
Machine Learning: Science and Technology

PAPER • OPEN ACCESS

Graph convolutional networks applied to
unstructured flow field data
To cite this article: Francis Ogoke et al 2021 Mach. Learn.: Sci. Technol. 2 045020

 

View the article online for updates and enhancements.

You may also like
Gearbox compound fault diagnosis
method based on deep adversarial graph
convolution transfer learning network
under low label ratios
Xiaojia Kong, Yuanhao Su, Liang Meng et
al.

-

Spatio-temporal graph convolutional
networks driven by data-physical fusion for
parameter prediction of natural gas
dehydration system
Aijun Yin, Yuanyuan Wang and Yanlin He

-

Multi-input parallel graph neural network
for semi-supervised rolling bearing fault
diagnosis
Shouyang Bao, Jing Feng, Xiaobin Xu et
al.

-

This content was downloaded from IP address 223.236.224.249 on 04/07/2023 at 12:04

https://doi.org/10.1088/2632-2153/ac1fc9
https://iopscience.iop.org/article/10.1088/1361-6501/acd13a
https://iopscience.iop.org/article/10.1088/1361-6501/acd13a
https://iopscience.iop.org/article/10.1088/1361-6501/acd13a
https://iopscience.iop.org/article/10.1088/1361-6501/acd13a
https://iopscience.iop.org/article/10.1088/1361-6501/acd40d
https://iopscience.iop.org/article/10.1088/1361-6501/acd40d
https://iopscience.iop.org/article/10.1088/1361-6501/acd40d
https://iopscience.iop.org/article/10.1088/1361-6501/acd40d
https://iopscience.iop.org/article/10.1088/1361-6501/acb5b7
https://iopscience.iop.org/article/10.1088/1361-6501/acb5b7
https://iopscience.iop.org/article/10.1088/1361-6501/acb5b7


Mach. Learn.: Sci. Technol. 2 (2021) 045020 https://doi.org/10.1088/2632-2153/ac1fc9

OPEN ACCESS

RECEIVED

20 June 2021

REVISED

16 August 2021

ACCEPTED FOR PUBLICATION

20 August 2021

PUBLISHED

8 September 2021

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Graph convolutional networks applied to unstructured flow field
data
Francis Ogoke1, KazemMeidani1, Amirreza Hashemi2 and Amir Barati Farimani1,3,4,∗
1 Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America
2 Department of Computational Modeling and Simulation, University of Pittsburgh, Pittsburgh, PA, United States of America
3 Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America
4 Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, United States of America
∗ Author to whom any correspondence should be addressed.

E-mail: barati@cmu.edu

Keywords: data-driven prediction, deep learning, unstructured data, flow field measurements, graph neural network

Abstract
Many scientific and engineering processes produce spatially unstructured data. However, most
data-driven models require a feature matrix that enforces both a set number and order of features
for each sample. They thus cannot be easily constructed for an unstructured dataset. Therefore, a
graph based data-driven model to perform inference on fields defined on an unstructured mesh,
using a graph convolutional neural network (GCNN) is presented. The ability of the method to
predict global properties from spatially irregular measurements with high accuracy is
demonstrated by predicting the drag force associated with laminar flow around airfoils from
scattered velocity measurements. The network can infer from field samples at different resolutions,
and is invariant to the order in which the measurements within each sample are presented. The
GCNNmethod, using inductive convolutional layers and adaptive pooling, is able to predict this
quantity with a validation R2 above 0.98, and a Normalized Mean Squared Error below 0.01,
without relying on spatial structure.

1. Introduction

Due to recent advances in data-driven methods and the proliferation of scientific data, there has been a
significant amount of attention toward data-driven inference to model or predict system properties. This is
particularly relevant in fluid mechanics, where large amounts of data are needed to understand potentially
complex, multiscale flow phenomena. The success of deep learning (DL) in computer vision has inspired its
application in studying physical phenomena. Physics informed Neural Networks are used to learn the physics
behind and solutions to high-dimensional partial differential equations (PDEs) [1–5]. Deep neural networks
have been of particularly high interest in surrogate modeling and predicting complex transport phenomena
[6, 7]. Wiewel et al used a latent space learning to efficiently simulate the temporal evolution of the pressure
field [8]. Farimani et al applied conditional generative adversarial networks to solve the physics of transport
phenomena without knowledge of the governing equations [9].

Machine learning has seen success in generating flow fields based on data collected from experiments,
and noisy data from numerical simulations [10–13]. For example, particle image velocimetry (PIV), where
velocity fields are generated by tracking the movement of tracer particles, has been introduced as a
non-intrusive technique for analyzing flow behavior and measuring the forces interacting with an immersed
object [14, 15]. The analysis of PIV data using Machine Learning has allowed for more efficient flow field
reconstruction and prediction. Rabault et al used a convolutional neural network (CNN) architecture to
surrogate PIV by cross-correlating point locations between two frames, therefore predicting the flow velocity
field [16]. Morimoto et al applied a CNN to artificial PIV data to develop a method for reconstructing flow
field from snapshots with missing regions [17].

© 2021 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/ac1fc9
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/ac1fc9&domain=pdf&date_stamp=2021-9-8
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-2432-7783
https://orcid.org/0000-0001-8441-8700
https://orcid.org/0000-0002-2952-8576
mailto:barati@cmu.edu


Mach. Learn.: Sci. Technol. 2 (2021) 045020 F Ogoke et al

Various machine learning algorithms have recently been applied to structured flow field data to facilitate
predictions based on immersed flows around streamlined objects, such as airfoils. For example, the
leading-edge suction parameter (LESP) and angle of attack (AoA) are of high importance for discrete vortex
methods to be effective. Hou et al used a combination of CNNs and recurrent neural networks to predict
these parameters based on time-dependent surface pressure measurements [18]. In related work, Provost
et al used the same method to optimize the number of sensors necessary for LESP and AoA prediction [19].

Zhang et al applied CNNs on image representations of various airfoils and their surrounding flow to
predict the lift coefficient. The airfoils are immersed in different flow conditions, and the parameters of the
flow (e.g. Mach Number) are encoded as pixel intensities [20]. Viquerat and Hachem used an optimized
CNN to estimate the drag coefficient of several arbitrary 2D geometries in laminar flow. A large training
sample of random 2D shapes along with their drag forces computed by immersed mesh method were used to
increase the prediction accuracy of realistic geometries such as NACA airfoils [21]. Yilmaz and German used
a CNN to predict airfoil performance directly from the geometry of the airfoil, replacing cumbersome
surrogate methods that required manual parameterizations of the airfoil using shape functions [22].

Guo et al trained a deep CNN to make fast but less accurate visual approximations of the steady state flow
around 2D objects which improves the design process by expediting the alternatives generation [23].
Miyanawala and Jaiman used a CNN to predict aerodynamic coefficients for several bluff body shapes at low
Reynolds numbers. They used structured data of an encoded distance function to predict unsteady fluid
forces [24]. Bhatnagar et al also used a signed distance function as well as a limited range of both Reynolds
numbers and angles of attack to predict flow field velocities and pressure for several airfoils [25].

These methods, however, are limited in their ability to generalize to unstructured data. As traditional
machine learning methods require the creation of a feature matrix with both a specific size and order of
input samples, they cannot be applied to unstructured data. Flow field data, however, can be highly
unstructured due to the use of irregular meshes to define curved or complex geometries.

Recent interest in manipulating unstructured data has led to the development of both mesh-free
inference methods for point cloud representations and reduced-order models based on graph-based
representations of fluid data [26]. Several works have used graph theory-based methods to identify coherent
structures within turbulent flow [27, 28]. Hadjighasem et al examined the generalized eigenvalue problem of
the graph Laplacian to develop a heuristic for determining the locations of coherent structures [29]. This
work is extended to extract coherent structures from the vortical behavior of the flow by Meena et al, where a
graph is constructed to represent the mutual interaction of individual vortex elements, and larger vortex
communities are identified with network theory-based community detection algorithms [30]. To perform
mesh-free inference, Trask et al introduce the idea of GMLS-Nets. GMLS-Nets parameterize the generalized
moving least-squares functional regression technique for application on mesh-free, unstructured data. They
abstract the GMLS operator to perform convolution on point clouds. They demonstrated success in both
uncovering operators governing the dynamics of PDEs and predicting body forces associated with flow
around a cylinder based on point measurements [31].

In this paper, we present a method for data-driven prediction from flow fields defined on irregular and
unstructured meshes, using a graph convolutional neural network (GCNN) framework. GCNNs have been
applied to problems dealing with unordered data points where specific relationships between the points
encode important information and thus are often used in applications such as natural language processing,
traffic forecasting, and material property prediction [32–39]. Graph Neural Networks have also previously
been used to model spatiotemporal phenomena and surrogate physics simulators [40, 41]. Our approach
exploits the irregular mesh that the velocity field is defined on to regress from unordered data across both
varying resolutions and non-uniform spatial distributions.

In section 2, we first present our methodology of using graph representation of the unstructured mesh.
The learning algorithm based on an inductive graph convolution method is then discussed and finally, the
structure of the implemented network is explained. In section 3, The data which is used in our study and the
results for the corresponding experiments are discussed and compared to other traditional methods. A
conclusion of the work and suggestions for some possible future directions are also provided in section 4.

2. Methods

2.1. Graph representation
The key idea behind our approach is to use a graph representation to describe the connectivity of
unstructured data points. In order to resolve flow fields around complex geometries in computational fluid
dynamics, an irregular mesh around the immersed object is created. Next, numerical methods are applied to
calculate the flow field data. Any mesh structure around the immersed object in the flow field can be
represented as a graph, considering mesh nodes as vertices and using edges to connect the neighbors.

2



Mach. Learn.: Sci. Technol. 2 (2021) 045020 F Ogoke et al

Therefore, one can construct a graph representation of the unstructured mesh with different complexities or
number of nodes around arbitrary objects.

Specifically, we define an undirected graph G = (V,E), with V vertices describing the nodes of the mesh,
and E edges representing the connectivity of the mesh. The flow field data is defined on mesh nodes, resulting
in a feature matrix that contains the input features for V graph vertices. The edge connections are encoded as
the adjacency matrix, a binary V ×V matrix indicating whether any given pair of vertices are connected.

2.2. Graph convolution
GCNNs are the generalization of CNNs for operation on graphs. GCNNs, like CNNs, are able to extract
multi-scale spatial features through the use of shared weights and localized filters [42]. However, as discussed
earlier, traditional CNNs are unable to work with unstructured data. GCNNs can bypass this limitation by
defining the convolution operation based on the structure of the graph. By propagating information through
each node’s local neighborhood as defined by the adjacency matrix, GCNNs are invariant towards the order
in which the nodes are specified in the feature matrix. GCNNs are often used for tasks such as node
classification, link prediction [43], and graph classification.

GCNNs can be described in terms of a general framework for learning on graph-structured data, called
message passing neural networks (MPNNs) [44]. MPNNs develop hidden state embeddings, hv for each
node v during the training process. Supervised training of a graph neural network aims to learn a state
embedding from the features defined on the nodes and edges of the graph to have the best possible mapping
to the output. The training process consists of two phases, the message passing phase where hidden states
aggregate information from their surrounding nodes, and the readout phase where a feature vector for the
graph is computed from the hidden states. The message passing process is parameterized by two functions,
the message functionMt and the node update function U t , while the readout function is given by R. R,Mt ,
and U t are all learned differentiable functions that are updated during the training process.

Defining evw as the edge connecting node v to node w andN (v) as the neighborhood of node v, the
message passing phase can be formalized as:

mt+1
v =

∑
w∈N (v)

Mt(h
t
v,h

t
w,evw) (1)

ht+1
v = Ut(h

t
v,m

t+1
v ). (2)

Based on hv, the readout phase computes a feature vector as:

ŷ= R(hTv |v ∈ G). (3)

A standard framework used is the Laplacian based GCNN, detailed in [42], whereMt and U t are defined
as the following:

Mt(h
t
v,h

t
w) = Ãvw(deg(v)deg(w))

− 1
2 htw (4)

Ut(h
t
v,m

t+1
v ) = σ((Wt)Tm(t+1)) (5)

where Ãvw is the adjacency matrix describing the connectivity of the graph, assuming that each node is
connected to itself, σ is a nonlinear activation function, and deg(v) is the number of nodes connected to
node v [44].

The GraphSAGE method, introduced by [45] is in close relation to the Laplacian based GCN layers
described in the message passing formalization above. In the version of GraphSAGE implemented in this
paper, the GraphSAGE algorithm is the inductive variant of this message passing network, with specific
modifications to improve the accuracy and efficiency of the model. GraphSAGE acts in an inductive manner,
operating on each node rather than on the entire graph, as it uses each node’s local neighborhood in order to
learn a function that can generate appropriate node embeddings. This method first samples a fixed number
of nodes from the k nearest neighbors of each node and then applies an aggregation operator to transfer
information to the node itself (algorithm 1). The aggregator can be a weighted averaging operation with
trainable parameters. This inductive framework is especially helpful in the case of large graphs where
low-dimensional embeddings of the nodes are more important [45]. In this regression application, the
readout phase consists of a fully connected neural network that predicts a single global value for each graph
based on the hidden state embeddings.

3



Mach. Learn.: Sci. Technol. 2 (2021) 045020 F Ogoke et al

Algorithm 1. GraphSAGE embedding generation algorithm, reproduced from [45].

Input: Graph G = (V,E); input features {xv,∀v ∈ V}; depth K; weight matricesWk,∀k ∈ {1, . . .,K}; non-linearity σ;
neighborhood functionN (v) = {u ∈ V : (u,v) ∈ E}
Output: Vector representations zv for all v ∈ V

1 h0v ← xv,∀v ∈ V
2 for k= 1. . .K
3 for v ∈ V
4 hkv← σ(Wk ·MEAN({hk−1

v }∪ {hk−1
u ,∀u ∈N (v)}))

5 hkv← hkv/∥hkv∥2,∀v ∈ V
6 zv← hKv ,∀v ∈ V

Figure 1. (a) The velocity information defined on the unstructured mesh is represented as a graph, where the mesh nodes are
vertices of the graph, and the connectivity of the mesh is taken as the edges of the graph. An 2XNmatrix of node features contains
the velocity in each dimension, and an NXN adjacency matrix encodes the connectivity of the matrix. (b) The Graph Convolution
operation. (left) The graph before a convolution operation is performed on the center node (red). (right) During graph
convolution, the information in each of the rings of N-order neighbors, where N ⩽ k, is aggregated to the center node. In this
application, k= 2. (c) The architecture of the GCNN. ‘GC’ refers to the graph convolution operation in (b), ‘TKP’ refers to Top-K
Pooling. The feature map output of each top-K pooling layer undergoes both mean pooling and max pooling, and the outputs of
each operation are concatenated together. The concatenated output from each layer is added together and passed to fully
connected layers for regression.

Flow field meshing usually results in a relatively large graph around the objects in comparison to other
common applications such as molecular graphs. Hence, we use a node level embedding graph convolution
operator that is based on the average aggregator in the GraphSAGE framework. Since the mesh has a specific
edge connection pattern in which each node is only connected to a few neighbors, the sampling operator is
not used. In our convolution operation, the features in the k nearest rings in the neighborhood of each node
are transferred to the center node by a trainable aggregation operation (figure 1(b), line 4 in algorithm 1).
Here, we use the Pytorch Geometric [46] library to load the data and implement the graph convolutional
layers and pooling.

2.3. Network architecture
For this problem, we implement a GCNN using GraphSAGE convolutional layers and top-K pooling steps,
similar to the approach described in [47]. Different from [47], we use an inductive convolution as opposed to
a transductive convolution. Inductive methods are capable of generalizing to graphs with different structures,
here allowing for prediction on meshes with varying resolutions. The inputs of the network are graphs with
node level velocity features, while the output is the value of the predicted drag force. Specifically, we use two
GraphSAGE layers, each followed with a top K pooling layer. Top K pooling is a downsampling method to
reduce the size of the layers by selecting the most important features. In top K pooling layer, a learned score is
assigned to each node, and the nodes with the K highest scores are selected to be passed to the next layer [48].
The output of each pooling layer is pooled twice, once using global mean pooling and then using global max

4



Mach. Learn.: Sci. Technol. 2 (2021) 045020 F Ogoke et al

Figure 2. (a) A sample airfoil from the dataset, at a 10 degree AoA. The flow velocity past the airfoil is U∞ = 1.5 m s−1. (b) A
schematic of the domain used to generate the data, where c refers to the chord length of the airfoil. The airfoil is placed in a
domain with a constant horizontal inflow velocity of U∞ = 1.5 m s−1, and a pressure based boundary condition is used at the
outlet of the domain. A free-slip boundary condition is used at the walls of the domain.

Table 1. The velocity field and drag force for four different airfoil samples from the dataset.

pooling, and the output from each pooling operation are concatenated together. While the input size to the
network can vary in different samples as they have various number of nodes, the output size should be the
same. By pooling along the dimension of vertices, the global pooling operations result in the same output
size. The pooled, concatenated vectors are added together as a ‘skip connection’, to reinforce the information
contained in the sparse convolved feature maps. The output from this step is then fed to a fully connected
network with three hidden layers, that predicts the drag force (figure 1(c)). The training details of the GCNN
are provided in table A1 and the parameters are defined in [46, 49] for interested readers. The effect of some
of the hyperparameters and their selection are also examined in table A3, and figure 1.

3. Results

3.1. Data
In order to test the performance of our method, we aim to predict the drag force on the airfoils directly from
the unstructured flow field velocity. To generate the airfoils, coordinate files are extracted from the UIUC
airfoil database which contains the cartesian coordinates outlining the shape of the airfoil [50]. The
incomplete or non-meshable samples are then removed from the dataset. In addition, the geometries are
normalized to have a unit chord length. Next, each airfoil coordinate file is imported to the open-source
mesh generator GMSH [51]. Meshes are created to reflect the variation in the density of information
contained in the domain, with a finer mesh on the area close to the airfoil that resolves the complex
boundary layer effects, and a coarser mesh further from the airfoil, where the flow is minimally affected by
the presence of the airfoil.

To compute the velocities at mesh nodes around each object and the corresponding drag force, we
perform CFD simulations using the FEniCS [52] package. FEniCS supports the DOLFIN PDE solver, which
is used to solve the incompressible Navier–Stokes equations with an incremental pressure correction scheme
(IPCS) method [53]. The boundary conditions for these CFD simulations are a uniform velocity input of
1.5 m s−1 at the inlet (left), a far-field pressure condition at the outlet (right) and slip conditions at the top
and bottom interfaces (figure 2). The viscosity and the density of the flow are 0.001 Pa s and 1 kgm−3

respectively. Selected airfoil samples with their velocity magnitude field along with their drag force are
provided in table 1. There is a positive correlation between the thickness of the airfoil and the corresponding
drag force.

The drag on an airfoil A is calculated as follows:

FD =

ˆ
A
(σ · n) · exdS (6)

5



Mach. Learn.: Sci. Technol. 2 (2021) 045020 F Ogoke et al

Figure 3. (a) Drag force plotted against the corresponding thickness of 1500 airfoils at a 0◦ AoA. (b) Principal component analysis
on the coordinates of 1500 UIUC airfoils at zero AoA, with samples colored by the drag force of the corresponding airfoil.

where σ is the Cauchy stress tensor, ex is the horizontal unit vector, n is the unit vector normal to the airfoil
surface.

A grid convergence study is used to choose a specific mesh size to fully resolve the boundary layer effect
while minimizing the computational time required. The resulted meshes contain 900–1500 mesh points and
3000–4000 edges, generated in effectively random spatial positions surrounding the airfoil.

The incompressible Navier–Stokes equation are given by

ρ

(
∂u

∂t
+ u ·∇u

)
=∇·σ(u,p)+ f (7)

∇· u= 0.

To predict the velocity field at the next time-step (un+1) from an existing time-step (un) while enforcing
mass conservation, an IPCS is used to iteratively solve equation (6). A detailed description of the IPCS
method can be found in [53].

The CFD outputs of each sample are then processed to generate the matrix of node level horizontal and
vertical velocities as well as the adjacency matrix. However, storing an N ×N adjacency matrix is
memory-intensive. To bypass this issue, we instead store a matrix of dimension 2 × E, where E is the number
of edges, compactly encoding the adjacency matrix. This compact representation only stores the two nodes
that each edge connects in the graph. This representation is specifically helpful where the adjacency matrix is
sparse which is true for the graphs in our dataset, as there are over 1200 nodes in the graph, and each node is
only connected to five other nodes on average.

We perform our approach on two different sets of data. The first study is supposed to only examine the
geometry of the airfoils. Therefore, the dataset consists of 1550 different airfoils. The second dataset,
however, covers not only different geometries but also various angles of attack. 21 angles of attack are
considered for 522 airfoils (10 962 samples in total). Angles of attack are changed in the range of−10◦ to 10◦

with an increment of 1◦. Given the relatively low velocity in the domain and small angles of attack, the flow
regime is laminar, and no significant flow separation occurs.

3.2. Experiments
Before implementing our method on the airfoil dataset, we perform a study of the relationship between the
airfoil geometry and its drag force while other parameters are held constant. Without considering the effect
of the AoA, we show the drag force to have a positive correlation with the thickness of the airfoil
(figure 3(a)). However, this correlation, on its own, cannot cover a sufficient portion of the variance in the
drag force. In order to determine the geometric features influencing the magnitude of the drag force, we
conduct a principal component analysis (PCA) on the geometry of the airfoil and label the samples by their
drag forces. By PCA, which is a linear dimensionality reduction technique, we extract components that can
mostly describe the data variance in an unsupervised manner. While PCA is not generally interpretable, here
we can observe the correlation of main components with the drag labels (figure 3(b)).

For the first experiment, we use the aforementioned GCNN architecture to predict the drag force for the
dataset of airfoils with zero angles of attack. 80% of the samples are randomly selected for training and the

6



Mach. Learn.: Sci. Technol. 2 (2021) 045020 F Ogoke et al

Figure 4. (a) The training process of the model. Skip connections increase the accuracy of the model, by reinforcing the
information at the output of the final convolutional layer with the embedding created earlier in the model. NMSE: normalized
mean square error. (b) PCA on the node features of 1500 airfoils at zero AoA, after the graph convolution process. Samples are
colored by their drag force. Specific airfoils at the extreme of either Principal Component are visualized.

remainder are used as a test set. Two complementary metrics of mean squared error (MSE) of drag
prediction and the coefficient of determination (R2) are used to quantitatively evaluate the performance.
Figure 4(a) shows the evolution of the loss metric as training progresses. The use of skip-connections in the
architecture improves the model’s accuracy.

Using node level velocities as the input to the network, the GCNN is anticipated to detect the most
important features from the flow field data to accurately estimate the drag force. To illustrate the node
embeddings produced by the convolution network, we analyze the values at the input to the first fully
connected layer in the trained network which is the averaged output of the convolution layers.

To do so, we perform a PCA on the features and to detect the two most important geometric components
that determine the drag force. It is noteworthy to emphasize that there is no geometrical feature directly
encoded in the input of the network. Smooth transition of drag values with two components and depiction
of the geometry of samples indicate that the network could learn meaningful geometrical features from flow
field data. Here, the first two principal components can explain more than 90% of the variance in the dataset.
The first component encodes a measure of airfoil thickness and the second component is an approximate
measure of how quickly the airfoil tapers (figure 4(b)).

The network is also implemented on the second dataset, containing airfoils that vary in geometry and
AoA, adding complexity to the prediction task. A comparison of the ground truth values of the drag forces
from CFD result and the predictions from the network qualitatively shows the high accuracy of the model for
both datasets (figure 5).

In addition to GCNNs, other machine learning and neural network algorithms can be applied on the
flow field velocity data to solve a regression problem of drag prediction. Notice that the graph size and node
order is not a matter of importance for the GCNN as we pass the adjacency and feature matrix directly to the
model. However, non-graph based methods require a specified input size, as well as an identical node order
between samples. Since the model perceives each input element as a different feature, it cannot be trained
unless the order of the node elements are consistent between samples.

In order to benchmark the GCNN’s performance against traditional, structured machine learning
methods, we construct a node ordering that is consistent across samples. Traditional machine learning
methods require the construction of a feature matrix, where the information described by a single
feature—i.e., a single column of the feature matrix—must be consistent from sample to sample. In this
formulation, feature i in sample x represents the same information as feature i in sample y. The node
ordering is provided by the mesh generation software based on the order in which the nodes are generated,
and is the same for each individual sample. Therefore, since the spatial density of the nodes in each sample is
similar, this creates a matrix where Node i in sample x is relatively close in space to Node i as it appears in all
other samples. To create a matrix with the same number of features for each sample, the closest 1000 nodes
to the center of the airfoil are taken as the feature vector, as there are at least 1000 node measurements in each
individual sample. To quantify the spatial similarity of nodes of the same index in this dataset, the distance
between nodes of the same index are computed. After comparing the distance from node i in sample x with
node i across all other samples, 98% of these distances are smaller than 5 × 10−3L, where L is the length of

7



Mach. Learn.: Sci. Technol. 2 (2021) 045020 F Ogoke et al

Figure 5. A comparison of GCNN predictions with the ground truth drag force. The first dataset contains 1500 samples of
different airfoils at zero angles of attack. (a) Data from the training set. (b) Data from the test set. The second dataset consists of
5000 samples from 500 airfoils at angles of attack ranging from−10◦ to+10◦, with intervals of 1◦. (c) Data from the training set.
(d): Data from the test set.

Figure 6. A comparison of the performance of different prediction algorithms. The dataset consists of 1500 airfoils at zero AoA
(GB: gradient boosted random forest, MLP: multilayer perceptron, CNN: convolutional neural network, GCNN: graph
convolutional neural network).

the domain. This indicates that the position of an arbitrary node is approximately consistent across
samples.

To test the performance of non-graph based methods, we select a variety of the most used methods for
performing prediction. Therefore, we compare the performance of Gradient Boosted Random Forest
regression, a fully connected neural network, and a two-dimensional CNN on predicting the drag force based
on a matrix of node features that adhere to the previously defined structure. Some basic details of these
models are provided in table A2. The models have undergone hyperparameter tuning using the package
HyperOpt [54], which uses a Tree-Structured Parzen Estimator based algorithm to search for the optimal
hyperparameters given a suitable range. The results of the tuning process are tabulated in table A3. A
comparison shows that the GCNN approach outperforms the non-graph based methods (figure 6). It is
noteworthy that the consistent feature order used in this experiment allows the GB algorithm to achieve a

8



Mach. Learn.: Sci. Technol. 2 (2021) 045020 F Ogoke et al

comparable accuracy to the GCNN, but this may not be applicable in cases where this information is not
readily available. In fact, when the features are not provided to the model in a consistent order, the
performance of the Gradient Boosting model sharply drops (figure 2).

4. Conclusion

We have introduced a novel approach based on GCNNs for data-driven prediction using unstructured field
information. This method is able to take advantage of the properties of convolution, such as automatic
feature detection and parameter sharing while being applied to unstructured data. Flow field properties are
usually measured on sparsely scattered points, leading to unstructured data that are incompatible with
traditional machine learning algorithms as they only can be applied to structured data. To evaluate the
proposed model, the drag force of two-dimensional airfoils are estimated based on the horizontal and
vertical components of the flow velocities, measured on the nodes of the irregular mesh around the airfoils.
The result of this experiment demonstrates the capability of this approach for global property prediction
based on flow field data in similar scenarios. Our model can potentially be extended to experimental cases
where access to certain flow information is not readily available. With the currently implemented framework,
only velocity information is used to calculate the drag. For instance, the required velocity information can be
determined experimentally by analyzing the motion of a sparse set of tracer particles in the flow. By
formalizing the edge connection between tracer observations as a connection from each measurement to the
k nearest measurements, one can extend the framework of the GCNN to predict body forces.

The proposed idea of graph representation of the flow field data can be further used for prediction or
classification of other field properties whether they are global, such as the drag force, or locally defined on
the field. The algorithm can also be used for optimizing the desired properties for design and control
applications.

Funding sources

The authors declare that they have no known competing financial interests or personal relationships that
could have appeared to influence the work reported in this paper.

Data availability statement

The related code will be available at https://github.com/BaratiLab/Airfoil-GCNN upon
publication. The data that support the findings of this study are available upon reasonable request from the
authors.

Acknowledgments

The authors would like to thank Rishikesh Magar and Yuyang Wang for valuable comments and
edits.

9

https://github.com/BaratiLab/Airfoil-GCNN


Mach. Learn.: Sci. Technol. 2 (2021) 045020 F Ogoke et al

Appendix

Table A1. GCNN Parameters.

Layers Parameters Settings Layers Parameters Settings

Graph
convolution

Convolution width 64 Fully connected Depth 3
Depth (neighbor rings) 2 Width [256,128,64,1]
Activation ReLU Activation ReLU

Top-K pooling Ratio (k) 0.5 Others Loss MSE
Optimiser Adam

Table A2. Details of the trained models.

Model Parameters Settings Model Parameters Settings

CNN Num conv layers 5 MLP Num layers 4
Conv kernel 3∗3 Width layers 512
Depth Conv layers [64,64,128,256,512] Loss MSE
Max pooling 2∗2 Optimiser SGD with momentum
Num FC layers 3 GB Num estimators 500
Width FC layers [768,4096,1000,1] Max depth 1

Table A3. Hyperparameter optimization (HPO) for the baseline GB, MLP, and CNN models as well as the proposed GCNN framework.

Model Hyperparameter Range Selected

GB No. estimators [1,500] 500
Max depth {1,2,3,4,5} 1

MLP Learning rate [0.001,0.05] 0.00 355
Dropout [0,0.9] 0.045
Weight decay [1× 10−5,1× 10−3] 0.00 016
Activation {tanh, Relu, sigmoid} Relu
No. layers {1,2,…,10} 4
No. neurons {64,128,256,512} 512

CNN Momentum {0.5,0.6,0.7,0.8,0.9,0.95,0.99,0.999} 0.9
Weight decay {0.1,0.2,0.3,…,0.9} 0.2
Dropout {0.1,0.2,0.3,…,0.9} 0.4

GCNN Learning rate [1× 10−7,1× 10−1] 0.0005
Convolution width {16,32,64,128,256} 64
topK Ratio {0.1,0.2,0.3,…,0.9} 0.5

Figure A1. The effect of number of GCNN layers as a hyperparameter on the model’s training and test errors. Based on the
observed errors, two number of layers are selected and used for the experiments.

10



Mach. Learn.: Sci. Technol. 2 (2021) 045020 F Ogoke et al

Figure A2. A comparison of the performance of our Gradient Boosting model and the GCNNmodel, for samples with a
consistent feature order and samples without a consistent feature order.

ORCID iDs

Francis Ogoke https://orcid.org/0000-0002-2432-7783
Kazem Meidani https://orcid.org/0000-0001-8441-8700
Amir Barati Farimani  https://orcid.org/0000-0002-2952-8576

References

[1] Han J, Jentzen A and Ee W 2018 Solving high-dimensional partial differential equations using deep learning Proc. Natl Acad. Sci.
115 8505–10

[2] Lye K O, Mishra S and Ray D 2020 Deep learning observables in computational fluid dynamics J. Comput. Phys. 410 109339
[3] Raissi M, Perdikaris P and Karniadakis G E 2019 Physics-informed neural networks: a deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations J. Comput. Phys. 378 686–707
[4] Pang G, D’Elia M, Parks M and Karniadakis G E 2020 nPINNs: nonlocal physics-informed neural networks for a parametrized

nonlocal universal Laplacian operator algorithms and applications J. Comput. Phys. 422 109760
[5] Jagtap A D, Kharazmi E and Karniadakis G E 2020 Conservative physics-informed neural networks on discrete domains for

conservation laws: applications to forward and inverse problems Comput. Methods Appl. Mech. Eng. 365 113028
[6] Sharma R, Farimani A B, Gomes J, Eastman P and Pande V 2018 Weakly-supervised deep learning of heat transport via physics

informed loss (arXiv:1807.11374)
[7] Kim J and Lee C 2020 Prediction of turbulent heat transfer using convolutional neural networks J. Fluid Mech. 882 A18
[8] Wiewel S, Becher M and Thuerey N 2018 Latent-space physics: towards learning the temporal evolution of fluid flow

(arXiv:1802.10123)
[9] Farimani A B, Gomes J and Pande V S 2017 Deep learning the physics of transport phenomena (arXiv:1709.02432)
[10] Kissas G, Yang Y, Hwuang E, Witschey W R, Detre J A, Perdikaris P 2019 Machine learning in cardiovascular flows modeling:

predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks
(arXiv:1905.04817)

[11] Maulik R, Fukami K, Ramachandra N, Fukagata K, Taira K 2020 Probabilistic neural networks for fluid flow model-order
reduction and data recovery (arXiv:2005.04271)

[12] Yan S, He Y, Tang T and Wang T 2019 Drag coefficient prediction for non-spherical particles in dense gas–solid two-phase flow
using artificial neural network Powder Technol. 354 115–24

[13] Cai S, Zhou S, Xu C and Gao Q 2019 Dense motion estimation of particle images via a convolutional neural network Exp. Fluids
60 73

[14] Noca F, Shiels D and Jeon D 1999 A comparison of methods for evaluating time-dependent fluid dynamic forces on bodies, using
only velocity fields and their derivatives J. Fluids Struct. 13 551–78

[15] GrahamW R, Ford C P and Babinsky H 2017 An impulse-based approach to estimating forces in unsteady flow J. Fluid Mech.
815 60–76

[16] Rabault J, Kolaas J and Jensen A 2017 Performing particle image velocimetry using artificial neural networks: a proof-of-concept
Meas. Sci. Technol. 28 125301

[17] Morimoto M, Fukami K, Fukagata K 2020 Experimental velocity data estimation for imperfect particle images using machine
learning (arXiv:2005.00756)

[18] Hou W, Darakananda D and Eldredge J 2019 AIAA Scitech 2019 Forum p 1148
[19] Le Provost M, Hou W and Eldredge J 2020 AIAA Scitech 2020 Forum p 0799
[20] Zhang Y, Sung W J and Mavris D N 2018 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics and Conf. p 1903
[21] Viquerat J, Hachem E 2019 A supervised neural network for drag prediction of arbitrary 2D shapes in low Reynolds number flows
[22] Yilmaz E and German B 2017 18th AIAA/ISSMOMultidisciplinary Analysis and Optimization Conf. p 3660
[23] Guo X, Li W and Iorio F 2016 Proc. 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, KDD ’16 (New York,

NY: Association for Computing Machinery) pp 481–90
[24] Miyanawala T P and Jaiman R K 2017 An efficient deep learning technique for the Navier–Stokes equations: application to

unsteady wake flow dynamics (arXiv:1710.09099)

11

https://orcid.org/0000-0002-2432-7783
https://orcid.org/0000-0002-2432-7783
https://orcid.org/0000-0001-8441-8700
https://orcid.org/0000-0001-8441-8700
https://orcid.org/0000-0002-2952-8576
https://orcid.org/0000-0002-2952-8576
https://doi.org/10.1073/pnas.1718942115
https://doi.org/10.1073/pnas.1718942115
https://doi.org/10.1016/j.jcp.2020.109339
https://doi.org/10.1016/j.jcp.2020.109339
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2020.109760
https://doi.org/10.1016/j.jcp.2020.109760
https://doi.org/10.1016/j.cma.2020.113028
https://doi.org/10.1016/j.cma.2020.113028
https://arxiv.org/abs/1807.11374
https://doi.org/10.1017/jfm.2019.814
https://doi.org/10.1017/jfm.2019.814
https://arxiv.org/abs/1802.10123
https://arxiv.org/abs/1709.02432
http://arxiv.org/abs/1905.04817
http://arxiv.org/abs/2005.04271
https://doi.org/10.1016/j.powtec.2019.05.049
https://doi.org/10.1016/j.powtec.2019.05.049
https://doi.org/10.1007/s00348-019-2717-2
https://doi.org/10.1007/s00348-019-2717-2
https://doi.org/10.1006/jfls.1999.0219
https://doi.org/10.1006/jfls.1999.0219
https://doi.org/10.1017/jfm.2017.45
https://doi.org/10.1017/jfm.2017.45
https://doi.org/10.1088/1361-6501/aa8b87
https://doi.org/10.1088/1361-6501/aa8b87
http://arxiv.org/abs/2005.00756
https://arxiv.org/abs/1710.09099


Mach. Learn.: Sci. Technol. 2 (2021) 045020 F Ogoke et al

[25] Bhatnagar S, Afshar Y, Pan S, Duraisamy K and Kaushik S 2019 Prediction of aerodynamic flow fields using convolutional neural
networks Comput. Mech. 64 525–45

[26] Gross B, Trask N, Kuberry P and Atzberger P 2020 Meshfree methods on manifolds for hydrodynamic flows on curved surfaces: a
generalized moving least-squares (GMLS) approach J. Comput. Phys. 409 109340

[27] Schlueter-Kuck K L and Dabiri J O 2017 Coherent structure colouring: identification of coherent structures from sparse data using
graph theory J. Fluid Mech. 811 468–86

[28] Padberg-Gehle K and Schneide C 2017 Network-based study of Lagrangian transport and mixing Nonlinear Process. Geophys.
24 661

[29] Hadjighasem A, Karrasch D, Teramoto H and Haller G 2016 Spectral-clustering approach to Lagrangian vortex detection Phys. Rev.
E 93 063107

[30] Meena M G, Nair A G and Taira K 2018 Network community-based model reduction for vortical flows Phys. Rev. E 97 063103
[31] Trask N, Patel R G, Gross B J, Atzberger P J 2019 GMLS-Nets: a framework for learning from unstructured data (arXiv:1909.05371)
[32] Battaglia P W et al 2018 Relational inductive biases, deep learning, and graph networks (arXiv:1806.01261)
[33] Bastings J, Titov I, Aziz W, Marcheggiani D, Sima’an K 2017 Graph convolutional encoders for syntax-aware neural machine

translation (arXiv:1704.04675)
[34] Monti F, Boscaini D, Masci J, Rodol̀a E, Svoboda J and Bronstein MM 2016 Geometric deep learning on graphs and manifolds

using mixture model CNNs (arXiv:1611.08402)
[35] Yu B, Yin H and Zhu Z 2018 Proc. Twenty-Seventh Int. Conf. on Artificial Intelligence, IJCAI-18 (Int. Joint Conferences on Artificial

Intelligence Organization) pp 3634–40
[36] Yao L, Mao C and Luo Y 2019 Proc. Conf. on Artificial Intelligence vol 33 pp 7370–7
[37] Xie T and Grossman J C 2018 Crystal graph convolutional neural networks for an accurate and interpretable prediction of material

properties Phys. Rev. Lett. 120 145301
[38] Chen C, Ye W, Zuo Y, Zheng C and Ong S P 2019 Graph networks as a universal machine learning framework for molecules and

crystals Chem. Mater. 31 3564–72
[39] Duvenaud D K, Maclaurin D, Iparraguirre J, Bombarell R, Hirzel T, Aspuru-Guzik A and Adams R P 2015 Convolutional networks

on graphs for learning molecular fingerprints vol 28 Advances in Neural Information Processing Systems pp 2224–32
[40] Sanchez-Gonzalez A, Godwin J, Pfaff T, Ying R, Leskovec J and Battaglia P W 2020 Learning to simulate complex physics with

graph networks (arXiv:2002.09405)
[41] Alet F, Jeewajee A K, Bauza M, Rodriguez A, Lozano-Perez T and Kaelbling L P 2019 Graph element networks: adaptive, structured

computation and memory (arXiv:1904.09019)
[42] Kipf T N, Welling M 2016 Semi-supervised classification with graph convolutional networks (arXiv:1609.02907)
[43] Zhang M and Chen Y 2018 Proc. 32nd Int. Conf. on Neural Information Processing Systems, NIPS’18 (Red Hook, NY: Curran

Associates Inc.) pp 5171–81
[44] Gilmer J, Schoenholz S S, Riley P F, Vinyals O, Dahl G E 2017 Neural message passing for quantum chemistry (arXiv:1704.01212)
[45] Hamilton W L, Ying R and Leskovec J 2017 Inductive representation learning on large graphs (arXiv:1706.02216)
[46] Fey M, Lenssen J E 2019 Fast graph representation learning with PyTorch geometric (arXiv:1903.02428)
[47] Cangea C, Velǐcovíc P, Jovanovíc N, Kipf T, Liò P 2018 Towards sparse hierarchical graph classifiers (arXiv:1811.01287)
[48] Gao H, Ji S 2019 Graph u-nets (arXiv:1905.05178)
[49] Paszke A et al 2019 Advances in Neural Information Processing Systems 32 H Wallach, H Larochelle, A Beygelzimer,

F d’ Alché-Buc, E Fox and R Garnett pp 8024–35
[50] Selig M 1996 UIUC Airfoil Data Site (Department of Aeronautical and Astronautical Engineering University of Illinois at

Urbana-Champaign)
[51] Geuzaine C and Remacle J-F 2009 Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities Int.

J. Numer. Methods Eng. 79 1309–31
[52] Logg A and Wells G N 2010 Dolfin ACM Trans. Math. Softw. 37 1–28
[53] Thomadakis M and Leschziner M 1996 A pressure-correction method for the solution of incompressible viscous flows on

unstructured grids Int. J. Numer. Methods Fluids 22 581–601
[54] Bergstra J, Yamins D and Cox D D 2013 Proc. 30th Int. Conf. on Int. Conf. on Machine Learning - Volume 28, ICML’13 (JMLR.org)

p I-115-I-123

12

https://doi.org/10.1007/s00466-019-01740-0
https://doi.org/10.1007/s00466-019-01740-0
https://doi.org/10.1016/j.jcp.2020.109340
https://doi.org/10.1016/j.jcp.2020.109340
https://doi.org/10.1017/jfm.2016.755
https://doi.org/10.1017/jfm.2016.755
https://doi.org/10.5194/npg-24-661-2017
https://doi.org/10.5194/npg-24-661-2017
https://doi.org/10.1103/PhysRevE.93.063107
https://doi.org/10.1103/PhysRevE.93.063107
https://doi.org/10.1103/PhysRevE.97.063103
https://doi.org/10.1103/PhysRevE.97.063103
http://arxiv.org/abs/1909.05371
https://arxiv.org/abs/1806.01261
http://arxiv.org/abs/1704.04675
https://arxiv.org/abs/1611.08402
https://doi.org/10.1103/PhysRevLett.120.145301
https://doi.org/10.1103/PhysRevLett.120.145301
https://doi.org/10.1021/acs.chemmater.9b01294
https://doi.org/10.1021/acs.chemmater.9b01294
https://arxiv.org/abs/2002.09405
https://arxiv.org/abs/1904.09019
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1903.02428
http://arxiv.org/abs/1811.01287
http://arxiv.org/abs/1905.05178
https://doi.org/10.1002/nme.2579
https://doi.org/10.1002/nme.2579
https://doi.org/10.1145/1731022.1731030
https://doi.org/10.1145/1731022.1731030
https://doi.org/10.1002/(SICI)1097-0363(19960415)22:7581::AID-FLD3653.0.CO;2-R
https://doi.org/10.1002/(SICI)1097-0363(19960415)22:7581::AID-FLD3653.0.CO;2-R

	Graph convolutional networks applied to unstructured flow field data
	1. Introduction
	2. Methods
	2.1. Graph representation
	2.2. Graph convolution
	2.3. Network architecture

	3. Results
	3.1. Data
	3.2. Experiments

	4. Conclusion
	Acknowledgments
	Appendix
	References


