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ABSTRACT 
 

Horticultural crops face numerous challenges, including various diseases and quality issues that 
significantly impact productivity and marketability. Traditional methods of disease management and 
quality improvement often rely on chemical interventions, which can have detrimental effects on the 
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environment and human health. In recent years, biotechnological approaches have emerged as 
promising alternatives to address these challenges in a more sustainable and effective manner. 
This review paper explores novel biotechnological strategies aimed at enhancing disease 
resistance and improving quality parameters in horticultural plants. These strategies encompass 
genetic engineering techniques, such as the introduction of resistance genes, RNA interference, 
and genome editing, as well as the application of beneficial microorganisms, including plant growth-
promoting rhizobacteria and mycorrhizal fungi. Additionally, the potential of nanotechnology in 
delivering targeted molecules for disease control and quality enhancement is discussed. The review 
also highlights the importance of marker-assisted selection in accelerating the development of 
disease-resistant and high-quality varieties. Furthermore, the integration of omics technologies, 
such as genomics, transcriptomics, proteomics, and metabolomics, is explored as a means to 
unravel the underlying mechanisms of disease resistance and quality traits. The challenges 
associated with the commercialization and public acceptance of biotechnology-derived horticultural 
products are also addressed. By providing a comprehensive overview of these novel 
biotechnological strategies, this review aims to facilitate the development of sustainable and 
effective solutions for the horticultural industry, ultimately contributing to global food security and 
consumer satisfaction. 
 

 
Keywords: Biotechnology; disease resistance; quality parameters; horticultural plants genetic 

engineering. 
 

1. INTRODUCTION 
 
Horticultural crops, including fruits, vegetables, 
and ornamental plants, play a vital role in human 
nutrition, health, and aesthetics. However, these 
crops are susceptible to various diseases caused 
by pathogens such as fungi, bacteria, viruses, 
and nematodes, which can lead to significant 
yield losses and reduced quality [1]. Traditional 
disease management strategies often involve the 
use of chemical pesticides, which can have 
negative impacts on the environment and human 
health [2]. Moreover, the continuous use of 
pesticides can lead to the development of 
resistance in pathogens, rendering the     
chemicals ineffective [3]. In addition to disease 
challenges, horticultural crops also face             
quality issues, such as poor shelf life, 
undesirable texture, and low nutritional value, 
which can limit their marketability and consumer 
acceptance [4]. 
 
To address these challenges, biotechnological 
approaches have emerged as promising 
alternatives to traditional methods. Biotechnology 
encompasses a wide range of techniques that 
involve the manipulation of living organisms or 
their components to develop novel products or 
processes [5]. In the context of horticultural 
crops, biotechnological strategies can be 
employed to enhance disease resistance, 
improve quality parameters, and increase overall 
productivity [6]. 
 

2. GENETIC ENGINEERING FOR 
DISEASE RESISTANCE 

 
Genetic engineering involves the manipulation of 
an organism's genetic material to introduce 
desirable traits or suppress undesirable ones [7]. 
In the context of horticultural crops, genetic 
engineering can be employed to enhance 
disease resistance by introducing genes that 
confer resistance to specific pathogens [8]. 
 

2.1 Introduction of Resistance Genes 
 
One of the most common approaches to 
engineer disease resistance in plants is the 
introduction of resistance (R) genes. R genes 
encode proteins that recognize specific pathogen 
effectors and trigger a defense response in the 
plant [9]. The identification and characterization 
of R genes from various sources, including wild 
relatives of cultivated crops, have paved the way 
for their integration into commercially important 
varieties [10]. 
 
For example, the Rpi-blb2 gene, which confers 
resistance to late blight caused by the oomycete 
pathogen Phytophthora infestans, has been 
successfully introduced into potato (Solanum 
tuberosum) [11]. Similarly, the Bs2 gene, which 
provides resistance to bacterial spot disease 
caused by Xanthomonas euvesicatoria, has been 
incorporated into tomato (Solanum lycopersicum) 
[12]. These examples demonstrate the potential 
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of R gene-mediated resistance in combating 
devastating diseases in horticultural crops. 
 

2.2 RNA Interference (RNAi) 
 
RNA interference (RNAi) is a biological process 
that involves the silencing of gene expression 
through the degradation of specific mRNA 
molecules [13]. In plants, RNAi can be 
harnessed to target essential genes in 
pathogens, thereby inhibiting their growth and 
development [14]. This approach has been 
successfully employed to enhance resistance 
against various pathogens, including viruses, 
fungi, and insects [15]. 
 
For instance, RNAi has been used to develop 
papaya (Carica papaya) resistant to papaya 
ringspot virus (PRSV) by targeting the viral coat 
protein gene [16]. Similarly, RNAi-mediated 
silencing of the fungal chitin synthase gene has 
been shown to enhance resistance against the 
fungal pathogen Fusarium oxysporum in tomato 
[17]. These examples highlight the potential of 
RNAi as a powerful tool for engineering disease 
resistance in horticultural crops. 
 

2.3 Genome Editing 
 
Genome editing technologies, such as zinc finger 
nucleases (ZFNs), transcription activator-like 
effector nucleases (TALENs), and clustered 
regularly interspaced short palindromic repeats 
(CRISPR)/Cas systems, have revolutionized the 
field of plant biotechnology [18]. These 
technologies allow for precise and targeted 
modifications of plant genomes, enabling the 
development of crops with improved traits, 
including disease resistance [19]. 
 
The CRISPR/Cas system, in particular, has 
gained significant attention due to its simplicity, 
efficiency, and versatility [20]. This system has 
been successfully used to engineer resistance 
against various pathogens in horticultural crops. 
For example, CRISPR/Cas9-mediated editing of 
the eIF4E gene in cucumber (Cucumis sativus) 
has been shown to confer resistance to 
cucumber vein yellowing virus (CVYV) [21]. 
Similarly, CRISPR/Cas9 has been employed to 
generate powdery mildew-resistant tomato plants 
by targeting the MLO gene [22]. 
 
The application of genome editing technologies 
in horticultural crops holds immense potential for 
developing disease-resistant varieties. However, 

the regulatory landscape surrounding genome-
edited crops varies across countries, and public 
acceptance remains a challenge [23]. Addressing 
these issues is crucial for the successful 
implementation of genome editing in horticultural 
crop improvement. 

 
3. HARNESSING BENEFICIAL 

MICROORGANISMS 
 
Plants host a diverse array of microorganisms, 
including bacteria and fungi, which can have 
beneficial effects on plant growth, development, 
and stress tolerance [24]. Harnessing these 
beneficial microorganisms offers a sustainable 
approach to enhance disease resistance and 
improve quality parameters in horticultural crops 
[25]. 

 
3.1 Plant Growth-Promoting 

Rhizobacteria (PGPR) 
 
Plant growth-promoting rhizobacteria (PGPR) are 
soil-borne bacteria that colonize the             
rhizosphere, the region surrounding the plant 
roots, and exert positive effects on plant growth 
and health [26]. PGPR can enhance disease 
resistance in plants through various 
mechanisms, such as the production of 
antimicrobial compounds, competition with 
pathogens for resources, and the induction of 
systemic resistance [27]. 

 
Several PGPR strains have been identified and 
exploited for their potential to control diseases in 
horticultural crops. For instance, the application 
of Bacillus subtilis strain QST 713 has been 
shown to reduce the incidence of powdery 
mildew in cucumber [28]. Similarly, the 
inoculation of tomato plants with Pseudomonas 
fluorescens strain Pf-5 has been found to 
suppress the development of bacterial speck 
caused by Pseudomonas syringae pv. tomato 
[29]. 

 
The commercialization of PGPR-based products 
for disease management in horticultural crops is 
gaining momentum. However, the success of 
these products depends on various factors, such 
as the compatibility of the PGPR strain with the 
crop, the formulation and delivery method, and 
the environmental conditions [30]. Further 
research is needed to optimize the efficacy and 
consistency of PGPR-based disease 
management strategies. 
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Table 1. Examples of genetic engineering approaches for enhancing disease resistance in 
horticultural crops 

 

Crop Gene/Construct Target Pathogen Reference 

Potato (Solanum 
tuberosum) 

Rpi-blb2 Phytophthora 
infestans 

[11] 

Tomato (Solanum 
lycopersicum) 

Bs2 Xanthomonas 
euvesicatoria 

[12] 

Papaya (Carica papaya) Coat protein gene (PRSV) Papaya ringspot virus [16] 
Tomato (Solanum 
lycopersicum) 

Chitin synthase gene (RNAi) Fusarium oxysporum [17] 

Cucumber (Cucumis 
sativus) 

eIF4E (CRISPR/Cas9) Cucumber vein 
yellowing virus 

[21] 

Tomato (Solanum 
lycopersicum) 

MLO (CRISPR/Cas9) Powdery mildew [22] 

 

 
 

Fig. 1. Schematic representation of genetic engineering approaches for enhancing disease 
resistance in horticultural crops 

 
Table 2. Examples of beneficial microorganisms used for disease management in horticultural 

crops 
 

Crop Beneficial Microorganism Target 
Pathogen/Disease 

Reference 

Cucumber (Cucumis 
sativus) 

Bacillus subtilis QST 713 Powdery mildew [28] 

Tomato (Solanum 
lycopersicum) 

Pseudomonas fluorescens Pf-5 Bacterial speck [29] 

Tomato (Solanum 
lycopersicum) 

Glomus mosseae (AMF) Fusarium wilt [33] 

Strawberry (Fragaria x 
ananassa) 

Laccaria bicolor (EMF) Verticillium dahliae [34] 

Pepper (Capsicum 
annuum) 

Glomus intraradices (AMF) Phytophthora blight [37] 

Potato (Solanum 
tuberosum) 

Glomus intraradices (AMF) Rhizoctonia solani [38] 
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Fig. 2. Mechanisms of action of beneficial microorganisms in promoting plant growth and 
disease resistance. (a) Plant growth-promoting rhizobacteria (PGPR) and (b) mycorrhizal fungi 
 

Table 3. Examples of nanotechnology applications for disease control and quality 
enhancement in horticultural crops 

 

Crop Nanoparticle/Nanomaterial Application Reference 

Tomato (Solanum 
lycopersicum) 

Copper oxide nanoparticles Bacterial spot control [42] 

Wheat (Triticum 
aestivum) 

Chitosan nanoparticles 
loaded with carbendazim 

Fusarium graminearum 
control 

[43] 

Tomato (Solanum 
lycopersicum) 

Gibberellic acid-loaded 
chitosan nanoparticles 

Growth and yield 
improvement 

[47] 

Banana (Musa 
acuminata) 

Ethylene-loaded 
nanoparticles 

Ripening delay and shelf 
life extension 

[48] 

Spinach (Spinacia 
oleracea) 

Nano-TiO2 Growth enhancement [48] 

 

 
 

Fig. 3. Nanotechnology-based strategies for disease control and quality enhancement in 
horticultural crops 
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Table 4. Examples of marker-assisted selection for disease resistance and quality traits in 
horticultural crops 

 
Crop Trait Gene/QTL Reference 

Tomato (Solanum lycopersicum) Fusarium wilt resistance I-2 gene [55] 
Melon (Cucumis melo) Fusarium wilt resistance Fom-2 gene [56] 
Tomato (Solanum lycopersicum) High soluble solids content Brix9-2-5 QTL [59] 
Tomato (Solanum lycopersicum) Shelf life rin gene [59] 
Strawberry (Fragaria x ananassa) Fruit firmness FaFAD1 gene [60] 
Strawberry (Fragaria x ananassa) Fruit color FaMYB10 gene [60] 

 
Table 5. Examples of omics technologies used to study disease resistance and quality traits in 

horticultural crops 

 
Crop Omics 

Technology 
Application Reference 

Tomato (Solanum 
lycopersicum) 

Genomics Identification of disease resistance 
genes 

[67] 

Strawberry (Fragaria x 
ananassa) 

Genomics Identification of fruit quality genes [68] 

Pepper (Capsicum 
annuum) 

Transcriptomics Identification of genes involved in 
anthracnose resistance 

[71] 

Citrus (Citrus spp.) Transcriptomics Identification of genes regulating fruit 
acidity 

[72] 

Grapevine (Vitis vinifera) Proteomics Identification of proteins involved in 
Botrytis cinerea resistance 

[75] 

Peach (Prunus persica) Proteomics Identification of proteins associated 
with fruit softening and aroma 

[76] 

Melon (Cucumis melo) Metabolomics Identification of metabolites involved 
in Fusarium oxysporum resistance 

[79] 

Tomato (Solanum 
lycopersicum) 

Metabolomics Identification of metabolites 
determining fruit flavor and aroma 

[80] 

 
Table 6. Challenges and future perspectives in the application of biotechnology for 

horticultural crop improvement. 

 
Challenge/Perspective Description Reference 

Complexity of plant-pathogen 
interactions 

Understanding the molecular basis of disease 
resistance and the dynamic nature of plant-
pathogen interactions 

[85], [86] 

Environmental influences on 
quality traits 

Elucidating the complex interplay between 
genotype, environment, and management 
practices in determining fruit quality 

[89], [90] 

Regulatory and public 
acceptance issues 

Harmonizing global regulatory standards, 
developing science-based risk assessment 
protocols, and fostering public trust in 
biotechnology-derived products 

[93], [94] 

Integration of omics 
technologies 

Combining genomics, transcriptomics, 
proteomics, and metabolomics to gain a holistic 
understanding of plant responses to biotic and 
abiotic stresses 

[81], [82] 

Development of alternative 
biotechnological approaches 

Exploring the potential of genome editing and 
cisgenesis to mitigate public concerns and 
facilitate the adoption of biotechnology in 
horticulture 

[97], [98] 
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Table 7. Examples of horticultural crops and their major diseases 
 

Crop Major Diseases Causal Agents Reference 

Tomato 
(Solanum 
lycopersicum) 

Bacterial spot, Bacterial 
speck, Bacterial canker, 
Early blight, Late blight, 
Fusarium wilt, 
Verticillium wilt, Tomato 
yellow leaf curl virus 

Xanthomonas spp., Pseudomonas 
syringae pv. tomato, Clavibacter 
michiganensis subsp. michiganensis, 
Alternaria solani, Phytophthora 
infestans, Fusarium oxysporum f. sp. 
lycopersici, Verticillium dahliae, 
Tomato yellow leaf curl virus 

[99] 

Potato 
(Solanum 
tuberosum) 

Late blight, Early blight, 
Bacterial soft rot, Potato 
virus Y, Potato leafroll 
virus 

Phytophthora infestans, Alternaria 
solani, Pectobacterium carotovorum, 
Potato virus Y, Potato leafroll virus 

[100] 

Pepper 
(Capsicum 
spp.) 

Bacterial spot, 
Phytophthora blight, 
Cucumber mosaic virus, 
Pepper mild mottle virus 

Xanthomonas spp., Phytophthora 
capsici, Cucumber mosaic virus, 
Pepper mild mottle virus 

[101] 

Cucumber 
(Cucumis 
sativus) 

Downy mildew, Powdery 
mildew, Angular leaf 
spot, Cucumber mosaic 
virus 

Pseudoperonospora cubensis, 
Sphaerotheca fuliginea, 
Pseudomonas syringae pv. 
lachrymans, Cucumber mosaic virus 

[102] 

Grapevine 
(Vitis vinifera) 

Downy mildew, Powdery 
mildew, Botrytis bunch 
rot, Grapevine fanleaf 
virus 

Plasmopara viticola, Erysiphe necator, 
Botrytis cinerea, Grapevine fanleaf 
virus 

[103] 

Citrus (Citrus 
spp.) 

Huanglongbing (Citrus 
greening), Citrus canker, 
Citrus tristeza virus, 
Citrus black spot 

Candidatus Liberibacter asiaticus, 
Xanthomonas citri subsp. citri, Citrus 
tristeza virus, Phyllosticta citricarpa 

[104] 

Apple (Malus 
domestica) 

Apple scab, Fire blight, 
Powdery mildew, Apple 
mosaic virus 

Venturia inaequalis, Erwinia 
amylovora, Podosphaera leucotricha, 
Apple mosaic virus 

[105] 

Strawberry 
(Fragaria x 
ananassa) 

Gray mold, Powdery 
mildew, Anthracnose, 
Strawberry crinkle virus 

Botrytis cinerea, Sphaerotheca 
macularis, Colletotrichum acutatum, 
Strawberry crinkle virus 

[106] 

Peach (Prunus 
persica) 

Brown rot, Peach leaf 
curl, Peach scab, Plum 
pox virus 

Monilinia fructicola, Taphrina 
deformans, Cladosporium 
carpophilum, Plum pox virus 

[107] 

Mango 
(Mangifera 
indica) 

Anthracnose, Powdery 
mildew, Bacterial black 
spot, Mango 
malformation 

Colletotrichum gloeosporioides, 
Oidium mangiferae, Xanthomonas citri 
pv. mangiferaeindicae, Fusarium spp. 

[108] 

 

3.2 Mycorrhizal Fungi 
 
Mycorrhizal fungi are ubiquitous soil-borne fungi 
that form symbiotic associations with the roots of 
most land plants [31]. These fungi provide 
various benefits to their host plants, including 
improved nutrient uptake, enhanced stress 
tolerance, and protection against pathogens [32]. 
 
The application of mycorrhizal fungi has been 
shown to enhance disease resistance in several 

horticultural crops. For example, the               
inoculation of tomato plants with the                
arbuscular mycorrhizal fungus Glomus mosseae 
has been found to reduce the severity of 
Fusarium wilt caused by Fusarium oxysporum f. 
sp. lycopersici [33]. Similarly, the colonization of 
strawberry (Fragaria x ananassa) roots               
by the ectomycorrhizal fungus Laccaria              
bicolor has been shown to confer resistance 
against the soil-borne pathogen Verticillium 
dahliae [34]. 
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Table 8. Biotechnology companies involved in developing disease-resistant and quality-
enhanced horticultural crops 

 

Company Crop Trait/Technology Reference 

Monsanto (Bayer) Tomato, Pepper, 
Cucumber 

Disease resistance (Bt, Virus-
resistant) 

[109] 

Syngenta Tomato, Pepper, Melon Disease resistance (Fusarium, 
Bacterial spot, Virus-resistant) 

[110] 

Bayer CropScience Tomato, Cucumber, 
Lettuce 

Disease resistance (Fusarium, 
Downy mildew, Virus-resistant) 

[111] 

Dow AgroSciences 
(Corteva) 

Potato, Tomato, Lettuce Disease resistance (Late blight, 
Bacterial spot, Downy mildew) 

[112] 

DuPont (Corteva) Tomato, Melon, Squash Disease resistance (Bacterial spot, 
Powdery mildew, Virus-resistant) 

[113] 

Keygene Pepper, Cucumber, 
Lettuce 

Disease resistance (Bacterial spot, 
Downy mildew, Fusarium) 

[114] 

Rijk Zwaan Tomato, Pepper, 
Cucumber 

Disease resistance (Fusarium, 
Bacterial spot, Powdery mildew) 

[115] 

Enza Zaden Tomato, Pepper, Melon Disease resistance (Fusarium, 
Bacterial spot, Powdery mildew) 

[116] 

Sakata Seed Tomato, Pepper, Broccoli Disease resistance (Bacterial spot, 
Downy mildew, Clubroot) 

[117] 

Takii Seed Tomato, Pepper, Spinach Disease resistance (Fusarium, 
Bacterial spot, Downy mildew) 

[118] 

 

Table 9. Regulatory agencies and their roles in the approval of biotechnology-derived 
horticultural crops 

 

Agency Country/Region Role Reference 

United States 
Department of 
Agriculture (USDA) 

United States Regulates the importation, interstate 
movement, and environmental release of 
genetically engineered organisms 

[119] 

Environmental 
Protection Agency 
(EPA) 

United States Regulates the use of plant-incorporated 
protectants (PIPs) and determines the 
safety of pesticides 

[120] 

Food and Drug 
Administration (FDA) 

United States Ensures the safety and proper labeling of 
food and feed products derived from 
genetically engineered crops 

[121] 

European Food Safety 
Authority (EFSA) 

European Union Conducts risk assessments and provides 
scientific advice on genetically modified 
organisms (GMOs) 

[122] 

Health Canada Canada Assesses the safety of novel foods, 
including those derived from biotechnology 

[123] 

Canadian Food 
Inspection Agency 
(CFIA) 

Canada Regulates the environmental release, 
variety registration, and import/export of 
plants with novel traits (PNTs) 

[124] 

Ministry of 
Agriculture, Forestry 
and Fisheries (MAFF) 

Japan Regulates the development, cultivation, 
and distribution of genetically modified 
crops 

[125] 

Ministry of Health, 
Labour and Welfare 
(MHLW) 

Japan Assesses the safety of food and feed 
products derived from genetically modified 
crops 

[126] 

Office of the Gene 
Technology Regulator 
(OGTR) 

Australia Regulates the development and release of 
genetically modified organisms (GMOs) 

[127] 

Food Standards 
Australia New 
Zealand (FSANZ) 

Australia & New 
Zealand 

Assesses the safety of genetically modified 
foods and ensures proper labeling 

[128] 
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Table 10. Public perception and acceptance of biotechnology-derived horticultural crops 
 

Country/Region Acceptance Level Influencing Factors Reference 

United States Moderate to High Trust in regulatory agencies, perceived benefits, familiarity with technology [129] 
European 
Union 

Low to Moderate Concerns about safety, environmental impact, ethical considerations, lack of perceived benefits [130] 

Canada Moderate Trust in regulatory agencies, perceived benefits, concerns about long-term effects [131] 
Japan Low to Moderate Concerns about safety, environmental impact, cultural values, lack of perceived benefits [132] 
Australia Moderate Trust in regulatory agencies, perceived benefits, concerns about safety and environmental impact [133] 
New Zealand Low to Moderate Concerns about safety, environmental impact, cultural values, lack of perceived benefits [134] 
China Moderate to High Perceived benefits, trust in government, limited public debate [135] 
India Low to Moderate Concerns about safety, environmental impact, socio-economic implications, lack of public 

awareness 
[136] 

Brazil Moderate to High Perceived benefits, trust in regulatory agencies, limited public debate [137] 
Mexico Low to Moderate Concerns about safety, environmental impact, cultural values, socio-economic implications [138] 
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Table 11. Socio-economic impacts of adopting biotechnology-derived horticultural crops 
 

Impact Category Potential Benefits Potential Challenges Reference 

Crop Productivity Increased yield, reduced crop losses due to pests and 
diseases, improved stress tolerance 

Increased seed costs, potential for reduced genetic 
diversity, dependence on technology providers 

[139] 

Farmer Livelihoods Increased income, reduced input costs (e.g., pesticides), 
improved crop quality and marketability 

Increased seed costs, potential for market 
concentration, intellectual property issues 

[140] 

Food Security Increased food availability, improved nutritional quality, 
reduced food prices 

Unequal access to technology, potential for reduced 
crop diversity, concerns about long-term effects 

[141] 

Environmental 
Sustainability 

Reduced pesticide use, improved resource-use efficiency 
(e.g., water, nutrients), reduced environmental footprint 

Potential for gene flow to wild relatives, impacts on non-
target organisms, development of resistant pests 

[142] 

Consumer Choice Improved product quality, increased variety of available 
products, potential health benefits 

Concerns about safety and long-term effects, labeling 
and traceability issues, ethical considerations 

[143] 

International Trade Increased trade opportunities, harmonization of regulatory 
frameworks, technology transfer 

Trade barriers due to differing regulations, potential for 
market concentration, intellectual property disputes 

[144] 

Research and 
Innovation 

Increased investment in agricultural research, 
development of new tools and technologies, knowledge 
spillovers 

Concentration of research in private sector, intellectual 
property barriers, public funding constraints 

[145] 

Capacity Building Strengthening of local research and development 
capabilities, technology transfer, training and education 

Unequal access to technology and knowledge, brain 
drain, dependence on external expertise 

[146] 

Public Engagement Increased public awareness and participation in decision-
making, improved science communication, trust-building 

Polarization of public opinion, misinformation and 
misconceptions, lack of effective engagement 
mechanisms 

[147] 

Policy and 
Regulation 

Development of science-based regulatory frameworks, 
international harmonization, stakeholder participation 

Regulatory gaps and inconsistencies, lack of public 
trust, politicization of decision-making 

[148] 
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Table 12. Strategies for improving public acceptance of biotechnology-derived horticultural crops 
 

Strategy Description Examples Reference 

Transparency and 
Openness 

Providing clear, accessible, and balanced information about 
biotechnology-derived crops, their development process, and the 
regulatory oversight 

Public information campaigns, open data 
initiatives, stakeholder engagement 

[149] 

Science 
Communication 

Communicating the scientific basis, benefits, and potential risks of 
biotechnology-derived crops in an understandable and engaging 
manner 

Science outreach programs, media training 
for researchers, science-based content 
creation 

[150] 

Stakeholder 
Engagement 

Involving diverse stakeholders (e.g., farmers, consumers, NGOs) in 
the development, assessment, and decision-making processes 
related to biotechnology-derived crops 

Participatory breeding programs, citizen 
science initiatives, multi-stakeholder 
dialogues 

[151] 

Addressing Ethical 
Concerns 

Recognizing and addressing ethical concerns related to 
biotechnology-derived crops, such as equity, justice, and respect for 
cultural values 

Ethical impact assessments, value-sensitive 
design, inclusive innovation 

[152] 

Benefit Sharing Ensuring that the benefits of biotechnology-derived crops are fairly 
distributed among different stakeholders, particularly smallholder 
farmers and local communities 

Benefit-sharing agreements, technology 
transfer programs, capacity building 

[153] 

Labeling and 
Traceability 

Implementing clear and consistent labeling and traceability systems 
for biotechnology-derived crops and their products, enabling 
informed consumer choice 

Mandatory or voluntary labeling schemes, 
supply chain transparency, digital 
traceability solutions 

[154] 

Responsible 
Innovation 

Integrating social, ethical, and environmental considerations into the 
research, development, and commercialization of biotechnology-
derived crops 

Responsible research and innovation (RRI) 
frameworks, life cycle assessments, socio-
economic impact assessments 

[155] 

Public-Private 
Partnerships 

Fostering collaborations between public research institutions, private 
companies, and other stakeholders to develop and deploy 
biotechnology-derived crops that address societal needs 

Joint research projects, technology transfer 
agreements, cross-sector innovation 
networks 

[156] 

Capacity Building 
and Education 

Strengthening the capacity of researchers, policymakers, and other 
stakeholders to develop, assess, and regulate biotechnology-derived 
crops, and promoting public education and awareness 

Training programs, curriculum development, 
international collaborations, public outreach 
initiatives 

[157] 

Adaptive 
Governance 

Developing flexible and responsive governance frameworks that can 
adapt to the rapidly evolving landscape of biotechnology-derived 
crops, while ensuring public trust and engagement 

Anticipatory governance, regulatory 
sandboxes, participatory technology 
assessment 

[158] 
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The successful implementation of mycorrhizal 
fungi in disease management strategies requires 
a thorough understanding of the complex 
interactions between the fungus, the host plant, 
and the pathogen [35]. Moreover, the 
establishment and maintenance of mycorrhizal 
associations in agricultural settings can be 
challenging due to the influence of various 
environmental factors, such as soil type, nutrient 
availability, and management practices [36]. 
 

4. NANOTECHNOLOGY FOR DISEASE 
CONTROL AND QUALITY 
ENHANCEMENT 

 

Nanotechnology involves the manipulation of 
matter at the nanoscale (1-100 nm) to develop 
materials and devices with novel properties and 
functions [37]. In the context of horticultural 
crops, nanotechnology offers new opportunities 
for disease control and quality enhancement 
through the targeted delivery of bioactive 
compounds [38]. 
 

4.1 Nanoparticle-Mediated Delivery of 
Antimicrobial Agents 

 

Nanoparticles can be engineered to encapsulate 
and deliver antimicrobial agents, such as 
fungicides and bactericides, to specific target 
sites in plants [39]. This targeted delivery 
approach can improve the efficacy of the 
antimicrobial agents while reducing their 
environmental impact and the risk of resistance 
development in pathogens [40]. 
 

Various types of nanoparticles, including metallic 
nanoparticles (e.g., silver, copper), polymeric 
nanoparticles (e.g., chitosan, alginate), and lipid-
based nanoparticles (e.g., liposomes, solid lipid 
nanoparticles), have been investigated for their 
potential in plant disease management [41]. For 
instance, the application of copper oxide 
nanoparticles has been shown to effectively 
control bacterial spot disease in tomato caused 
by Xanthomonas perforans [42]. Similarly, the 
use of chitosan nanoparticles loaded with the 
fungicide carbendazim has been found to 
suppress the growth of the fungal pathogen 
Fusarium graminearum in wheat (Triticum 
aestivum) [43]. 
 

4.2 Nanoparticle-Mediated Delivery of 
Plant Growth Regulators 

 

Nanotechnology can also be harnessed to 
deliver plant growth regulators (PGRs) to specific 
tissues or organs in plants, thereby modulating 

their growth and development [44]. PGRs play a 
crucial role in regulating various physiological 
processes in plants, including fruit ripening, 
senescence, and stress responses [45]. 
 

The encapsulation of PGRs in nanoparticles can 
enhance their stability, bioavailability, and 
targeted delivery [46]. For example, the 
application of gibberellic acid-loaded chitosan 
nanoparticles has been shown to improve the 
growth and yield of tomato plants [47]. Similarly, 
the use of ethylene-loaded nanoparticles has 
been found to delay the ripening of bananas 
(Musa acuminata), extending their shelf life [48]. 
 

The successful implementation of 
nanotechnology in horticultural crop 
management requires a comprehensive 
understanding of the interactions between 
nanoparticles, plants, and the environment [49]. 
Moreover, the potential toxicity and ecological 
impacts of nanoparticles need to be thoroughly 
assessed to ensure their safe and sustainable 
use [50]. 
 

5. MARKER-ASSISTED SELECTION FOR 
CROP IMPROVEMENT 

 

Marker-assisted selection (MAS) is a 
biotechnological approach that involves the use 
of molecular markers to select plants with 
desirable traits, such as disease resistance and 
improved quality parameters [51]. MAS relies on 
the identification of genetic markers that are 
tightly linked to the genes controlling the traits of 
interest [52]. 
 

5.1 MAS for Disease Resistance 
 

MAS has been extensively used to develop 
disease-resistant varieties in various horticultural 
crops [53]. The selection of plants based on 
molecular markers allows for the rapid and 
accurate identification of individuals carrying the 
desired resistance genes, without the need for 
time-consuming and labor-intensive disease 
screening [54]. 
 

For instance, MAS has been successfully 
employed to develop tomato varieties resistant to 
Fusarium wilt by targeting the I-2 gene [55]. 
Similarly, MAS has been used to introgress the 
Fom-2 gene, which confers resistance to 
Fusarium wilt in melon (Cucumis melo), into 
commercial varieties [56]. These examples 
demonstrate the potential of MAS in accelerating 
the development of disease-resistant horticultural 
crops. 
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5.2 MAS for Quality Traits 
 
MAS can also be applied to improve various 
quality traits in horticultural crops, such as fruit 
size, color, flavor, and nutritional content [57]. 
The identification of molecular markers 
associated with these traits enables the selection 
of superior genotypes in breeding programs [58]. 

 
In tomato, MAS has been used to select for fruit 
quality traits, such as high soluble solids content 
and improved shelf life, by targeting the Brix9-2-5 
and rin genes, respectively [59]. Similarly, MAS 
has been employed to develop strawberry 
varieties with enhanced fruit firmness and color 
by targeting the FaFAD1 and FaMYB10 genes, 
respectively [60]. 

 
The success of MAS in horticultural crop 
improvement depends on the availability of 
reliable molecular markers and the efficient 
integration of these markers into breeding 
programs [61]. Moreover, the costs associated 
with marker development and genotyping need 
to be considered to ensure the cost-effectiveness 
of MAS-based breeding strategies [62]. 

 
6. OMICS TECHNOLOGIES FOR 

UNRAVELING MECHANISMS OF 
DISEASE RESISTANCE AND QUALITY 
TRAITS 

 
Omics technologies, including genomics, 
transcriptomics, proteomics, and metabolomics, 
offer powerful tools to unravel the underlying 
mechanisms of disease resistance and quality 
traits in horticultural crops [63]. These 
technologies provide a comprehensive view of 
the molecular processes involved in plant-
pathogen interactions and the regulation of fruit 
development and ripening [64]. 

 
6.1 Genomics 
 
Genomics involves the study of an organism's 
entire genetic material, including the sequencing 
and analysis of its genome [65]. In horticultural 
crops, genomic approaches have been used to 
identify genes and regulatory elements involved 
in disease resistance and quality traits [66]. 

 
For example, the sequencing of the tomato 
genome has facilitated the identification of genes 
responsible for resistance to various pathogens, 
such as the Sw-5 gene for resistance to tomato 
spotted wilt virus (TSWV) and the Ve1 gene for 

resistance to Verticillium dahliae [67]. Similarly, 
genomic studies in strawberry have revealed 
genes associated with fruit quality traits, such as 
the FaGAMYB gene, which regulates fruit 
ripening and anthocyanin biosynthesis [68]. 
 

6.2 Transcriptomics 
 
Transcriptomics involves the study of an 
organism's complete set of RNA transcripts, 
known as the transcriptome, under specific 
conditions [69]. Transcriptomic analyses provide 
insights into the differential expression of genes 
in response to biotic and abiotic stresses, as well 
as during fruit development and ripening [70]. 
 
In pepper (Capsicum annuum), transcriptomic 
studies have identified genes that are 
differentially expressed during the interaction 
with the anthracnose pathogen Colletotrichum 
acutatum, providing valuable information for the 
development of resistant varieties [71]. Similarly, 
transcriptomic analyses in citrus (Citrus spp.) 
have revealed genes involved in the regulation of 
fruit acidity, which is an important quality trait 
[72]. 
 

6.3 Proteomics 
 
Proteomics involves the large-scale study of an 
organism's proteins, including their structure, 
function, and interactions [73]. Proteomic 
approaches have been used to identify proteins 
associated with disease resistance and quality 
traits in horticultural crops [74]. 
 
In grapevine (Vitis vinifera), proteomic studies 
have identified proteins that are differentially 
expressed during the interaction with the fungal 
pathogen Botrytis cinerea, providing insights into 
the molecular mechanisms of disease resistance 
[75]. Similarly, proteomic analyses in peach 
(Prunus persica) have revealed proteins involved 
in fruit softening and the regulation of aroma 
compounds, which are important quality 
attributes [76]. 
 

6.4 Metabolomics 
 
Metabolomics involves the comprehensive 
analysis of an organism's metabolites, which are 
the end products of cellular processes [77]. 
Metabolomic studies provide valuable 
information on the biochemical pathways 
involved in plant-pathogen interactions and the 
biosynthesis of quality-related compounds in 
fruits [78]. 
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In melon, metabolomic analyses have               
identified metabolites that are differentially 
accumulated during the interaction with the 
fungal pathogen Fusarium oxysporum f. sp. 
melonis, providing insights into the metabolic 
basis of disease resistance [79]. Similarly, 
metabolomic studies in tomato have revealed the 
role of specific metabolites, such as volatile 
organic compounds, in determining fruit flavor 
and aroma [80]. 

 
The integration of omics technologies               
provides a holistic view of the molecular 
mechanisms underlying disease resistance                
and quality traits in horticultural crops [81].              
This knowledge can be harnessed to               
develop novel breeding strategies and 
biotechnological approaches for crop 
improvement [82]. 

 
7. CHALLENGES AND FUTURE 

PERSPECTIVES 
 
Despite the significant advances in 
biotechnological strategies for enhancing disease 
resistance and quality parameters in horticultural 
crops, several challenges remain to be 
addressed [83]. These challenges include the 
complexity of plant-pathogen interactions, the 
environmental influences on quality traits, and 
the regulatory and public acceptance issues 
associated with biotechnology-derived products 
[84]. 

 
7.1 Complexity of Plant-Pathogen 

Interactions 
 
Plant-pathogen interactions are highly complex 
and dynamic, involving multiple layers of defense 
responses and counter-defense mechanisms 
[85]. The development of durable disease 
resistance in horticultural crops requires a 
comprehensive understanding of these 
interactions at the molecular, cellular, and 
organismal levels [86]. 

 
Future research should focus on elucidating the 
molecular dialogue between plants and 
pathogens, identifying key pathogenicity factors 
and their corresponding plant targets, and 
unraveling the signaling pathways involved in 
disease resistance [87]. This knowledge will 
facilitate the design of novel strategies to 
enhance plant immunity and minimize the impact 
of pathogens on crop productivity and quality 
[88]. 

7.2 Environmental Influences on Quality 
Traits 

 
The expression of quality traits in horticultural 
crops is heavily influenced by environmental 
factors, such as temperature, light, water 
availability, and nutrient supply [89]. These 
factors can interact with genetic and 
physiological processes, leading to significant 
variations in fruit quality attributes [90]. 

 
To develop horticultural crops with                  
consistent and superior quality traits, it is 
essential to understand the complex interplay 
between genotype, environment, and 
management practices [91]. Future research 
should focus on dissecting the genetic basis of 
quality traits, identifying environmental cues that 
regulate their expression, and developing 
integrated crop management strategies that 
optimize fruit quality under diverse growing 
conditions [92]. 

 
7.3 Regulatory and Public Acceptance 

Issues 
 
The commercialization of biotechnology-derived 
horticultural products faces significant regulatory 
hurdles and public acceptance issues [93]. The 
regulatory frameworks governing the 
development and release of genetically modified 
(GM) crops vary widely across countries, 
creating a complex and uncertain landscape for 
the horticultural industry [94]. 

 
Moreover, public perception of GM crops 
remains a contentious issue, with concerns about 
potential risks to human health and the 
environment [95]. Effective communication and 
engagement with the public are crucial to 
address these concerns and promote the 
acceptance of biotechnology-derived horticultural 
products [96]. 

 
Future efforts should focus on harmonizing 
global regulatory standards, developing             
science-based risk assessment protocols, and 
fostering public trust through transparent and 
inclusive dialogue [97]. Additionally, the 
development of alternative biotechnological 
approaches, such as genome editing and 
cisgenesis, which are perceived as more             
natural and less controversial, could help 
mitigate public concerns and facilitate the 
adoption of biotechnology in the horticultural 
sector [98-101]. 
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8. CONCLUSION 
 

Biotechnological strategies offer immense 
potential for enhancing disease resistance and 
quality parameters in horticultural crops. Genetic 
engineering techniques, such as the introduction 
of resistance genes, RNAi, and genome editing, 
provide powerful tools to develop crops with 
improved resistance to pathogens and superior 
quality traits. The application of beneficial 
microorganisms, including PGPRs and 
mycorrhizal fungi, presents a sustainable 
approach to promote plant health and 
productivity. Nanotechnology emerges as a 
promising avenue for the targeted delivery of 
antimicrobial agents and plant growth regulators, 
enabling precise disease control and quality 
enhancement. Marker-assisted selection 
accelerates the development of disease-resistant 
and high-quality varieties by leveraging 
molecular markers linked to desirable traits. 

 
Omics technologies, encompassing genomics, 
transcriptomics, proteomics, and metabolomics, 
offer unprecedented insights into the molecular 
mechanisms underlying disease resistance and 
quality attributes. The integration of these 
technologies provides a holistic view of plant-
pathogen interactions and the regulation of fruit 
development and ripening. However, challenges 
remain in the complexity of plant-pathogen 
interactions, the environmental influences on 
quality traits, and the regulatory and public 
acceptance issues associated with 
biotechnology-derived products. Addressing 
these challenges requires a multidisciplinary 
approach, involving collaboration among plant 
scientists, breeders, biotechnologists, 
policymakers, and stakeholders. 

 
Future research should focus on elucidating the 
molecular basis of disease resistance and quality 
traits, developing integrated crop management 
strategies, harmonizing regulatory standards, 
and fostering public trust through transparent 
communication. By harnessing the power of 
biotechnology and addressing the associated 
challenges, we can develop sustainable and 
resilient horticultural crops that meet the growing 
demands for food security, nutritional quality, and 
consumer satisfaction. 
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