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ABSTRACT 
 

This paper examines two simple (albeit useful) methods used to evaluate the reliability of two-
terminal multistate flow networks. These two methods involve two Karnaugh map versions, namely 
the Variable-Entered Karnaugh Map (VEKM) and the Multi-Valued Karnaugh Map (MVKM). These 
two versions are crucial in providing not only the visual insight necessary to write better future 
software but also adequate means of verifying such software. We assess these two versions of 
map methods versus the exhaustive search method, which guarantees conceptual clarity at the 
expense of lack of computational efficiency. Our target is the evaluation of the probability mass 
function (pmf) in a wide array of cases, in which we consider flow from a source node to a sink 
node in a capacitated network with a multistate capacity model for the links. Each network link has 
a varying capacity, which is assumed to exist in a mutually exclusive sense. The reliability of the 
system is wholly dependent on its ability to successfully transmit at least a certain required system 
flow from the source (transmitter) to the sink (receiver) station. The max-flow min-cut theorem is 
critical in obtaining all successful states. To demonstrate the proposed methods applicability, two 
demonstrative examples are given with ample details. 
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1. INTRODUCTION 
 
The existing literature has significantly explored 
various methods for evaluating the reliability of 
two-state flow networks [1-5], which are networks 
of two-state elements. To effectively model a two-
state element (whether it is a node or a branch), 
such element must be assigned only a single 
fixed capacity, which expresses the maximum 
flow allowed by that element. According to the 
two-state model, a node or a branch that cannot 
transmit the maximum flow (albeit it might 
transmit a significant amount of flow, i.e. a 
pronounced portion of the maximum flow), is 
nevertheless said to be in a failed state. 
Therefore, there is an obvious need for multistate 
modelling that is to be achieved through the 
introduction of one or several intermediate 
state(s) and assigning each state specific 
capacities less than the maximum in order to 
appropriately mimic the practical situation. 
Undoubtedly, in a multistate model, there are 
many states for a network element, with each 
state having an assigned capacity that is less 
than that element’s maximum capacity. This 
scenario, in a telecommunication network, is 
depicted by the exchanges (represented as 
nodes in a reliability graph), which can either be 
partially or completely healthy. The event of a 
network exchange being partially healthy occurs 
when some selectors (in a 20 out of 1000 line 
exchange, say) are down, which results in the 
reduction of the exchange’s capacity. Hence, 
according to the multi-state model, an exchange 
may not be considered to be in a failed state if it 
has a capacity that is less than the maximum. In 
a telecommunication network, it must be noted 
that all the inter-toll trunks or toll-connecting 
trunks (represented as branches in a reliability 
graph), may not be healthy all the time, even if 
they are partially serving the purpose. A 
prominent related problem is the two-terminal 
multistate reliability evaluation, which is now 
considered as a classical network reliability 
problem. Several methods have been developed 
that focus on this problem as well as provide 
critical insights into multistate modelling in 
general [6-15]. 
 
This paper examines two methods of evaluating 
the reliability of multistate flow networks. The first 
method involves a map procedure, in which the 
reliability is evaluated through a Karnaugh map of 
selective states from capacity vectors. The map 

constitutes a very powerful manual and simple 
tool that provides pictorial insight about the 
various functional properties and procedures 
pertaining not only to Boolean functions but also 
to pseudo-Boolean functions [1]. We propose 
herein the utilization of two variants of the 
Karnaugh map, namely (a) the Multi-Valued 
Karnaugh Map (MVKP) [14,16,17], which allows a 
convenient representation of non-binary discrete 
random functions, and (b) the Variable-Entered 
Karnaugh Map (VEKM), which has proven to be 
an effective tool for increasing the variable-
handling capacity of the map [18-21]. Different 
researchers have coined different names for 
these variants including basic maps with 
eliminated variables [22], truth tables with 
distributed simplifications [23], K-maps within K-
maps or reduced Karnaugh maps [24,25] or 
variable-entered maps [26]. The VEKM has been 
used successfully in several recent research 
works as in [27-33]. 
 
The second method involves Exhaustive Search 
(ES) which is also known as brute force, direct 
search or the generate-and-test method. In spite 
of the existence of elegant algorithms for 
evaluating certain multistate flow networks 
[34,35], exhaustive search still acquires 
significant acceptability and utility due to the lack 
of regular structure in many other real-life 
systems, a limitation that leaves it occasionally 
as the only possible solution [36-39]. It is worth 
stating that the exhaustive search (albeit its 
extreme inefficiency) is sometimes the only 
method that can systematically enumerate all 
possible cases for the multistate �� network, and 
check on whether each case can satisfy the 
problem statement. The complexity of this 
method deteriorates dramatically with the 
increase in the size of a capacitated multi state 
��  network. In fact, there is an exponential 
increase in the number of cases to be 
considered, which results in infeasible and often 
prohibitively lengthy searches. However, the 
recent increase in memory sizes and computing 
powers, and the emergence of many-core 
processors as well as the development of parallel 
and distributed programming has made the 
utilization of exhaustive search in many problems 
both feasible and robust, besides reviving 
interest in brute-force techniques. 
 
The methods proposed herein will not only 
explore the cutsets of the studied network but will 
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also examine the required flow capacity and the 
corresponding capacity vectors right from the 
source node to the sink node. We aligned our 
discussion of these methods to the two problems 
explicated by the authors in [34,35]. 
 
The remaining part of this paper is organized as 
follows: Section 2 presents the underlying 
assumptions for our model and the notation 
used. Section 3 clarifies the two proposed 
methods. While the first and main method in this 
paper depends on Karnaugh maps, the other 
method uses a MATLAB code for implementing 
the exhaustive search and determining full 
characterizations for the pertinent problems, 
including the probability mass function (pmf) and 
the complementary cumulative distribution 
function (CCDF) of network flow, treated as a 
discrete random variable. Section 4 provides two 
examples and their solutions are presented to 
illustrate the proposed techniques for evaluating 
the reliability of flow network considered as a 
multi-state system. Section 5 concludes the 
paper.  
 

2. ASSUMPTIONS AND NOTATION 
 
Assumptions: 
 
The proposed methods are based on the 
following assumptions. 
 

(1) The physical network is modelled by a 
linear graph. 

(2) Each network branch (edge or link) has a 
multistate representation, i.e., a 
representation with a failed state with zero 
capacity, a state of perfect success with 
maximum capacity and other states of 
partial success with capacities less than 
the maximum capacity. 

(3) The probability density function of the 
capacity for each branch (edge or link) is 
known. 

 

Notation: 
 

�  : Connected graph of flow network 
� = (�, �) 

�      : A set of nodes (vertices); �� ∈ � 
�      : A set of branches (edges or links); �� ∈ � 
�, �    : Source and terminal nodes 
��      : The number of states of the ��ℎ link  

��     : Be the ��ℎ cutset of the flow network, 
� = 1,2, … , � 

�(��)  : The flow capacity of the ��ℎ cut of the 
flow network, � = 1,2, … , � 

��     : Required system capacity  
��

�     : Capacity value for the ��ℎ branch of the 

network in the ��ℎ state of the capacity 
vector  

��     : Capacity vector for the ��ℎ branch, e.g. 

�� ≡ (��
�, ��

�, … , ��
��) 

��     : Probability vector of the capacity vector 

�� 

�     : s-t reliability of the flow network. 
 

3. PROPOSED METHODS 
 
The methods proceed to evaluate the reliability of 
the multistate flow network, based on knowledge 
of the following: 
 

(i) The required system capacity. 
(ii) The number of states of each element 

(whether it is a node or a branch). 
(iii) Capacities of all states of each branch. 
(iv) Probabilities of assigned units of flow for all 

states of each branch. 
 
We solve each example by two methods. First, 
we evaluate the given multistate flow network by 
using two Karnaugh map variants, namely, the 
Multi-Valued Karnaugh Map (MVKM) that 
appears in Figs. 2 and 7, which are 4-variable 
multi-valued maps, and the Variable-Entered 
Karnaugh Map (VEKM) that appears in Figs. 3 
and 8. Our solution strategy follows a divide-and-
conquer paradigm. We identify the two most 
prominent cutsets (involving the smallest 
numbers of links) of the flow network using any 
of the methods for minimal cut enumeration [40-
42]. Let these two cutsets be denoted by ��  , 
where � = 1, 2.  From the max-flow min-cut 
theorem [43-45], a flow of the value ��  is 
attainable in � , only where min[�(��)] ≥ ��, 
� = 1, 2 , i.e. [�(��) ≥ ��, �(��) ≥ ��] , where 
�(��) is the flow capacity of the cutset �� . First, 
all of the possible states of the pertinent 
branches (constituting the two most prominent 
cutsets �� , � = 1, 2) are identified as cells in a 
Multi-Valued Karnaugh Map (MVKM), with the 
corresponding total capacity �(��) + �(��) being 
entered in these cells. The states of the pertinent 
branches which allow the desired amount of flow 
from the two most prominent cutsets are sorted 
out.  Each of these success states (with a known 
probability) is considered individually to identify 
success sub-states within them as specific 
values of the remaining variables. 
 
The second method considered herein is a 
computer-based method intended mainly as a 



verification means for the earlier manual m
It involves exhaustive search, which works by 
calculating the multi-state truth table for all 
combinations of branch values by using a 
specific MATLAB code, and consequently 
determining the probability mass function (pmf) 
of the required system capacity ��  
random variable. The code also characterizes 
by its complementary cumulative distribution 
function (CCDF). Either of these two 
characterizations is a complete characterization 
of ��, and can be used to specify the 
of success of the network in maintaining a 
specific flow value. 
 

4. ILLUSTRATION 
 
Example A: 
 
Fig. 1 shows the Graph Network of Patra and 
Misra [35], a capacitated multi-state 
with seven different branches 
��, ��, ��, ��, ��, �� ��� �� , with different 
capacities and probabilities as shown in Table 1.
 
So, we have  3� ∗ 2� = 648 states. And there are 
6 minimal cutsets with cutset capacities:
 
�� + �� ,  �� + �� , �� + �� + �� , �� + �� +

+ �� + ��, and  �� + ��

 
The required system capacity in Patra and Misra 
[35] is �� = 6 �����. So, we look at the first two 
cutsets (involving the smallest numbers of links) 
of the flow network which are of cutset 
capacities:  �� + �� ,  �� + ��  and find all possible 
solutions for �� + �� ≥ 6 ,  �� + �� 

provides a quick aid for obtaining such solutions. 
 

Fig. 1. A capacitated 7-branch multi
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verification means for the earlier manual method. 
It involves exhaustive search, which works by 

state truth table for all 
combinations of branch values by using a 
specific MATLAB code, and consequently 
determining the probability mass function (pmf) 

  as a discrete 
random variable. The code also characterizes �� 
by its complementary cumulative distribution 

(CCDF). Either of these two 
characterizations is a complete characterization 

, and can be used to specify the probability 
of success of the network in maintaining a 

1 shows the Graph Network of Patra and 
state �� network, 

with seven different branches 
, with different 

capacities and probabilities as shown in Table 1. 

states. And there are 
6 minimal cutsets with cutset capacities: 

+ �� , �� + ��

� +  �� + �� 

The required system capacity in Patra and Misra 
. So, we look at the first two 

cutsets (involving the smallest numbers of links) 
of the flow network which are of cutset 

and find all possible 
≥ 6 . Fig. 2 

provides a quick aid for obtaining such solutions. 

This figure displays a Karnaugh map with map 
entries representing the combined capacity of the 
two most prominent cutsets, i.e., the minimum 
among the capacities of these two cutsets, viz. 
� = min  (�� + ��, �� + ��) , as a function of the 
pertinent branch capacities, which serve as map 
variables. 
 
As can be seen above from the 4-
valued-Karnaugh Map, we can simply find the 
following solutions  
 

(i) The possible vectors corresponding to the 
requirement �� + �� ≥ 6  are 
4 with probability (0.6) ��� �
{2, 3 } with probabilities (0.3,

(ii) The possible vectors corresponding to the 
requirement �� + ��  ≥ 6 are 
3 with probability (0.4) ���  �
{3, 4 } with probabilities(0.2, 0

 
Now, our solutions above specify a single value 
of capacity for branches 1 and 3. Therefore, the 
original problem splits into subproblems each 
constituting a 5-branch multi-state 
Since we demand one of two capa
of the branches 6 and 7, we need to study four 
subproblems, each pertaining to specific 
capacities for branches 6 and 7. Fi
demonstrates a VEKM for whose four entries are 
simply the flow capacity for each of these 
subproblems. This VEKM uses the two          
variables ��  ��� �� as map variables, while the 
remaining five variables are supposedly entered 
variables. Since two of these have a specific 
value of capacity (�� ��� ��) , we end up with 
only three variables ��, �� ��� �
variables. 

 
branch multi-state ��  network with six minimal cutsets
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This figure displays a Karnaugh map with map 
entries representing the combined capacity of the 
two most prominent cutsets, i.e., the minimum 

these two cutsets, viz. 
, as a function of the 

pertinent branch capacities, which serve as map 

-variable multi-
Karnaugh Map, we can simply find the 

The possible vectors corresponding to the 
are �� =

�� =
( 0.5). 

The possible vectors corresponding to the 
are �� =

�� =
0.6). 

Now, our solutions above specify a single value 
of capacity for branches 1 and 3. Therefore, the 
original problem splits into subproblems each 

state ��  network. 
Since we demand one of two capacities for each 
of the branches 6 and 7, we need to study four 
subproblems, each pertaining to specific 
capacities for branches 6 and 7. Fig. 3 
demonstrates a VEKM for whose four entries are 
simply the flow capacity for each of these 

uses the two          
as map variables, while the 

remaining five variables are supposedly entered 
variables. Since two of these have a specific 

, we end up with 
��  as entered 
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Table 1. Branch capacity vectors and associated probability vectors for the network in Fig. 1 

 
 �� �� �� �� �� �� �� 
Capacity 
vectors 

0 2 4 0 3 0 1 3 0 4 0 3 0 2 3 0 3 4 

Probability 
vectors 

0.1 0.3 0.6 0.2 0.8 0.3 0.3 0.4 0.3 0.7 0.3 0.7 0.2 0.3 0.5 0.2 0.2 0.6 

 

      �� 
��      

0 (0.1) 2 (0.3) 4 (0.6) 
 

     �� 

0 
(0.3) 

0 0 0 0 0 0 0 0 0 
0 

(0.2)  

0 2 3 2 3 3 3 3 3 
3 

(0.2) 

0 2 3 2 4 4 4 4 4 
4 

(0.6) 

1 
(0.3) 

0 1 1 1 1 1 1 1 1 
0 

(0.2)  

0 2 3 2 4 4 4 4 4 
3 

(0.2) 

0 2 3 2 4 5 4 5 5 
4 

(0.6) 

3 
(0.4) 

0 2 3 2 3 3 3 3 3 
0 

(0.2)  

0 2 3 2 4 5 4 
6 

(0.0144) 
6 

(0.024) 
3 

(0.2) 

0 2 3 2 4 5 4 
6 

(0.0432) 
7 

(0.072) 
4 

(0.6) 

 
    �� 

0 
(0.2) 

2 
(0.3) 

3 
(0.5) 

0 
(0.2) 

2 
(0.3) 

3 
(0.5) 

0 
(0.2) 

2 (0.3) 3 (0.5)  

 
Fig. 2. A 4-variable multi-valued Karnaugh map representation of the combined capacity of the 

two prominent cutsets (with probabilities of successful states shown in parentheses) 
 

�� 
 

��       
2 (0.3) 3 (0.5) 

3 
(0.2) 

min( 6 , 6 , �� + �� + 2, �� + �� + 3 , 4 +
�� + �� + 3 , 3 + �� + �� + 2)   
 
�������� = (0.0144) 

min( 7 , 6 , �� + �� + 3, �� + �� + 3 , 4 + �� + �� +
3 , 3 + �� + �� + 3)   
 
�������� = (0.024) 

 

4 
(0.6)  

min( 6 , 7 , �� + �� + 2, �� + �� + 4 , 4 +
�� + �� + 4 , 3 + �� + �� + 2)   
 
�������� = (0.0432) 

min( 7 , 7 , �� + �� + 3, �� + �� + 4 , 4 + �� + �� +
4 , 3 + �� + �� + 3)   
 
�������� = (0.072) 

 

 
Fig. 3. A variable – entered Karnaugh map for the flow capacity �/��{�} ��{�}  with map 

variables �� ��� �� (with the probability of each map cell shown parenthetically) 
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Thus, we have 4 problems that are represented 
by Karnaugh maps in 3 variables each, namely 
��, �� ��� �� , which all happen to be binary. 
Therefore, each of these maps has 8 states only 

as shown in Figs. 4a-4d. The map entries are the 
real numbers which represent the flow capacities 
of the network according to the max-flow min-cut 
theorem, viz. 

 

� = min( �� + �� ,  �� + �� , �� + �� + �� , �� + �� + �� , �� + �� + �� + ��,   �� + �� + �� + �� ) 

 

First case: �� = 4 (0.6) ,   �� = 3(0.4) ,   �� = 2 (0.3) ,   �� = 3 (0.2 ) 

 

    �� 

��     
0 (0.2) 3 (0.8)  

0 
(0.3) 

 
min( 6,6,2,3,7,5) =  2  

 

� = 0.0002592 

 

min( 6,6,6,3,11,9) =  3  

 

� = 0.0006048 

min( 6,6,9,6,11,9) =  6  

 

� = 0.0024192 

min( 6,6,5,6,7,5) =  5  

 

� = 0.0010368 

3 
(0.7) 

 
min( 6,6,2,6,10,8) =  2  

 

� = 0.0006048 

 

 
min( 6,6,6,6,14,12) =  6  

 

� = 0.0014112 

 

 
min( 6,6,9,9,14,12) =  6  

 

� = 0.0056448 

 

 
min( 6,6,5,9,10,8) =  5  

 

� = 0.0024192 

 

 

   �� 
0 (0.3) 4 (0.7) 0 (0.3) 

 

Fig. 4a. Karnaugh Map Representation of the flow capacity �/��{�} ��{�} ��{�} ��{�}  with map 
variables ��, �� , ��� �� 

 

Second case: �� = 4 (0.6) ,   �� = 3(0.4),   �� = 3 (0.5) ,   �� = 3 (0.2 ) 

 

    �� 

��     
0 (0.2) 3 (0.8)  

0 
(0.3) 

 
min( 7,6,3,3,7,6) =  3  

 

� = 0.000432 

 

min( 7,6,7,3,11,10) =  3  

 

� = 0.001008 

min( 7,6,10,6,11,10) =  6  

 

� = 0.004032 

min( 7,6,6,6,7,6) =  6  

 

� = 0.001728 

3 
(0.7) 

 
min( 7,6,3,6,10,9) =  3  

 

� = 0.001008 

 

 
min( 7,6,7,6,14,13) =  6  

 

� = 0.002352 

 

 
min( 7,6,10,9,14,13) =  6  

 

� = 0.009408 

 

 
min( 7,6,6,9,10,9) =  6  

 

� = 0.004032 

 

 

   �� 
0 (0.3) 4 (0.7) 0 (0.3) 

 
Fig. 4b. Karnaugh Map Representation of the flow capacity �/��{�} ��{�} ��{�} ��{�}  with map 

variables ��, �� , ���  ��   
 

Third case: �� = 4 (0.6) ,   �� = 3(0.4),   �� = 2 (0.3) ,   �� = 4 (0.6 ) 
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    �� 
��     

0 (0.2) 3 (0.8)  

0 
(0.3) 

 
min( 6,7,2,4,8,5) =  2  

 
� = 0.0007776 

 

min( 6,7,6,4,12,9) =  4  

 
� = 0.0018144 

min( 6,7,9,7,12,9) =   6  

 
� = 0.0072576 

min( 6,7,5,7,8,5) =   5  

 
� = 0.0031104 

3 
(0.7) 

 
min( 6,7,2,7,11,8) =  2  

 
� = 0.0018144 

 

 
min( 6,7,6,7,15,12) =  6  

 
� = 0.0042336 

 

 
min( 6,7,9,10,15,12) =  6  

 
� = 0.0169344 

 

 
min( 6,7,5,10,11,8) =  5  

 
� = 0.0072576 

 

 
   �� 

0 (0.3) 4 (0.7) 0 (0.3) 

 
Fig. 4c. Karnaugh Map Representation of the flow capacity �/��{�} ��{�} ��{�} ��{�}  with map 

variables ��, �� , �����   
 

Fourth case: �� = 4 (0.6) ,   �� = 3(0.4) ,   �� = 3 (0.5) ,   �� = 4 (0.6 ) 
 

    �� 
��     

0 (0.2) 3 (0.8)  

0 
(0.3) 

 
min( 7,7,3,4,8,6) =  3  

 
� = 0.001296 

 

min( 7,7,7,4,12,10) =  4  

 
� = 0.003024 

min( 7,7,10,7,12,10) =  7  

 
� = 0.012096 

min( 7,7,6,7,8,6) =   6  

 
� = 0.005184 

3 
(0.7) 

 
min( 7,7,3,7,11,9) =  3  

 
� = 0.003024 

 

 
min( 7,7,7,7,15,13) =  7  

 
� = 0.007056 

 

 
min( 7,7,10,10,15,13) =  7  

 
� = 0.028224 

 

 
min( 7,7,6,10,11,9) =  6  

 
� = 0.012096 

 

 
   �� 

0 (0.3) 4 (0.7) 0 (0.3) 

 
Fig. 4d. Karnaugh Map Representation of the flow capacity �/��{�} ��{�} ��{�} ��{�} with map 

variables ��, �� , ���  �� 
 
To facilitate probability calculation, we highlight 
success states (those of capacity not less than 6) 
in Figs. 4a-4d in yellow, and write the probability 
of each state within its cell. Hence, the final 
system reliability is given by the sum of the 
probabilities of the success states, namely: 
 

� = Pr{�� ≥ 6} =  0.0024192 +  0.0014112 +
 0.0056448 +  0.004032 +  0.001728 +
 0.002352 +  0.009408 +  0.004032 +
 0.0072576 +  0.0042336 +  0.0169344 +
 0.012096 +  0.005184 +  0.007056 +
 0.028224 +  0.012096 = �. ������� ,  which 
can be seen as a similar result to the work of 
Patra and Misra [35]. 

The second method to be considered herein is 
that of exhaustive search. This method 
calculates the truth table for all possible 
combinations implied by Table 1. The number of 
these combinations (also called cases or states) 
is 3

4
 * 2

3
 = 648 cases. We constructed a special 

MATLAB code to calculate the maximum 
possible flow for each of these deterministic 
cases, using the max-flow min-cut theorem, 
namely. Flow in a particular deterministic state = 
min {cutset capacity} = min[�(��)] , where �(��) 
is the flow capacity of the cutset �� , which is  the 
��ℎ cutset of the network, and the minimization 
operator (min) is performed over � = 1,2, … 6 . 
Table 2 displays numerical values of the 
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probability mass function (pmf) and the 
complementary cumulative distribution function 
(CCDF) of the random flow variable. The results 
in this table match (within the accuracy used) 
those obtained with our former map procedure at 
the required system capacity of �� = 6 �����. 
Though the exhaustive search method is more 
computationally demanding, it is more 
informative as it gives a result at any required 
system capacity. Figs. 5a and 5b shows the 
corresponding graphical representations of the 

probability mass function and the complementary 
cumulative distribution function of the random 
flow variable. In passing, we note that this 
discrete random flow variable would have still 
been multi-valued, even if all the input variables 
had been binary (see, e.g., [1]). The increase in 
difficulty in going from a flow network with binary 
components to one with multi-state components 
does not pertain to the form of the final solution, 
but is implicit in the approach needed to achieve 
this solution. 

 

 
 

Fig. 5a. A plot of the pmf with all required cases 
 

 
 

Fig. 5b. A plot of the CCDF with all required cases 



Table 2. The probability mass function (pmf) and the complementary cumulative distribution 
function for the random flow variable 

Flow 0 1 2 

pmf 0.10065 0.057583 0.093355

Case F > -1 F > 0 F > 1

CCDF 1.00 0.8993 0.8418

 
Example B: 
 
Fig. 6 shows the Graph Network of Sharma, et 
al. [34], a capacitated multi-state ��
five different branches ��, ��, ��, �
different capacities and probabilities as shown in 
Table 3. 
 

 

Fig. 6. A capacitated 5-branch multi
network with four minimal cutsets

 

Table 3. Branch capacity vectors and associated probability vectors for the network in Fig.

 �� 

Capacity 
vectors 

0 2 0 

Probability 
vectors 

0.2 0.8 0.1

 

      �� 
�� 

0 (0.2)

0 
(0.1) 

0 0

0 2

2 
(0.9) 

0 2

0 3

 
    �� 

0 
(0.2) 

3 
(0.4)

Fig. 7. A 4-variable multi-valued Karnaugh map representation of the combined capacity of the 
two prominent cutsets (with probabilities of successful 
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Table 2. The probability mass function (pmf) and the complementary cumulative distribution 
function for the random flow variable  

 
3 4 5 6 7 

0.093355 0.20436 0.26935 0.1506 0.076733 0.047376

F > 1 F > 2 F > 3 F > 4 F > 5 F > 6

0.8418 0.7484 0.5441 0.2747 0.1241 0.0474

6 shows the Graph Network of Sharma, et 
 network, with 

�� ��� ��  with 
different capacities and probabilities as shown in 

 

branch multi-state �� 
network with four minimal cutsets 

We have  2 ∗ 2 ∗ 3 ∗ 2 ∗ 2 = 48 states. And there 
are 4 minimal cutsets with cutset capacities:
 
�� + �� ,  �� + �� , �� + �� + �� , ���
 
The required system capacity in Sharma, et al. 
[34] is �� = 4 �����. So, we look at the first two 
cutsets (involving the smallest numbers of links) 
of the flow network which are of cutset 
capacities:  �� + �� ,  �� + ��  and find all possible 
solutions for �� + �� ≥ 4 ,  �� + ��

provides a quick aid for obtaining such solutions. 
This figure displays a Karnaugh map with map 
entries representing the combined capacity of the 
two most prominent cutsets, i.e., the minimum 
among the capacities of these two cutsets, viz. 
� = min(�� + �� ,  �� + �� ), as a function of the 
pertinent branch capacities, which serve as map 
variables.

 
Table 3. Branch capacity vectors and associated probability vectors for the network in Fig.

 
�� �� �� 

 2 0 3 4 0 2 

0.1 0.9 0.2 0.4 0.4 0.3 0.7 

0 (0.2) 2 (0.8) 
 

   �� 

0 0 0 0 0 
0 

(0.3) 

2 2 2 2 2 
2 

(0.7) 

2 2 2 2 2 
0 

(0.3 

3 
4 

(0.0504) 
2 

4 
(0.2016) 

4 
(0.2016) 

2 
(0.7) 

3 
(0.4) 

4 
(0.4) 

0 
(0.2 

3 
(0.4) 

4 
(0.4) 

 

 
valued Karnaugh map representation of the combined capacity of the 

two prominent cutsets (with probabilities of successful states shown in parentheses)
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Table 2. The probability mass function (pmf) and the complementary cumulative distribution 

8 

0.047376 0.00 

F > 6 F > 7 

0.0474 0.00 

states. And there 
are 4 minimal cutsets with cutset capacities: 

 �� + �� + ��  

The required system capacity in Sharma, et al. 
. So, we look at the first two 

cutsets (involving the smallest numbers of links) 
of the flow network which are of cutset 

and find all possible 

� ≥ 4 . Fig. 7 
provides a quick aid for obtaining such solutions. 
This figure displays a Karnaugh map with map 
entries representing the combined capacity of the 
two most prominent cutsets, i.e., the minimum 

se two cutsets, viz. 
as a function of the 

pertinent branch capacities, which serve as map 

Table 3. Branch capacity vectors and associated probability vectors for the network in Fig. 6 

�� 

0 4 

0.1 0.9 

valued Karnaugh map representation of the combined capacity of the 
states shown in parentheses) 
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As can be seen above from the 4-variable multi-
valued-Karnaugh Map, we can simply find the 
following solutions 
 

(i) The possible vectors corresponding to the 
requirement �� + ��  ≥ 4   are �� =
{0,2} with probability (0.2,0.8) ��� �� =
{3,4 } with probabilities (0.4, 0.4). 

(ii) The possible vectors corresponding to the 
requirement  �� + ��  ≥ 4  are �� =
2 with probability (0.9) ���  �� =
2 with probabilities(0.7). 

 
Now, our solutions above specify a single value 
of capacity for branches 2 and 4. Therefore, the 

original problem splits into subproblems each 
constituting a 3-branches multi-state ��           
network. Since we demand one of two capacities 
for each of the branches 1 and 3, we need to 
study four subproblems, each pertaining to 
specific capacities for branches 1 and 3.               
Fig. 8 demonstrates a VEKM for whose four 
entries are simply the flow capacity for each of 
these subproblems. This VEKM uses the two 
variables �� ��� ��  as map variables, while the 
remaining three variables are supposedly 
entered variables. Since two of these have a 
specific value of capacity ( ����� ��) , we end           
up with only one variable ��  as an entered 
variable. 

 
�� 
 

�� 
0 (0.2) 2 (0.8) 

4 
(0.4) 

���( 4, 4, 2 + ��, 6 + ��) 
 

�������� = (0.0504) 

min( 6, 4, 4 + ��, 6 + ��) 
 

�������� = (0.2016) 

3 
(0.4) 

���( 3, 4, 2 + ��, 5 + ��) 
 

�������� = (0.0504) 

 
���( 5, 4, 4 + ��, 5 + ��) 

 
�������� = (0.2016) 

 

 
Fig. 8. A variable – entered Karnaugh map for the flow capacity �/��{�} ��{�} with map 

variables �� ��� ��(with the probability of each map cell shown parenthetically) 
 

Thus, we have 4 problems that are represented by Karnaugh maps in one variable each, namely ��, 
which all happens to be a binary variable. Therefore, each of these maps has 2 states only as shown 
in Figs. 9a-9d. the map entries are the real numbers which represent the flow capacities of the 
network according to the max-flow min-cut theorem, viz. 
 

F =  min ( �� + �� ,  �� + �� , �� + �� + �� , �� + �� + �� ) 
 

First state:  �� = 0 (0.2) ,   �� = 2(0.9) ,   �� = 4 (0.4) ,   �� = 2 (0.7 ) 
 

    �� 
     

0 (0.1) 4 (0.9) 

 

 
min( 4,4,2,6) =  2  

 
� = 0.00504 

 

min( 4,4,6,10) =  4  
 

� = 0.04536 

 
Fig. 9a. Karnaugh Map Representation of the flow capacity �/��{�}��{�}��{�}��{�} with map 

variable �� 
 

Second state:  �� = 2 (0.8) ,   �� = 2(0.9) ,   �� = 4 (0.4) ,   �� = 2 (0.7 ) 
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    �� 
     

0 (0.1) 4 (0.9) 

 

 
min( 6,4,4,6) =  4  

 
� = 0.02016 

 

min( 6,4,8,10) =  4  
 

� = 0.18144 

 
Fig. 9b. Karnaugh Map Representation of the flow capacity �/��{�}��{�}��{�}��{�} with map 

variable �� 
 

Third state:  �� = 0 (0.2) ,   �� = 2(0.9) ,   �� = 3 (0.4) ,   �� = 2 (0.7 ) 
 

    �� 
     

0 (0.1) 4 (0.9) 

 

 
min( 3,4,2,5) = 2  

 
� =0.00504 

 

min( 3,4,6,9) =  3  
 

� =0.04536 

 
Fig. 9c. Karnaugh Map Representation of the flow capacity �/��{�}��{�}��{�}��{�} with map 

variable �� 
 

Fourth state:  �� = 2 (0.8) ,   �� = 2(0.9) ,   �� = 3 (0.4) ,   �� = 2 (0.7 ) 
 

    �� 
     

0 (0.1) 4 (0.9) 

 

 
min( 5,4,4,5) = 4  

 
� = 0.02016 

 

min( 5,4,8,9) =  4  
 

� = 0.18144 

 
Fig. 9d. Karnaugh Map Representation of the flow capacity �/��{�}��{�}��{�}��{�} with map 

variable �� 
 

To facilitate probability calculation, we highlight 
success states (those of capacity not less than 4) 
in Figs. 9a-9d in yellow and write the probability 
of each state within its cell. Hence, the final 
system reliability is given by the sum of the 
probabilities of the success states, namely: 
 

� = Pr{�� ≥ 4} = 0.04536 + 0.02016 +
0.18144 + 0.02016 + 0.18144 =
�. ����� , which can be seen as a similar 
result to the work of Sharma, et al. [34]. 

 
The second method to be considered herein is 
that of exhaustive search. This method 
calculates the truth table for all possible 
combinations implied by Table 3. The number of 
these combinations (also called cases or states) 
is 3

1
 * 2

4
 = 48 cases. We constructed a special 

MATLAB code to calculate the maximum 
possible flow for each of these deterministic 
cases, using the max-flow min-cut theorem, 
namely. Flow in a particular deterministic state = 
min {cutset capacity} = min[�(��)] ,where �(��) 
is the flow capacity of the cutset �� , which is the 
��ℎ cutset of the network, and the minimization 
operator (min) is performed over � = 1,2,3, and 4. 
Table 5 displays numerical values of the 
probability mass function (pmf) and the 
complementary cumulative distribution function 
(CCDF) of the random flow variable. The results 
in this table match (within the accuracy used) 
those obtained with our former map procedure at 
the required system capacity of �� = 4 �����. 
Though the exhaustive search method is more 
computationally demanding, it is more 
informative as it gives a result at any required 
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system capacity. Figs. 10a and 10b shows the 
corresponding graphical representations of                
the probability mass function and the 
complementary cumulative distribution function 
of the random flow variable. In contrast to the 
problem of Example 1, which has a      

prohibitively large state space of 648 
configurations, we are able in our present case to 
report a complete listing of the pertinent truth 
table (of 48 lines) in Table 4. Of course, it would 
have been better to have offered this truth table 
in Karnaugh map format. 

 
Table 4. Truth table for all 48 cases of example 2 

 
�� �� �� �� �� Flow Probability �� �� �� �� �� Flow Probability 
0 0 0 0 0 0 0.00012 2 0 0 0 0 0 0.00048 
0 0 0 0 4 0 0.00108 2 0 0 0 4 0 0.00432 
0 0 0 2 0 0 0.00028 2 0 0 2 0 0 0.00112 
0 0 0 2 4 0 0.00252 2 0 0 2 4 2 0.01008 
0 0 3 0 0 0 0.00024 2 0 3 0 0 0 0.00096 
0 0 3 0 4 0 0.00216 2 0 3 0 4 0 0.00864 
0 0 3 2 0 2 0.00056 2 0 3 2 0 2 0.00224 
0 0 3 2 4 2 0.00504 2 0 3 2 4 2 0.02016 
0 0 4 0 0 0 0.00024 2 0 4 0 0 0 0.00096 
0 0 4 0 4 0 0.00216 2 0 4 0 4 0 0.00864 
0 0 4 2 0 2 0.00056 2 0 4 2 0 2 0.00224 
0 0 4 2 4 2 0.00504 2 0 4 2 4 2 0.02016 
0 2 0 0 0 0 0.00108 2 2 0 0 0 2 0.00432 
0 2 0 0 4 0 0.00972 2 2 0 0 4 2 0.03888 
0 2 0 2 0 0 0.00252 2 2 0 2 0 2 0.01008 
0 2 0 2 4 0 0.02268 2 2 0 2 4 2 0.09072 
0 2 3 0 0 0 0.00216 2 2 3 0 0 2 0.00864 
0 2 3 0 4 2 0.01944 2 2 3 0 4 2 0.07776 
0 2 3 2 0 2 0.00504 2 2 3 2 0 4 0.02016 
0 2 3 2 4 3 0.04536 2 2 3 2 4 4 0.18144 
0 2 4 0 0 0 0.00216 2 2 4 0 0 2 0.00864 
0 2 4 0 4 2 0.01944 2 2 4 0 4 2 0.07776 
0 2 4 2 0 2 0.00504 2 2 4 2 0 4 0.02016 
0 2 4 2 4 4 0.04536 2 2 4 2 4 4 0.18144 

 

 
 

Fig. 10a. A plot of the pmf for Example 2 
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Fig. 10b. A plot of the CCDF for Example 2 
 

Table 5. Probability mass function (pmf) and the complementary cumulative distribution 
function (CCDF) for Example 2 

 

Flow 0 1 2 3 4 5 
pmf 0.07424 0.00 0.43184 0.04536 0.44856 0.00 
Case F > -1 F > 0 F > 1 F > 2 F > 3 F > 4 
CCDF 1.00 0.9258 0.9258 0.4939 0.4486 0.00 

 

5. CONCLUSION 
 

This paper presents two simple and efficient 
methods for the reliability evaluation of a 
multistate network, in which a specific commodity 
flows from a source node to a sink node with 
required system capacity constraints. Both 
methods rely on repeated application of the max-
flow min-cut theorem for each individual 
deterministic state of the random network. 
However, while the second method insists on 
addressing every individual state per se, the first 
method attains some computational efficiency by 
treating groups of similar states collectively. The 
first method involves a map procedure, in which 
the reliability is evaluated through a Karnaugh 
map of selective states from capacity vectors. 
This method gives a reliability value at only a 
certain required system capacity. The advantage 
of this method that it is a simple and powerful 
manual approach that provides pictorial insight 
about the various functional properties and 
procedures. The second method involves 
Exhaustive Search (ES) which is also known as 
an approach of brute force, direct search or 
generate and test. This method provides more 
information, at the expense of a more demanding 
computational cost that is so terribly severe as to 

make a manual implementation of it almost out of 
question. Through this method, we determined 
the pmf and the CCDF of the flow random 
variable, thereby achieving a complete 
characterization of this variable, rather than just 
computing a single probability of its exceeding a 
specific threshold. 
 

As we stated earlier, our discrete random flow 
(output) variable would have still been multi-
valued, even if all the input variables had been 
binary. The increase in complexity arising by 
going from a flow network with binary 
components to one with multi-state components 
does not pertain to the form of the final solution, 
but it is inherent in the approach needed to 
achieve this solution. 
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