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ABSTRACT 
 

Laser engraving is becoming a preferred alternative to conventional machining for industrial post-
processing due to its higher accuracy and elimination of tooling challenges. It is widely used for 
creating precise engravings on components in industries such as aeronautics, medical devices, 
printing, and general aesthetic applications. This research is developed around AISI 304 stainless 
steel based on its versatile use in various applications, investigating the influence of key laser 
engraving processing parameters such as laser power, scan speed, exposure time, and number of 
passes on output characteristics such as surface roughness, kerf width, engraving depth, and 
material removal rate. Analysis of variance and main effect plots were used to determine the 
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optimal parameters for individual response while multi-response optimization to obtain a unified 
parametric combination was done by combining principal component analysis with a grey relational 
approach. The best combination of these processing parameters obtained for the multi-response 
optimization is (1, 0, 0, -1) which implies 15 W laser power, 28.57 mm/s scan speed, exposure time 
of 20 ms and (1) no of pass. The study has been able to establish that integration of grey relational 
analysis and principal component analysis shows a robust approach in investigating multi-objective 
optimization of processes. 
 

 
Keywords: Laser engraving; AISI 304 stainless steel; multi-objective optimization; principal component 

analysis; grey relational approach. 
 

ABBREVIATIONS 
 
AISI   : American Iron and Steel Institute 
SS  : Stainless Steel 
RSM   : Response Surface Methodology  
DOE  : Design of Experiment  
SPM  : Scanning Probe Microscope 
PCA  : Principal Component Analysis 
GRA   : Grey Relational Analysis 
GRC  : Grey Relational Coefficient 
GRG   : Grey Relational Grade 
SR  : Surface Roughness 
KW  : Kerf Width 
ED  : Engraving Depth 
MRR  : Material Removal Rate 
ANOVA       : Analysis of Variance 
 

1. INTRODUCTION 
 
Laser engraving process is a non-conventional 
machining process that uses thermal energy in 
the removal of material from the workpiece 
surface (Sugar et al. 2013, Patel et al. 2022). It 
has been established as an alternative to 
conventional methods of material removal in a 
wide range of industrial applications (Knowles et 
al. 2007, Ahmed et al. 2016). The material 
removal process takes place by sublimation, 
which occurs as a result of the laser-material 
interaction leading to atomic vibration of the 
material to generate sufficient heat for 
sublimation to occur (Brown and Arnold 2010, 
Stavropoulos et al. 2012). Laser, being an 
intense source of electromagnetic radiation is 
highly monochromatic and coherent, wherein the 
high-power laser density is released within a 
short time interval (pulse duration) onto a target 
spot that is a few micrometers in diameter and 
can reliably produce high-resolution patterns 
onto various metal such as copper and stainless 
steel (Brousseau et al. 2010). In industries, 
engraving, selective ablation and machining of 
different materials are made possible with the 
introduction of laser sources characterized by 
short and ultra-short pulses having from 

nanosecond to femtosecond duration 
(Stavropouloset al. 2012). Engraving processes 
are performed on a product surface for the 
purpose of product identification, traceability 
(Daniel 2000) and surface cleaning for high 
dimensional accuracy (Arnold 2002). 
 
Engraving is further employed in printing 
processing where engraved plates are used as a 
mold for different patterns in the industrial 
production of security printings (e.g., banknotes, 
passports and visas), the desired pattern (e.g., 
micro letters, lines and images) can be achieved 
by laser ablation (Haron and Romlay 2019). Over 
the years, micromachining has been employed 
as conventional means of achieving engraving 
on various component parts however, the 
procedure is slower and requires tooling, jigs, 
and fixtures. These setbacks are being overcome 
by laser engraving as it can rapidly achieve the 
same or more precise output with faster 
turnaround time, without tooling, and a high 
degree of automation. However, the degree of 
precision of shape, the removal rate and the 
surface quality typical of the engraving process 
strictly depend on the material’s properties, the 
laser source characteristics and the process 
parameters (Hubeatir 2018). To achieve any 
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desired output characteristics or responses on 
engraved surfaces, process optimization is 
required. 
 
Over the past decades, several experiments 
involving laser-beam engraving have been 
reported by researches, discussing different 
processing conditions and surface integrity of 
ablated surfaces (Hribar et al. 2022). (Campanelli 
et al., 2007) used the design of experiments to 
analyze the effect of process parameters (scan 
speed, frequency, power, overlapping and scan 
strategy) on the surface roughness and the depth 
of removed material. (Saklakoglu and Kasman 
2011) investigated the influences of the laser-
engraving process parameters on the surface 
roughness and the groove depth, using AISI H13 
hot-working steel and a 30 W fibre laser source. 
Regression analysis was used to model the 
effect of the process parameters on surface 
roughness and the groove depth, their result 
showed that the 20kHz pulse frequency, 18W 
laser power and 800 mm/s scan speed produced 
the lowest surface roughness while the maximum 
groove depth was achieved at the maximum 
pulse frequency of 40 kHz. (Mladenovic et al., 
2016). studied laser engraving of AISI 304 
stainless steel using Response-Surface 
Methodology, where it was reported that the 
removal rate, the groove depth and the groove 
width at zero plane are highly influenced by the 
scan speed. (Angshuman et al., 2018) 
investigated the effect of process parameters 
such as laser power, scanning speed and pulse 
frequency of laser beam on marking width and 
marking depth using response surface 
methodology (RSM). Their result showed that 
maximum mark width and mark depth can be 
obtained at a laser power of 6.96 W, pulse 
frequency of 16.69kHz and scanning speed of 
6.60 mm/s. (Patel and Patel 2014) have 
conducted a review on the parametric 
optimization of laser engraving process for 
different materials using grey relational 
technique. They considered the effect of different 
input parameter such as spot diameter, laser 
power, laser frequency and wavelength on output 
parameters like material removal rate, surface 
finish and indentation. (Mathias et al., 2023) 
investigated the impact of laser scanning 
patterns on Laser Surface Melting (LSM) with 
316L stainless steel. The commonly used 
Cartesian "zigzag" pattern with a radial pattern 
was compared, evaluating their effects on the 
material's properties. The study revealed that 
varying the scanning pattern significantly altered 
the stress state and deformation of the 

specimens. Key outcomes included increased 
crystallite size, reduced dislocation density, slight 
hardening of the melted layer, and decreased 
toughness. These findings highlight the 
importance of scanning patterns in optimizing 
LSM processes for improved material 
performance. (Yue et al., 2024) also established 
that laser transformation hardening process has 
shown to enhance yield strength, ultimate tensile 
strength and elongation in processed material. 
Microstructural changes, including refined grain 
size and increased martensite content, were 
linked to improved strength and ductility. 
However, excessive laser power led to grain 
growth due to longer cooling times.  
 
In conclusion, several research works have been 
conducted on surface optimization of the process 
parameters affecting the quality of the ablated 
surface where in some cases the focus has been 
on single optimization of selected responses. 
However, the optimization of just one output 
characteristics may not necessarily be the best 
for another output characteristic. Hence, this 
study extensively investigates the relationship of 
selected process parameters on several 
responses and multi-objective optimization of 
selected responses by combining principal 
component analysis with the grey relational 
approach. 
 

2. METHODOLOGY  
 

2.1 Materials 
 
AISI 304 stainless steel material of 1mm 
thickness was sourced and used as the 
engraving material for this work. AISI 304 is an 
austenitic stainless steel known for delivering 
greater corrosion and heat resistance, high 
ductility, excellent drawing, forming, and spinning 
properties. Table 1 shows the chemical 
composition of the AISI 304 SS respectively. 
 
A 15W fiber laser engraving machine was 
designed and developed for this work due to its 
short wavelength (𝜁 = 450 nm) making it ideal for 
cutting reflective metal materials, as shown in 
Fig. 1. 
 
The stainless-steel surfaces were grit blasted to 
improve laser absorptivity and cleaned with 
acetone to remove contaminants prior to the 
laser processing. During the experiments, the 
laser beam is focused onto the workpiece 
surface at a 20 mm focal length which yields a 
beam spot diameter of 0.15 mm. The motion of 
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the laser beams and the process parameters is 
controlled by the laser engraving software. The 
laser output power was set at three distinct levels 
and four factors. Table 2 presents the 
parameters, and the levels employed in 
engraving of the stainless steel specimen. 
 
2.1.1 Measurement of engraved 

characteristics 
  
A 27 experimental run was obtained and 
conducted based on the box-Behnken design of 
experiment (DOE) given four factors at three 
levels. Each SS specimen was engraved by an 

8.5mm x 2.3 mm area. The following geometrical 
response variables were investigated: surface 

roughness, groove depth (ℎ𝑔) and kerf width at 

zero plane (𝑤𝑜) and material removal rate which 

is a function of the engraved area (𝐴𝑔) against 

the time taken, as shown in Fig. 2. 
 

AA3000 Scanning Probe Microscope (SPM) 
shown in Fig. 3 was used to obtain surface data 
of the required output responses from the 
engraved area of the processed samples. The 
measurement was made at three distinct 
locations from the engraved specimen surface 
and the mean of each response was recorded.  

 
Table 1. The chemical composition of AISI 304 SS 

 

C Cr Mn Ni Si S P N Fe 

0.04% 18.11% 1.28% 8.02% 0.35% 0.01% 0.03% 0.05% Bal 

 

 
 

Fig. 1. The experimental setup 
 

Table 2. Laser engraving parameters and their levels 
 

Engraving parameter (factor)  low (-1) medium (0) high (1) 

Power, P (W)  11 13 15 
Scan speed, (mm/s)  21.43 28.57 35.72 
Exposure Time (ms) 15 20 25 
No of passes 1 2 3 

 

 
 

Fig. 2. A schematic of the cross-sectional profile of a laser engraved groove  
(Mladenovič et al. 2016) 
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Fig. 3. SPM AA 3000 
 

2.1.2 Output characteristics and data analysis 
 

Surface roughness responses, kerf width, 
engraving depth, and material removal rates are 
responses needed to be obtained. These output 
characteristics were obtained by taking surface 
profilometry of the specimens on AA3000 
Scanning probe microscope Imager. Fig. 4 (a) 
and (b) shows a sample of the engraved area as 
view by AA3000 SPM from one of the 
specimens. 
 

The measurements were carried out three times 
average from SPM Imager as seen in Fig. 5 and 
Fig. 6 below and the mean values of each 
response were recorded and reported. 
 

2.2 Methods 
 

2.2.1 Multi-objective optimization approach 
 

The multi-objective optimization was achieved 
using the Box-Behnken Design (BBD) combined 

with Grey Relational Analysis (GRA) and 
Principal Component Analysis (PCA). The 
process began by selecting the Box-Behnken 
Design to determine the experimental runs and 
process factor combinations. Grey Relational 
Coefficients (GRC) were then calculated from the 
experimental responses. PCA was applied to the 
GRC to determine the weighting values, which 
were used to calculate the Grey Relational Grade 
(GRG). The GRG was used for plotting the main 
effects and performing analysis of variance to 
identify the optimal parameters for the engraving 
process. Minitab software was utilized for the 
analysis, 
 

Box-Behnken design of experiment was used to 
achieve a 27 orthogonal array based on Table 2 
and the corresponding experiment run is 
presented in Table 3. These arrays were the 
basis in which the process factor combinations 
used for the experiment were subjected. 

 

 
 

Fig. 4. Engraved area (a) 3D side view (b) 3D Isometric side view 
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Fig. 5. Imager showing kerf width Section 
 

Table 3. Orthogonal array for the experiment 
 

No Process Parameter 

A (W) B (mm/s) C (ms)  D 

1 15 28.57 20 3 
2 13 21.43 25 2 
3 13 28.57 15 1 
4 13 28.57 20 2 
5 11 28.57 25 2 
6 13 35.72 20 1 
7 13 35.72 25 2 
8 13 21.43 20 1 
9 11 28.57 20 3 
10 13 21.43 20 3 
11 15 28.57 15 2 
12 11 35.72 20 2 
13 15 28.57 25 2 
14 13 21.43 15 2 
15 13 28.58 15 3 
16 13 28.57 25 1 
17 13 28.57 20 2 
18 15 21.43 20 2 
19 11 28.57 20 1 
20 11 28.57 15 2 
21 13 35.72 15 2 
22 13 28.57 25 3 
23 15 35.72 20 2 
24 15 28.57 20 1 
25 13 28.57 20 2 
26 11 21.43 20 2 
27 13 35.72 20 3 

Note: A is laser power (W), B is the scan speed (mm/s), C is exposure time (ms), and D is the number of passes. 

 
2.2.2 Grey relational approach 
 
This method is employed when different output 
characteristics need to be unified in a process. 
The first step in the approach is the normalization 

of responses. These responses are desired in 
some particular order as surface roughness is 
desired to be minimized so that surface finish 
can be of high quality, engraved depth is desired 
to be maximized to ensure deep markings and 
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more legibility of prints, kerf width is desired to be 
maximized in order for surface ablation can be 
faster and also material removal rate is needed 
maximized to ensure faster processing, 
productivity and time-saving. 
 
Based on the target value, equation (1) is utilized 
in normalizing the kerf width, engraving depth 
and material removal rate whereas the surface 
roughness is normalized using equation (2) 
(Jailani et al. 2009, Jayaraman and Kumar 2014). 
 

𝑥1(k) = 
𝑥1

𝑞(k) − min 𝑥1
𝑞(𝑘)

 𝑚𝑎𝑥 𝑥1
𝑞(k) − min 𝑥1

𝑞(𝑘)
                         (1) 

 

𝑥1(k) = 
𝑚𝑎𝑥 𝑥1

𝑞(k) −  𝑥1
𝑞(𝑘)

 𝑚𝑎𝑥 𝑥1
𝑞(k) − min 𝑥1

𝑞(𝑘)
                         (2) 

 
where 𝑥1

𝑞(𝑘)  is the measured value of quality 
characteristic or response,  𝑚𝑎𝑥 𝑥1

𝑞 (𝑘)  is the 
largest or highest value of the quality 
characteristic and min 𝑥1

𝑞(𝑘) is the smallest or 
the least value of the quality characteristic.  
 
Subsequently, the deviation of the normalized 
responses was evaluated with equation (3) 
(Kazançoğlu et al. 2011, Raza et al. 2014). 
 

∆𝑜𝑖(k) = ∥ 𝑥𝑜(𝑘) − 𝑥𝑖(𝑘) ∥                            (3)  
 
where ∆𝑜𝑖(k) is the difference sequence, which is 
defined as the absolute value of the difference 
between 𝑥𝑜(𝑘) and 𝑥𝑖(𝑘) . Here, 𝑥𝑜(𝑘)  and 𝑥𝑖(𝑘) 
are the normalized values of a response set 

(where 𝑥𝑜(𝑘) represents the highest normalized 

value and 𝑥𝑖(𝑘). represents a set of normalized 
values from (i = 0 to i = n). 
 
Afterward, the grey relational coefficients for the 
responses are then computed using equation (4) 
(Kazançoğlu et al. 2011, Reddy et al. 2015). 
 

𝜉𝑖(k) = 
Δ𝑚𝑖𝑛  + ψΔ𝑚𝑎𝑥  

Δ𝑜𝑖(𝑘) + ψΔ𝑚𝑖𝑛 
                           (4) 

 
Also, ψ is the identification coefficient, which is 
usually set within 0 and 1. This implies that 0<
ψ <1. Most studies set ψ  to be equivalent to 0.5. 

Also, Δ𝑚𝑖𝑛  is the minimum value in the difference 
sequence and Δ𝑚𝑎𝑥 is the maximum value in the 

difference sequence while 𝜉𝑖(k)  is the grey 
relational coefficient (Ojo and Taban et al. 2018). 
 
Having obtained the grey relational coefficients of 
the output characteristics, the grey relational 
grade is computed with equation (5). The 
principal component analysis is employed to get 
the weighting values of each of these responses 
(Jailani, et al. 2009). 
 

𝑌𝑖 = 
1

𝑛
∑ 𝜉𝑖(k)𝑛

𝑖=1                                            (5) 

 
Where 𝑌𝑖  is the computed GRG for the ith term, n 

is the number of responses or quality factor, 𝑤𝑘 
is the normalized weighting value of quality factor 
k and 𝜉𝑖(k) is the Grey relational coefficient. 

 

 
 

Fig. 6. Imager showing engraving depth section 
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2.2.3 Principal component analysis  
 
PCA examines variance-covariance among a 
given set of quality responses. As a result, the 
contribution of each of the responses/optimally 
weighted observed variables can be easily 
evaluated (Shlens 2014). A matrix of the 
observed responses is required to commence 
data reduction in PCA. As a result, the grey 
relational coefficient (GRC) of each of the 
observed responses is required to formulate a 
data matrix. If the element of the data matrix is 
denoted as 𝑌𝑖(k), then i is set to vary from 1 to m 
while k is defined to vary from 1 to n as illustrated 
in equation (6). 
 

𝑌𝑖(k) = 

[
 
 
 
 
 
 

𝑌1(1)  𝑌1(2) 𝑌1(3) … …… 𝑌1(n)

𝑌2(1)  𝑌2(2) 𝑌2(3) …… … 𝑌2(n)

𝑌3(1)  𝑌3(2) 𝑌3(3) …… … 𝑌3(n)
 ⋮          ⋮          ⋮      ⋮   ⋮   ⋮       ⋮
 ⋮          ⋮          ⋮      ⋮   ⋮   ⋮       ⋮

𝑌𝑚(1)  𝑌𝑚(2) 𝑌𝑚(3) …… … 𝑌𝑚(n)
 ]

 
 
 
 
 
 

        (6) 

 
Where 𝑌𝑖(k) are the responses, n is the number 
of columns, or the number of responses and m is 
the number of rows or the number of 
experiments. As a result, in this BBD–GRA–PCA 
approach, Y is the Grey relational coefficients of 
the observed responses (SR, KW, ED, and 
MRR). 
 

According to (Mehat et al. 2014) and (Fung and 
Kang 2005) correlation matrix can be expressed 
as equation (7). 
 

𝑅𝑘𝑑 = [
𝐶𝑜𝑣(𝑌𝑖(k),𝑌𝑖(l))

𝜎𝑦𝑖(k)𝜎𝑦𝑘(l)
 ]                         (7) 

 

where k and  l  vary from 1 to n. Also, the 

covariance’s of sequences 𝑌𝑖(k)  and 𝑌𝑖(l)  are 
defined as  𝑌𝑖(l) while the standard deviation of 

sequences 𝑌𝑖(k)  and 𝑌𝑖(l)  are defined as 

𝜎𝑦𝑖(k) and 𝜎𝑦𝑘(l), respectively. The relationship 

among eigenvalue, eigenvector and correction 
matrix are illustrated with equation (8). With this 
mathematical expression, the values of 

unknown’s eigenvalues and eigenvectors can be 
computed: 
 

[𝑅 − 𝜆𝐼 ]𝑉 = 0                        (8) 
 
where λ is the eigenvalue, I is an identity matrix, 
V is the eigenvector and R is the correlation 
matrix.  
 
The principal components are determined using 
equation (9) (Fung and Kang 2005). Thus, the 
optimal weighting values of the responses are 
equivalent to the percentage contributions of the 
responses. 
 

𝑃𝑚𝑖 = ∑ 𝑦𝑚
𝑛
𝑖=1 (i)𝑣                                    (9) 

 
 where 𝑃𝑚𝑖  is the principal component ( 𝑃𝑚1 , 

𝑃𝑚2, 𝑃𝑚3, and 𝑃𝑚4 are the 1st, 2nd, 3rd, and 4th 
principal components, respectively). 
 

3. RESULTS AND DISCUSSION 
 

3.1 Experimental Results 
 
The experimental results from lab testing on the 
engraved stainless-steel samples to investigate 
its surface roughness, kerf width, engraved 
depth, and material removal rate were analyzed, 
and the responses obtained are presented in 
Table 4. Different parametric combinations 
yielded unique output characteristics on the 
selected responses as observed from the      
Table 4. 
 

3.2 Single Optimization of Responses 
 
The surface roughness is one of the most 
important output characteristics to look after 
while performing laser engraving, especially 
using stainless steel. The engraved surface is 
desired to have an extremely low surface 
roughness as far as possible and the effect of 
input setting such as laser power, exposure time, 
scan speed (transverse speed) and number of 
passes are studied. 

 
Table 4. Process parameters and the corresponding output characteristics 

 

No Process Parameter Output Characteristics 

A (W) B (mm/s) C (ms)  D SR (nm) KW (nm) ED (nm) MRR ((nm3/s) 1011) 

1 15 28.57 20 3 0.507 1438.94 1.53 1.08 
2 13 21.43 25 2 0.256 1313.81 0.86 0.72 
3 13 28.57 15 1 0.254 809.41 0.65 1.36 
4 13 28.57 20 2 1.11 1884.75 2.93 2.07 
5 11 28.57 25 2 0.438 2318.54 0.92 0.74 
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No Process Parameter Output Characteristics 

A (W) B (mm/s) C (ms)  D SR (nm) KW (nm) ED (nm) MRR ((nm3/s) 1011) 

6 13 35.72 20 1 0.319 1614.89 0.74 1.41 
7 13 35.72 25 2 0.38 1552.35 0.74 0.62 
8 13 21.43 20 1 0.195 1376.35 0.86 1.03 
9 11 28.57 20 3 0.314 3088.81 4.26 3.04 
10 13 21.43 20 3 0.278 1474.12 2.13 1.34 
11 15 28.57 15 2 0.315 1223.86 1.44 1.53 
12 11 35.72 20 2 0.424 1995.93 0.66 0.63 
13 15 28.57 25 2 0.339 1888.59 2.33 1.88 
14 13 21.43 15 2 0.195 340.17 0.33 0.36 
15 13 28.58 15 3 0.337 907.18 1.92 1.36 
16 13 28.57 25 1 0.315 1783.05 1.18 1.92 
17 13 28.57 20 2 1.06 1884.75 2.88 2.62 
18 15 21.43 20 2 0.238 1636.35 1.83 1.73 
19 11 28.57 20 1 0.486 1462.21 0.79 1.45 
20 11 28.57 15 2 0.34 1035.99 0.75 0.79 
21 13 35.72 15 2 1.01 578.71 1.45 1.61 
22 13 28.57 25 3 0.398 1880.82 2.45 1.35 
23 15 35.72 20 2 0.362 1874.89 1.71 1.63 
24 15 28.57 20 1 0.169 2870 4.04 8.04 
25 13 28.57 20 2 1.01 1884.75 2.83 2.6 
26 11 21.43 20 2 0.299 1757.39 0.78 0.74 
27 13 35.72 20 3 0.402 1712.66 2.01 1.26 

 

 
 

Fig. 7. Main effect plot of surface roughness 
 
The main effect plot as seen in Fig. 7 has shown 
the interactions between the individual process 
factors on surface roughness and the best mix to 
yield the minimal surface response can be 
deduced from the plot. A combination of (1, -1, -

1, -1) yields the best surface roughness for the 
experiment. The regression equation for 
predicting surface roughness is presented in 
equation (10). 

 

Surface Roughness =  

−25.742 +  2.0358a +  0.4565b +  0.6261c +  0.6588d −  0.08237𝑎2 −  0.007836𝑏2  −  0.014900𝑐2  −
0.36150𝑑2  −  0.00185ac +  0.06375ad                                                                    (10) 

 

Where a is the laser power, b is the scan speed, c is the exposure time and d is the number of 
passes. 

(W) (mm/s) (ms) 
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The contributing effect of laser power, scan 
speed, exposure time and no of passes on the 
surface roughness were further investigated with 
ANOVA where it is observed that there is a linear 
contribution of 5.56%, a quadratic contribution of 
90.01% and a 2-way interaction with contributing 
effect of 4.13% being the least. The quadratic or 
square contribution model shows the effect of the 
square of scan speed with 18.65%, square of 
exposure time with 23.68% and the square of no 
of passes having the most significant effect with 
43.31%. However, the experiment showed a less 
significant effect of laser power on surface 
roughness. This might be a result of the type of 
laser chosen for this experiment or its capacity 
which differs from previous experimental 
conditions.  
 
The kerf width size is desired to be maximized as 
it determines the rapidity of the surface ablation 
process. From the analyzed experimental data, it 
is found that the laser power intensity at the 
workpiece surface and the exposure time of the 
laser beam on the surface influences significantly 
the kerf width size, ANOVA shows the kerf width 

relationship with all four of the input parameters 
and their various contributions, the linear model 
shows a percentage contribution of 32.55%, the 
quadratic model has 40.58% contribution while 
the 2-way interaction has the least percentage 
contribution of 26.75%. 
 
The main effect plot for kerf width in Fig. 8 shows 
the relationship of laser power, the scan speed, 
exposure time and the no of passes. The 
combination to give a maximum kerf width from 
the main effect plot is (-1, 0, 0, 1) for the input 
parameters and this combination yields a 
maximum kerf width of 3088.81 nm. The 
exposure time has the most significant 
interaction on the kerf width as a result of the 
high input energy due to increased                 
interaction time. While optimizing kerf width, a 
25.62% interaction was observed between               
laser power and the number of passes which 
shows both factors affect the response 
significantly. The regression equation for 
determining the kerf width at different 
combinations of input factors is expressed in 
equation (11). 

 
Kerf width = 

−16924 −  867.9a +  440.2b +  1216.8c +  4928d +  73.50𝑎2  −  6.969𝑏2  −  22.203𝑐2 

+ 22.4𝑑2 –  15.45ac −  382.21ad −  1.166bc                                                                                       (11) 
 
Where: a is the laser power, b is the scan speed, c is the burning time and d is the number of passes. 
 

 
 

Fig. 8. Main effect plot of kerf width 
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Fig. 9. Main effect plot of engraved depth 
 

Engraving depth is one of the key output 
characteristics to look out for as we desired a 
deep level of engraving on the material           
surface to ensure clarity of engraving.                    
The ANOVA shows a linear contribution of 
18.41%, the quadratic contribution of 41.24% 
and a 2-way interaction of 33.27%. The main 
effect plot in Fig. 9 furthermore illustrated the 
trends of each of the factors and how it affects 
engraved depth. 
 
The combination to give the best individual 
response for the engraved depth is (1, 0, 0, 1). 
The engraving depths are mainly affected by 

scan speed, laser power and fill density and two 
of these input parameters adopted for the 
experiment show a significant effect on 
engraving depth thus validating the outcome of 
the experiment. However, the experiment has 
proven that more passes increase the engraving 
depth as more interaction occurs between the 
surface and laser beam due repetitive condition 
and also a significant interaction of 35.76% exists 
between the laser power and number of passes. 
The regression equation for engraving depth is 
expressed in the equation (12) to obtain desired 
engraving depth at any combination of the 
factors. 

 
Engraved depth = 

−71.8 + 3.44𝑎 + 1.515𝑏 + 1.770𝑐 + 10.76𝑑 − 0.0812𝑎2 − 0.02336𝑏2 − 0.04310𝑐2 − 0.135𝑑2 +
0.0180𝑎𝑐 − 0.748𝑎𝑑 − 0.00868𝑏𝑐      (12) 

 
Where: a is the laser power, b is the scan speed, c is the burning time and d is the number of passes. 
 
The material removal rate is the specific amount of ablation that is being removed from a surface per 
unit time. The focus of this study is to maximize time by ensuring the rate of material removal is 
higher. As such, lesser time will be needed to perform engraving on a surface and economically, the 
lesser the time for production, the higher the income. ANOVA shows the Material removal rate has a 
linear contribution of 17.58%, a quadratic contribution of 30.67% and a 2-ways interaction of achieved 
of 35.08% on the material removal rate. Laser power and number of passes exhibit a significant 
interaction of 34.01% on material removal rate. 
 
The main effect plot in Fig. 10 describes the relationship between the material removal rate and how 
several input parameters influence its response. The combination to give the best MRR is (1, 0, 0, -1). 
The regression equation for the material removal rate is expressed in equation (13) to obtain the 
desired response at any combination of the input factors. 

(W) (mm/s) (ms) 
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MRR =  −6898102613910 +  229506568688𝑎 +  153031639597𝑏 +  201072611122𝑐 +  1282236514608𝑑 – 

44495266𝑎2 −  2355534377𝑏2 –  4536510962𝑐2  +  24246886501𝑑2  +  16029135𝑎𝑏 +  1012267562𝑎𝑐 

–  106841906317𝑎𝑑 –  937852744𝑏𝑐 +  443332501𝑏𝑑 –  2807711211𝑐𝑑                                        (13)         
 

Where: a is the laser power, b is the scan speed, c is the burning time and d is the number of passes. 
 

 
 

Fig. 10. Main effect plot of material removal rate 
 
Analysis of variance was employed to show the 
significant effect and interaction plot was also 
obtained between some of the process factors. It 
was observed that increment in laser power 
yields a corresponding increase in material 
removal rate and engraving depth. Laser power 
has been shown to have a significant effect on 
kerf width. However, laser power does not 
significantly influence surface roughness due to 
the range of laser power selected (max power 
15W laser). 
 

Scan speed shows a significant effect on surface 
roughness, engraving depth, and material 
removal rate from the ANOVA. Also, scan speed 
has shown not to have a significant effect on kerf 
width. 
 

Exposure time has a significant effect on kerf 
width. Engraving depth, kerf width and material 
removal rate. A direct relationship exists between 
multiple passes and responses such as kerf 
width and engraving depth. On the other hand, a 
decrease in material removal rate occurs as the 
number of passes increases. 
 

3.3 Multi-Objective Optimization  
 

Having obtained the single optimization results, it 
was observed that the parametric settings to 

achieve the best of each of the desired target 
responses are different, thus the need to further 
harmonize these responses in order to get the 
optimal process factor that will yield the desirable 
responses at once. However, the suitability of 
these chosen responses needs the right set of 
parametric combinations as single optimization of 
each response will not necessarily produce the 
best combination for other response hence it 
becomes imperative to conduct a multi-objective 
optimization analysis to determine a unified 
combination of process parameters, that will be 
responsible for a low surface roughness, deep 
engraved depth, wide kerf width and a faster 
material removal rate on engraved material. 
Hence grey relational approach with principal 
component analysis was adopted to obtain the 
optimum parameters needed to yield the desired 
target response’s combined together. 
 
The responses obtained in Table 4 were 
normalized according to Eq. (3) and Eq. (4) and 
the corresponding normalized responses are 
presented in Table 5. 
 
Consequently, after finding the normalized 
responses, the next step in the grey relational 
approach is computing the difference sequence 
and grey relational coefficient. Eq. (4) and Eq. (5) 

(W) (mm/s) (ms) 
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was used for the computation respectively 
presented in Table 6. 
 
Having obtained the grey relational coefficients of 
the output characteristics, the grey relational 
grade is computed with equation (5). However, to 
scientifically obtain the weighting factor for each 
of the output characteristics, the grey relational 
coefficient data in Table 5 was subjected to 
principal component analysis (PCA). For PCA to 
deliver best results, the grey relational 
coefficients for the output characteristics must be 
highly correlated (Ojo and E. Taban 2018, 
Farayibi and Omiyale 2020). Equation (7) was 
employed for correlating the grey coefficient and 
resulting data presented in Table 7 while 
corresponding eigenvectors were evaluated 
using equation (8) and obtained eigenvectors 
tabulated in Table 8. 
 
Equation (9) was used to determine the 
contribution of the variables of each of the grey 

relational coefficient also knows as weighting 
values and its result is reported in Table 9. 
 

The first principal component (F1) contribution as 
shown in Fig. 11 of the scree plot has the largest 
cumulative variability and it was used to obtain 
the grey relational grade. 
 

The obtained weighting values of the responses 
from the PCA together with the Grey relational 
coefficient were employed in computing the GRG 
according to equation (5) and thus, the computed 
GRGs for the multi-response optimization 
process are shown in Table 10. 
 

Similarly, the comparison of the multi-response’s 
GRGs with the ideal or reference sequence 
(unity) is basically used to identify the best 
parameter combination and to also provide the 
order of significance of each parameter 
combination. The largest GRG (closest to unity) 
is considered to give the best combination of 
quality responses and process parameters. 
 

Table 5. Normalized responses 
 

Exp. no Normalized SR Normalized KW Normalized ED Normalized MRR 

1 0.6408 0.6002 0.3053 0.0937 

2 0.9075 0.6458 0.1349 0.0463 

3 0.9097 0.8293 0.0814 0.1304 

4 0.0000 0.4381 0.6616 0.3040 

5 0.7141 0.2802 0.1501 0.0495 

6 0.8406 0.5362 0.1043 0.1372 

7 0.7758 0.5590 0.1043 0.0339 

8 0.9724 0.6230 0.1349 0.1650 

9 0.8459 0.0000 1.0000 0.3493 

10 0.8842 0.5875 0.4580 0.1280 

11 0.8448 0.6785 0.2824 0.1517 

12 0.7295 0.3976 0.0840 0.0351 

13 0.8193 0.4367 0.5089 0.1975 

14 0.9724 1.0000 0.0000 0.0000 

15 0.8215 0.7937 0.4046 0.1296 

16 0.8448 0.4751 0.2163 0.2027 

17 0.0531 0.4381 0.6489 0.2947 

18 0.9272 0.5284 0.3817 0.1785 

19 0.6631 0.5918 0.1170 0.1422 

20 0.8183 0.7468 0.1069 0.0564 

21 0.8406 0.8526 0.2850 0.1622 

22 0.7566 0.4395 0.5394 0.1287 

23 0.7949 0.4416 0.3511 0.1658 

24 1.0000 0.0796 0.9440 1.0000 

25 0.1063 0.4381 0.6361 0.2920 

26 0.8618 0.4844 0.1145 0.0491 

27 0.7524 0.5007 0.4275 0.1165 
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Table 6. Computed deviation of the normalized S/N values and corresponding grey relational 
coefficients of the output characteristics 

 

 Computed Deviation, Δoi(k) Grey Relational Coefficient 

No SR KW ED MRR GRC GRC GRC GRC 

1 0.3592 0.3998 0.6947 0.9063 0.5819 0.5557 0.4185 0.3555 
2 0.0925 0.3542 0.8651 0.9537 0.8439 0.5853 0.3663 0.3439 
3 0.0903 0.1707 0.9186 0.8696 0.847 0.7455 0.3525 0.3651 
4 1 0.5619 0.3384 0.696 0.3333 0.4708 0.5964 0.418 
5 0.2859 0.7198 0.8499 0.9505 0.6362 0.4099 0.3704 0.3447 
6 0.1594 0.4638 0.8957 0.8628 0.7583 0.5188 0.3583 0.3669 
7 0.2242 0.441 0.8957 0.9661 0.6904 0.5313 0.3583 0.341 
8 0.0276 0.377 0.8651 0.835 0.9476 0.5701 0.3663 0.3745 
9 0.1541 1 0 0.6507 0.7644 0.3333 1 0.4345 
10 0.1158 0.4125 0.542 0.872 0.8119 0.5479 0.4799 0.3644 
11 0.1552 0.3215 0.7176 0.8483 0.7632 0.6086 0.4107 0.3708 
12 0.2705 0.6024 0.916 0.9649 0.649 0.4536 0.3531 0.3413 
13 0.1807 0.5633 0.4911 0.8025 0.7346 0.4702 0.5045 0.3839 
14 0.0276 0 1 1 0.9476 1 0.3333 0.3333 
15 0.1785 0.2063 0.5954 0.8704 0.7369 0.7079 0.4564 0.3649 
16 0.1552 0.5249 0.7837 0.7973 0.7632 0.4878 0.3895 0.3854 
17 0.9469 0.5619 0.3511 0.7053 0.3456 0.4708 0.5874 0.4148 
18 0.0728 0.4716 0.6183 0.8215 0.8729 0.5146 0.4471 0.3784 
19 0.3369 0.4082 0.883 0.8578 0.5975 0.5505 0.3615 0.3682 
20 0.1817 0.2532 0.8931 0.9436 0.7334 0.6639 0.3589 0.3464 
21 0.1594 0.1474 0.715 0.8378 0.7583 0.7724 0.4115 0.3737 
22 0.2434 0.5605 0.4606 0.8713 0.6726 0.4715 0.5205 0.3646 
23 0.2051 0.5584 0.6489 0.8342 0.7091 0.4724 0.4352 0.3748 
24 0 0.9204 0.056 0 1 0.352 0.8993 1 
25 0.8937 0.5619 0.3639 0.708 0.3588 0.4708 0.5788 0.4139 
26 0.1382 0.5156 0.8855 0.9509 0.7835 0.4923 0.3609 0.3446 
27 0.2476 0.4993 0.5725 0.8835 0.6688 0.5003 0.4662 0.3614 

 
Table 7. Correlation matrix 

 

Variables GRC SR GRC KW GRC ED GRC MRR 

GRC SR 0.027047 0.000 -0.002 0.005 
GRC KW 0.000 0.018926 0.018 0.010 
GRC ED -0.002 0.018 0.024682 0.013 
GRC MRR 0.005 0.010 0.013 0.014765 

 
Table 8. Eigenvectors 

 

  F1 F2 F3 F4 

GRC SR 0.021 0.973 -0.206 0.105 
GRC KW 0.579 -0.049 -0.499 -0.643 
GRC ED 0.688 -0.114 -0.104 0.709 
GRC MRR 0.436 0.196 0.836 -0.270 

 
Table 9. Contribution of the variables (%) 

 

  F1 F2 F3 F4 

GRC SR 0.046 94.604 4.237 1.113 
GRC KW 33.550 0.236 24.873 41.341 
GRC ED 47.351 1.300 1.078 50.272 
GRC MRR 19.053 3.861 69.812 7.274 
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Fig. 11. Scree plot 
 

Table 10. Experimental design mix and their corresponding grey relational grade for the 
outputs 

 

No Process Parameter Grey Relational Grade 

A (W) B (mm/s) C (ms) D GRG 

1 15 28.57 20 3 0.41865 
0.38575 
0.36304 
0.54101 
0.45636 
0.40177 
0.39334 
0.39460 
0.89215 
0.45128 
0.40780 
0.41941 
0.49145 
0.33361 
0.41565 
0.43025 
0.53619 
0.44731 
0.39528 
0.37081 
0.39043 
0.49481 
0.45595 
0.90624 
0.53192 
0.40731 
0.45755  

2 13 21.43 25 2 
3 13 28.57 15 1 
4 13 28.57 20 2 
5 11 28.57 25 2 
6 13 35.72 20 1 
7 13 35.72 25 2 
8 13 21.43 20 1 
9 11 28.57 20 3 
10 13 21.43 20 3 
11 15 28.57 15 2 
12 11 35.72 20 2 
13 15 28.57 25 2 
14 13 21.43 15 2 
15 13 28.58 15 3 
16 13 28.57 25 1 
17 13 28.57 20 2 
18 15 21.43 20 2 
19 11 28.57 20 1 
20 11 28.57 15 2 
21 13 35.72 15 2 
22 13 28.57 25 3 
23 15 35.72 20 2 
24 15 28.57 20 1 
25 13 28.57 20 2 
26 11 21.43 20 2 
27 13 35.72 20 3 

 
However, the influence of laser engraving 
parameters on the engraved surfaces is 

examined via analysis of variance as shown in 
Table 11. 
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Table 11. Analysis of variance for GRG 
 

Source DF Seq SS Contribution (%)) Adj SS Adj MS    F-Value 

Model 14   0.433342 90.94 0.433342 0.030953 8.60 
Linear 4 0.019892 4.17 0.151889 0.037972 10.55 
Laser Power 1 0.002886  0.61 0.000180 0.000180 0.05 
Scan Speed 1 0.000802 0.17 0.031348 0.031348 8.71 
Exposure Time 1 0.011446 2.40 0.032628 0.032628 9.07 
No of Passes 1 0.004757 1.00 0.104073 0.104073 28.92 
Square 4 0.170512 35.78 0.170512 0.042628 11.85 
Laser Power*Laser Power 1 0.033589 7.05 0.005763 0.005763 1.60 
Scan Speed*Scan Speed 1 0.049457 10.38 0.062712 0.062712 17.43 
Exposure Time*Exposure Time 1 0.083596 17.54 0.063431 0.063431 17.63 
No of Passes*No of Passes 1 0.003871 0.81 0.003871 0.003871 1.08 
2-Way Interaction 6 0.242938 50.98 0.242938 0.040490 11.25 
Laser Power*No of Passes 1 0.242291 50.85 0.242291 0.242291 67.33 
Scan Speed*Exposure Time 1 0.000607 0.13 0.000607 0.000607 0.17 
Error 12 0.043182 9.06 0.043182 0.003598  
Lack-of-Fit 10   0.043140 9.05 0.043140 0.004314    208.31 
Pure Error 2 0.000041  0.000041 0.000021  
Total 26 0.476524 100.00    

S     0.0599874       R-Sq      90.94% 
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The optimal combination of the process 
parameters (laser power, scan speed, exposure 
time and no of passes) that produces the best 
combination of the surface quality characteristics 
is evaluated through the consideration of GRG. 
Based on the high grey relational grade obtained 
which is close to unity, we can conveniently 
ascertain that experiment 24 having the largest 
GRG yields the best responses as targeted for 
this research. The optimal combination of the 
process parameters obtained therefore are (1, 0, 
0, -1) which implies 15 W laser power, 28.57 
mm/s scan speed, exposure time of 20 ms and 
(1) no of pass. 
 

4. CONCLUSION 
 
This study developed and tested a 15W laser 
engraving machine on AISI 304 stainless steel to 
explore the relationship between selected 
process parameters and various responses. A 
multi-objective optimization approach combining 
Principal Component Analysis (PCA) and Grey 
Relational Analysis (GRA) was used to identify 
the optimal set of parameters for achieving low 
surface roughness, deep engraving depth, wide 
kerf width, and fast material removal rate. The 
following conclusions were drawn: 

 
i. In the single response optimization of the 

laser engraved surfaces of stainless steel 
AISI 304, it was observed that employing a 
laser power of 15 W, scanning speed of 
21.43 mm/s, exposure time of 15 ms, and 
1 pass resulted in the least surface 
roughness of 0.1775 nm. A combination of 
11 W laser power, 28.57 mm/s speed, 20 
ms exposure time, 3 passes yielded the 
best kerf width of 3088.81 nm. Maximum 
groove depth of 1.822 nm was achieved at 
15 W laser power, 28.57 mm/s speed, 20 
ms exposure time and 3 laser passes.  the 
maximum material removal rate of 8.04 
(1011) nm3/s was achieved with 15 W, 
28.57 mm/s, 20 ms, and 1 laser pass. 

ii. In the multi-objective optimization, grey 
relational grade analysis revealed that the 
optimal combination for achieving the best 
balance across all responses was 15 W 
laser power, 28.57 mm/s scanning speed, 
20 ms exposure time, and 1 pass. 
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