (I, orange), recovered (R, black), and frozen (F, blue) individuals at time steps t= 20, 50, 100.
(c) Corresponding fraction of the population in each category compared with the two limiting cases of free evolution (dotted
orange line, see also figures 1(c) and (d)) and full lockdown (dashed orange line, see also figures 1(g) and (h)). The isolation of
individuals starts at t= 20 (dashed black line). The solid lines indicate the average over Nruns = 100, while the shaded areas
correspond to 90% confidence interval. (d) The number of new cases δI for the neural-network-informed testing (orange line)
compared to the free evolution (black line). (e)–(g) Comparison to a standard contact-tracing strategy (see figures 2(e) and
(f)) where the same number of individuals are quarantined as in (b)–(d) where we employ the neural-network-informed strategy:
the number of infectious individuals and the spread of the disease are greatly reduced when employing the
neural-network-informed strategy. See also supplementary video 2.

The orange solid line in figure 2(c) shows the fraction of the population that is infectious as a function of
time. Shortly after we switch on the NN (t= 20), the infectious fraction reaches its maximum (5.1% at
t= 26) and subsequently rapidly decreases to zero. Correspondingly, the number of recovered (black solid
line) and susceptible (grey solid line) individuals reach a plateau. In particular, the fraction of individuals
that are infected and eventually recover is 8± 4%.

The number of frozen individuals is initially zero and quickly increases in the first stages of
neural-network-informed testing, eventually reaching the set value of 25% of the total population. We can
compare the curve of the infectious individuals using the neural-network-informed testing and isolation
(orange solid line) with the limiting cases of free evolution (orange dotted line, see figure 1(c)) and of total
lockdown (orange dashed line, see figure 1(g)). By isolating only 25% of the population, the
neural-network-informed strategy achieves a containment of the epidemic similar to that achieved by the full
lockdown.

Figure 2(d) represents the fraction of new infectious individuals per time step for the
neural-network-informed strategy (orange line) and for the free evolution of the epidemics (black line). The
free-evolution curve reaches a maximum at t= 59 corresponding to δI(59)= 1.4± 0.2%. The curve
for the neural-network-informed strategy starts decreasing immediately after isolation starts at t= 20,
corresponding to a peak value δI(20)= 0.55± 0.08%, and stably reaches zero around t= 50.

Figures 2(e)–(g) provide comparisons with a standard contact-tracing strategy, where the same number
of individuals are tested and isolated as described in detail in the previous section. Figure 2(e) shows
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Figure 3. Automatic and dynamic adaptation of the neural network to the underlying SIR parameters. Two independent NNs
(NNA and NNB) are trained for two SIR models (SIRA and SIRB, respectively) with different parameters (βA = 0.6 and γA = 0.03
for SIRA, and βB = 0.8 and γB = 0.03 for SIRB). SIRA and NNA are the same as those employed in figures 2(b)–(d). (a) Infectious
individuals (orange line), (b) frozen individuals (blue line), and (c) new infections (yellow line) when NNA is used on SIRA. The
grey lines are the corresponding curves when NNB is used instead, showing a clear decrease in performance. (d)–(f)
Corresponding plots where NNB (coloured lines) and NNA (grey lines) are used on SIRB. Overall, these results show that the NN
gets automatically optimized for the parameters of the underlying outbreak. In all cases, the shaded areas represent the 90%
confidence intervals obtained from 100 simulations. See also supplementary video 3.

snapshots of the system at t= 20, 50, 100: starting from the same number of hotspots (t= 20), contact
tracing manages to identify all regions reached by the disease (t= 50), but the disease can still spread due to
the limited number of individuals that can be isolated (t= 100). Figure 2(f) shows that, differently from the
case of the neural-network-informed strategy (figure 2(c)), the increase of the fraction of infected individuals
slows down for some time steps, but then starts again to grow reaching a peak at t= 120 corresponding to
about 20% of the total population. The total number that have been infected at the end of the simulation (i.e.
all infectious and recovered individuals at t= 150) is strikingly lower for the neural-network-informed
strategy (6%–14%) than for the contact-tracing-based strategy (30%–89%). The wide shaded area in
figure 2(f) is nearly 7 times larger than in figure 2(c), showing that the contact tracing is less stable against
different evolution patterns of an epidemic with same underlying SIR parameters. The orange line in
figure 2(g) shows the fraction of new infectious individuals δI as a function of time, which is non-zero at the
end of the simulation, unlike for the neural-network-informed strategy (orange line in figure 2(d)). We
present a quantitative comparison of the performance of the neural-network-informed strategy and this
contact-tracing strategy in supplementary note 2 and supplementary figure S2. Additionally, we have
compared the neural-network-informed strategy with alternative contact-tracing strategies in supplementary
note 3 and supplementary figure S3. We can therefore conclude that contact tracing is less effective than the
NN for the same number of frozen individuals.

1.3. Automatic and dynamic adaptation to the outbreak characteristics
An important characteristic of the neural-network-informed strategy is that it can automatically and
dynamically adapt itself to the underlying characteristics of the outbreak. In our model, this means that the
NN does not need to have explicit knowledge of the underlying SIR model. More generally, the NN can adapt
to other kinds of outbreaks and also take into account the effects of the containment measure put in place.

Figure 3 demonstrates the ability of the neural-network-informed strategy to automatically and
dynamically adapt itself to the underlying characteristics of the outbreak. The coloured solid lines in
figures 3(a)–(c) reproduce the performance of the strategy presented in figures 2(b)–(d), which is informed
by NNA trained on the data obtained from an outbreak (SIRA, βA = 0.6 and γA = 0.03), in terms of the
evolution of infectious individuals (orange line, figure 3(a)), frozen individuals (blue line, figure 3(b)), and
new infections in each timestep (yellow line, figure 3(c)). We then apply NNB, i.e. another NN trained on a
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Figure 4. SIR model with temporary immunity (SIRS). (a) We consider a model with possibility of reinfection (SIRS model),
where at each time step, recovered individuals have a probability ρ of becoming susceptible again (specifically, we use β= 0.06,
γ= 0.03, and ρ= 0.02). Without countermeasures, this leads to an endemization of the disease. (b) Disease spread at
t= 20, 50, 100 in the absence of any containment measures and (c) corresponding fraction of the population in the susceptible
(S, gray line), infectious (I, orange line) and recovered (R, black line) categories; the endemization can be inferred from the
stabilization of the fraction of infectious individuals towards the end of the simulation. (d) Disease spread using standard contact
tracing to isolate potentially infectious individuals starting at t= 20 (dashed vertical line in (f)) and (e) corresponding fraction of
the population in each category, including frozen individuals (F, blue line); while the disease spreads less, it still becomes endemic.
(f) Disease spread when employing a NN to inform testing starting at t= 20 (dashed vertical line in (g)) and (g) corresponding
fraction of the population in each category; in this case, the disease is completely eradicated. The dashed lines in (e) and (g)
correspond to the free evolution of the disease and are reported from (c) for comparison. In all cases, the solid lines indicate the
average over multiple runs (Nruns = 100), while the shaded areas correspond to 90% confidence intervals. See also supplementary
video 4.

different outbreak whose underlying SIR model has a slightly different transmission rate (SIRB, βB = 0.8 and
γB = 0.03). The resulting performance can be seen in the grey lines in figures 3(a)–(c). While overall NNB

manages to improve the outbreak with underlying SIRA model compared to its free evolution, it performs
much worse that NNA. At the end of the simulation in figure 3(a), the fraction of infectious individuals is still
in the range (0.12%–13.7%) of the population for the grey confidence bands, while the overall fraction
of individuals in isolation is in the range (30%–72%), as shown in figures 3(b). This suggests that,
thanks to its training using the information acquired by the testing during the first 20 time steps, the
neural-network-informed strategy gets fine-tuned to the specific characteristics of the underlying
outbreak.

We further validate the fine-tuning of the NN by training NNB on the testing data obtained from the
outbreak with underlying model SIRB. The coloured lines in figures 3(d)–(f) show the results of applying
NNB on the SIRB outbreak, which demonstrate a good containment of the outbreak. Instead, the grey lines
show what happens when using NNA, which leads to a much worse outcome. In this scenario, the peak for
the curve of infected is around t= 84 and 25.7% against 8.1% of the population for the training performed
on SIRB. Figures 3(f) shows that δI oscillates between 540 and 995 new cases per time step in the interval
t ∈ [20, 73] before decreasing.

1.4. Disease eradication with possibility of reinfection
We now consider the case when the immunity against the disease is not permanent [34–36]. Thus, we
consider a SIRS model (figure 4(a)), which is an extension of the SIR model where recovered individuals have
a probability ρ at each time step to become again susceptible [34, 35] (see details in section 3.2). In the
absence of any containment measures, the possibility of reinfection leads to an endemization of the disease.
Figure 4(b) shows such free evolution of the disease: from the initial hotspots (t= 20), the disease spreads
quickly to a large portion of the population (t= 50) until reaching a steady state. Figure 4(c) shows how the
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fraction of individuals in each category varies over time: during the initial spread of the disease, the number
of susceptible individuals steadily decreases and the number of infectious ones increases; once the disease
reaches its steady state, the fraction of infectious individuals stabilizes to a value that depends on the
characteristics of the SIRS model, i.e. on the value of its parameters β, γ and ρ. Therefore, the disease
becomes endemic [1].

Figures 4(d) and (e) show the development of the disease when a standard contact-tracing-based
containment strategy is implemented, like that employed in figures 1(e) and (f). The solid lines represents
the averages for susceptibles (S, grey), infectious (I, orange), recovered (R, black) and frozen (F, blue)
individuals throughout the simulation. The colour bands, which denote the 90% confidence interval, is
larger than those in figure 2(f); this implies that the performance of the contact-tracing strategy can vary
significantly depending on the specific outbreak. It can be seen that this containment approach manages to
reduce the number of infectious individuals in the steady state of the disease, but not to eradicate the disease
itself.

Finally, figures 4(f) and (g) show the performance of the neural-network-informed strategy. We employ
the same approach and NN architecture shown in figure 2(a) and the same strategy that we employed to
contain the outbreaks in the SIR model shown in figures 2(b)–(d). Briefly, we start testing individuals from
the beginning of the simulation accumulating data to train the NN. From t= 20, we start training the NN to
predict infectious individuals and use this information to decide which individuals to isolate and test. The
neural-network-informed strategy manages to eradicate the disease, as can be seen from the fact that the
fraction of infectious individuals approaches zero by the end of the simulation (orange solid line in
figure 4(g)), while the number of susceptible individuals increases as recovered individuals gradually lose
their immunity. Therefore, by employing the neural-network-informed strategy, it is possible to prevent the
initial outbreak from leading to the endemization of the disease.

2. Discussion

The current outbreak of the novel coronavirus disease (COVID-19) [7, 37–40] has dramatically brought to
worldwide attention the crucial importance of epidemiological models for choosing the best strategies and
policies to contain disease outbreaks [6, 7, 9, 13, 20]. Machine-learning approaches have been already
proposed to help disease diagnosis [41] and epidemics handling [13]. In fact, in the last few years, various
neural-network architectures have been employed to manage human diseases [42–45], such as
malaria [46], and animal diseases, such as in swine flu [47]. In this work, we have now shown how a
neural-network-informed strategy can improve the containment of an epidemic, even when only a small
number of specific tests is available and some of the individuals are asymptomatic. This improvement can be
seen in three key aspects. First, integrating the NN into the outbreak handling improves the performance of
contact tracing, while performing the same number of tests and isolating the same fraction of individuals.
Second, the NN autonomously tunes its weights to the ongoing outbreak, without needing to explicitly know
its underlying model or its parameters, and therefore does not require a priori knowledge of the disease
outbreak characteristics. Third, since the NN is regularly retrained as new data become available, it can
automatically and dynamically adapt itself to the evolution of the outbreak as well as to the changes in the
behaviour of the population, e.g. due to containment measures or different social habits. As a striking
example, we have shown that, in the case of temporary immunization, the neural-network-informed strategy
can prevent a disease outbreak from becoming endemic.

Even though we used a SIR model to describe the dynamics underlying the disease, the NN will
automatically adapt itself to different underlying dynamics described by more complex epidemiological
models, which might include, e.g. the disease incubation time [9], delays in the testing process [19], or even
different patterns of movement of the individuals (e.g. periodic motion, and long-range travel) [10]. It is also
possible to provide the NN with demographic information (e.g. individual risk factors, such as age,
employment, and preexisting conditions) as well as with spatial information [48] (e.g. the location of the
individuals, differentiating various places of aggregation, such us hospitals, markets, and schools), or even
with simple-access medical tests (e.g. cough recordings [49]). For example, in order to construct the lattice
information, one can label the individual data by the zip code of residence area to have anonymous
spatially-resolved data. In this case, the structure of the lattice would be given by the zip codes. Another
possibility could be to group individuals to have a coarse-graining according to family groups or
neighbourhood spatial labelling. The key point is that each labelling structure will have its own specific
neural-network-informed containment strategy after a first stage of training to adapt the testing strategy to
the local characteristic and temporal evolution of the specific disease. Finally, the neural-network-informed
approach presented in this work can be generalized to other situations, such as fire prevention [50] or
econometrics [51].
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3. Methods

3.1. SIRmodel
We divide the population of N = 105 identical individuals into three epidemiological categories: susceptible
individuals S, infectious individuals I, and recovered individuals R, as in the original SIR model [3]. The
individuals move on a square lattice with side l= 320 according to a stochastic model [24, 52]. The initial
positions of the individuals on the square lattice are random and drawn from a uniform distribution. We
store the latter values xn(0) = [xn(0),yn(0)] throughout the simulation as the area of residence for each
individual. The position of each individual n∈ [1,N] at each time step t ∈ [0, 150] is given by its coordinates
xn(t) = [xn(t),yn(t)]. Each individual is an independent random walker confined to move within a small area
of the lattice centered around its initial random position xn(0) = [xn(0),yn(0)]. The position of each
individual evolves as

xn(t+ 1) = xn(t)+∆xn(t), (1)

with displacements∆xn(t) = [∆xn(t),∆yn(t)] for each individual selected inside its Moore neighbourhood
[53], given by

∆xn =


−1 with probability

1

3
+ k[xn(t)− xn(0)]

0 with probability
1

3

+1 with probability
1

3
− k[xn(t)− xn(0)]

(2)

∆yn =


−1 with probability

1

3
+ k[yn(t)− yn(0)]

0 with probability
1

3

+1 with probability
1

3
− k[yn(t)− yn(0)]

(3)

where k= 0.04 determines the radius rk ≈ 10 cells within which each individual moves. The positions of all
individuals are updated synchronously and independently from each other.

The spread of the infection occurs because when a susceptible individual occupies the same cell as an
infectious individual, it becomes infectious with probability β in each time step. The transmission applies
only for the infectious individuals that are not frozen. Each infectious individual becomes recovered with
probability γ at each time step. The parameters used are β= 0.6 and γ= 0.03, except for figure 3, where we
also employ β= 0.8. The choice of the SIR parameters is motivated in order to have a stochastic evolution
with basic reproductive number R0 ≈ 3.3 in the range of those observed for typical viral diseases such as
influenza [27, 28] or Covid-19 [29, 30] (see supplementary note 1 and supplementary figure S1).

Each individual is also characterized by a ‘temperature’, which is normally distributed and corresponds to
36.8± 1.0 for healthy (i.e. susceptible and recovered) individuals, and to 37.4± 1.2 for infectious individuals,
with a great overlap between the two distributions (figure 1(b)). The temperature characterizes the level of
symptomaticity continuously, instead of adopting a binary division between asymptomatic and symptomatic
cases [54–57]. The temperature Tn for each individual raises to Ti

n = Tn + dTn, when the corresponding
individual becomes infectious. In the case dTn ≈ 0, the individuals are asymptomatic, while they are
symptomatic for dTn > 0.

3.2. SIRSmodel
The SIRS is an alternative to the SIR model that assumes the immunization to the disease is temporary.
Therefore, recovered individuals lose immunization and return susceptible with probability ρ in each time
step. We employ ρ= 0.02.

3.3. Contact tracing
We present here the containment strategy based on contact tracing employed in this work, as opposed to the
neural-network-informed one. In the supplementary note 3 and supplementary figure S3, we report other
possible approaches, as alternative comparisons.

We keep track of individuals that occupy the same cell at a certain time step by introducing the contact
matrix:

cnm(t) = δ(xn(t)− xm(t)), (4)
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where δ is the Kronecker delta, which has value 1 if the pair of individuals n andm occupy the same cell at
time t, and 0 otherwise. Thus, the total number of contacts for individual n for the 50 time steps before
time t is

C tot
n (t) =

t∑
τ=t−50

∑
m̸=n

cnm(τ). (5)

The number of contacts with confirmed infectious individuals is

C i
n(t) =

t∑
τ=t−50

∑
m̸=n

cnm(τ)δ
i
m(t), (6)

where δim(t) is 1 if individualm has already been tested and found positive at time t, and 0 otherwise. When
implementing the lockdown strategy based on contact tracing, we list the agents in descending order as a
function of C i

n(t), and we sort those with equal value based on their temperature. At each time step, we select
for testing the first Ntest = 100 individuals in this list. We use the rest of such list for selecting individuals to
freeze, whose number is set to match that of the neural-network-informed strategy. In this way, we can
compare the two approaches using the same number of tests and the same number of frozen individuals.
When the target number of individuals to isolate is larger than the individuals in the contact list (e.g. at the
beginning of the simulation when the number of confirmed cases is small), we build an additional list from
where to select the remaining individuals, which includes individuals that never had direct interactions with
confirmed cases, but have been within a radius of 8 cells in the last 50 time steps; we sort also this additional
list based on the temperature of the individuals.

3.4. Neural network
We employ a dense NN with three hidden layers with 16 neurons each and ReLU activation function [58, 59].
The output layer has one single neuron with a softmax activation function returning a value p∈ [0, 1].
Additionally, we use dropouts for the hidden layers as a way to avoid overfitting [60] (dropout rate 0.2, so
that in each training epoch only 80% of the neurons is activated).

The input to the NN at time t includes R4,n(t), R8,n(t), R16,n(t), C
i
n(t), and C

i
n/C

tot
n (t) for time steps

[t− 9, t], where C i
n(t) and C

tot
n (t) are the number of infectious and total contacts (equations (5) and 6), and

Rr,n(t) is the number of individuals that have tested positive within a radius r:

Rr,n(t) =
∑
i

δ (r− ∥ xn(t)− xi(t) ∥) , (7)

where the summation is over all infected individuals.
The training of the NN is performed using information relative to the individuals that have already been

tested (which is split between a training set and a validation set [61]). The loss function is the mean square
error, we use the stochastic gradient descent method implemented in the Adam optimizer [62, 63], and the
number of training epochs is fixed to 100 (see supplementary figure S1). While we use only two labels for the
training (0 for susceptible individuals and 1 for infectious individuals), the trained network returns a
prediction that is a continuous value p∈ [0, 1].

Using the prediction of the network, we split the individuals that have not been tested yet into three
groups: (1) p> 0.995: individuals with a high chance of being infectious, who are frozen without testing.
(2) 0.5< p< 0.995: individuals with a medium chance of being infectious, amongst which the Ntest = 100
individuals with the highest temperature are tested. (3) p< 0.5: individuals with a low chance of infection.

We implement the NN using the Python libraries Tensorflow and Keras [64].
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