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Abstract

We consider the following quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic-
elliptic type with logistic source

ut = ∇ · (D(u)∇u)−∇ · (χS(u)∇v) +∇ · (ξF (u)∇w) + f(u), x ∈ Ω, t > 0,
0 = ∆v + αu− βv, x ∈ Ω, t > 0,
0 = ∆w + γu− δw, x ∈ Ω, t > 0,

under homegeneous Neumann boundary conditions in a bounded domain Ω ⊂ Rn(n ≥ 2) with
smooth boundary, where D(u) ≥ cD(u + 1)m−1 with m ≥ 1 and cD > 0, f(u) ≤ a − buη with
η > 1. We show two cases that the system admits a unique global bounded classical solution
depending on 0 ≤ S(u) ≤ Cs(u+1)q, 0 ≤ F (u) ≤ CF (u+1)g by Gagliardo-Nirenberg inequality.
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For specific D(u), S(u), F (u) with logistic source for η > 1 and n = 2, we establish the finite
time blow-up conditions for solutions that the finite time blow-up occurs at x0 ∈ Ω whenever∫
Ω
u0(x)dx >

8π
χα−ξγ

with χα− ξγ > 0, under
∫
Ω
u0(x)|x− x0|2dx sufficiently small.

Keywords: Chemotaxis; attraction-repulsion; boundedness; blow-up; logistic source.

1 Introduction

We consider the quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic-elliptic type
with logistic source

ut = ∇ · (D(u)∇u)−∇ · (χS(u)∇v) +∇ · (ξF (u)∇w) + f(u), x ∈ Ω, t > 0,
0 = ∆v + αu− βv, x ∈ Ω, t > 0,
0 = ∆w + γu− δw, x ∈ Ω, t > 0,
∂u
∂ν

= ∂v
∂ν

= ∂w
∂ν

= 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where Ω ⊂ Rn(n ≥ 2) is a bounded domain with smooth boundary and ∂
∂ν

denotes the derivative
with respect to the outer normal of ∂Ω, χ ≥ 0 and ξ ≥ 0 are parameters referred to as chemosensitivity,
α, β, γ and δ are positive parameters , u(x, t), v(x, t) and w(x, t) denote the cell density, the
concentration of the chemoattractant and the concentration of the chemorepellent, respectively.
We assume that D(u), S(u), F (u) satisfy

D(u), S(u), F (u) ∈ C2 ([0,∞)) , (1.2)

and there exist some constants cD > 0 and m ≥ 1 such that

D(u) ≥ cD(u+ 1)m−1. (1.3)

The function f : [0,∞) → R is smooth and it satisfies f(0) ≥ 0, a ≥ 0, b > 0 and η > 1,

f(u) ≤ a− buη. (1.4)

Chemotaxis describes the oriented movement of cells along the concentration gradient of a
chemical signal produced by cells. The prototype of the chemotaxis model known as the Keller-
Segel model was first proposed by Keller and Segel [1] in 1970. In its general form, the (attractive)
Keller-Segel model is given by{

ut = ∇ · (D(u)∇u)−∇ · (χS(u)∇v) + f(u), x ∈ Ω, t > 0,
τvt = ∆v + u− v, x ∈ Ω, t > 0.

(1.5)

In general, the chemicals diffuse much faster than cells because the chemical molecules are much
smaller than the cells. Hence, the chemotaxis system (1.5) can be approximated by setting τ = 0.
The global solution with τ = 0 and τ = 1 have been investigated in the past four decades (1.5) by
using some important estimates. When D(u) = 1, S(u) = u and f(u) = 0, if n = 1, (1.5) admits a
unique global solution; if n = 2, there is a critical mass phenomenon; if n ≥ 3, finite-time blow-up
occurs in [2, 3] by usinig Lyapunov Function. For general cases of D(u), S(u) and f(u) = 0,
many studies have considered the boundedness of the global solutions [4, 5, 6, 7, 8] and many
others have also addressed the finite time blow-up [9, 10] by using some important estimates. When
τ = 0, S(u) = u, f(u) satisfies (1.4) and D(u) fulfills (1.3), Wang et al.[11] showed that (1.5) admits
a unique bounded global classical solution by Gagliardo-Nirenberg inequality. For (1.5) with more
general cases of D(u), S(u) and f(u), we can refer to [12, 13].
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In many biological processes, the interaction between cells and combinations of attractive
and repulsive signal chemicals can produce various interesting biological patterns, the following
attraction-repulsion chemotaxis model is produced in [14, 15].

ut = ∇ · (D(u)∇u)−∇ · (χS(u)∇v) +∇ · (ξF (u)∇w) + f(u), x ∈ Ω, t > 0,
τvt = ∆v + αu− βv, x ∈ Ω, t > 0,
τwt = ∆w + γu− δw, x ∈ Ω, t > 0.

(1.6)

Fewer results are available for system (1.6) than (1.5), because there exists a useful Lyapunov
function for (1.5) and (1.6) does not admit such a function. When D(u) = 1, S(u) = F (u) = u and
f(u) = 0, (1.6) with τ = 1 admits a unique global bounded solution [16, 17] by Gagliardo-Nirenberg
inequality and some important estimates. When D(u) = 1 and S(u) = F (u) = u , f(u) satisfies
(1.4), (1.6) with τ = 0, Jin and Wang [18] studied the boundness and blow-up in a bounded domain
Ω ⊂ R2 with δ = β,

χα− ξγ > 0 and

∫
Ω

u0(x)dx >
8π

(χα− ξγ)
. (1.7)

When D(u) ≥ CD(u + σ)m−1 with σ ≥ 0 and S(u) = F (u) = u , f(u) satisfies (1.4), (1.6) with
τ = 0, Wang [19] admits a unique global bounded classical solution, a global bounded weak solution
and the large-time behavior of solutions for a specific logistic source.

Tao and Wang [11] showed that the finite time blow-up for nonradial solutions, Zhang and
Li [20] showed that (1.6) admits a unique global bounded solution and they proved the large-time
behavior of a solution. For (1.6) with τ = 0 for more general cases of D(u), S(u) and F (u) = u, f(u)
satisfies (1.4), Wang [21] admits a unique global bounded solution and they proved the large-time
behavior of a solution for a specific logistic source.

To the best of our knowledge, no rigorous result is available for more general case of (1.6) with
τ = 0. Thus the main aim of the present study is to explore on the global and blow-up solvability
of system (1.1).

The remainder of this paper is organized as follows. In Section 2, we show the local existence
and uniqueness of the solutions to system (1.1) and we give the mass estimates. In Section 3, two
different cases of a priori estimation are applied to establish the desired estimates for (1.1). It need
to be pointed out the distinction of these two cases lie in the mechanism which we take sufficient
advantage of in the process of establishing the estimates of (1.1). In Case 1 ( see Theorem 1), we
mainly rely on the logistic dampening, while in Case 2 ( see Theorem 2), the nonlinear diffusion
plays the critical role. Finally, Theorem 1 and 2 are proved based on the estimates of (1.1). In
Section 4, we obtain a sharp result on the blow-up for solutions to (1.1).

Theorem 1.1. Suppose that (1.2) and (1.3) are valid, f(u) fulfills (1.4) with b > 0 and η ≥ 2.
Assume that

q ≤ η − 1, g ≤ 1

and

0 ≤ S(u) ≤ Cs(u+ 1)q, 0 ≤ F (u) ≤ CF (u+ 1)g, (1.8)

then there exists a unique triple (u, v, w) of nonnegative functions which are bounded and solve
(1.1) in the classical sense.

Theorem 1.2. Suppose that (1.2) and (1.3) are valid, f(u) fulfills (1.4) with b > 0 and η > 1,

0 ≤ S(u) ≤ Cs(u+ 1)q, 0 ≤ F (u) ≤ CF (u+ 1)g

for max{q, g} < 1
n
+ m − 1, then there exists a unique triple (u, v, w) of nonnegative functions,

which are bounded and solve (1.1) in the classical sense.
Theorem 1.3. Let

D(u) = 1, S(u) = F (u) = u, f(u) ≤ a− buη for η > 1 (1.9)

in (1.1), (1.7) hold with
∫
Ω
u0(x)|x−x0|2dx small enough for an x0 ∈ Ω. Then the solution of (1.1)

blows up in finite time.
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2 Preliminaries

The local existence and uniqueness of the system (1.1) can be derived from the reasoning of Lemma
2.1 in [22], so we only state the result and omit its proof here.

Lemma 2.1. Suppose that (1.2)-(1.4) are valid. Then there exists a maximal existence time
Tmax ∈ (0,+∞) and a unique triple (u,v,w) of functions which solve (1.1) in the classical sense.
Also these functions have the following regularity properties:

u ∈ C0(Ω× [0, Tmax))
∩
C2,1(Ω× [0, Tmax)),

v ∈ C0(Ω× [0, Tmax))
∩
C2,1(Ω× [0, Tmax))

∩
L∞((0, Tmax);W

1,l(Ω)),

w ∈ C0(Ω× [0, Tmax))
∩
C2,1(Ω× [0, Tmax))

∩
L∞((0, Tmax);W

1,l(Ω))

(2.1)

with l > n and

u ≥ 0, v ≥ 0, w ≥ 0 in Ω× (0, Tmax).

In addition, if Tmax < +∞, then

lim
t→Tmax

sup(∥u(·, t)∥)L∞(Ω) + ∥v(·, t)∥w1,∞(Ω) + ∥w(·, t)∥w1,∞(Ω) = ∞. (2.2)

Lemma 2.2. Let the assumption in Lemma 2.1 hold. Then there exists a constant C > 0 such
that ∫

Ω

u(x, t)dx ≤ C, t ∈ (0, Tmax), (2.3)

∫
Ω

v(x, t)dx ≤ C, t ∈ (0, Tmax), (2.4)

∫
Ω

w(x, t)dx ≤ C, t ∈ (0, Tmax). (2.5)

Lemma 2.3. (Gagliardo-Nirenberg inequality). Let r ∈ (0, α) and ψ ∈ W 1,2(Ω)
∩
Lr(Ω).

Then there exists a constant CGN > 0 such that

∥ψ∥Lα(Ω) ≤ CGN

(
∥∇ψ∥λ

∗

L2(Ω)∥ψ∥
1−λ∗

Lr(Ω) + ∥ψ∥Lr(Ω)

)
, (2.6)

where λ∗ ∈ (0, 1) satisfies

λ∗ =
n
r
− n

α

1− n
2
+ n

r

.

3 A Priori Estimates

In order to prove Theorem 1, we have a priori estimates for
∫
Ω
(u+ 1)pdx in the following lemma.

Lemma 3.1. Suppose that (1.2) and (1.3) are valid, f(u) fulfills (1.4) with b > 0 and η ≥ 2.
S(u) and F (u) satisfy (1.8) with q ≤ η − 1, g ≤ 1. Then for any p > n

2
, there exists a constant

C > 0 independent of t such that the solution (u, v, w) of system (1.1) satisfies∫
Ω

(u+ 1)p)dx ≤ C, t ∈ (0, Tmax). (3.1)

Proof. Let

S̃(u) =

∫ u

0

(ζ + 1)p−2S(ζ)dζ, F̃ (u) =

∫ u

0

(ζ + 1)g−2F (ζ)dζ. (3.2)

4
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Substituting (1.8) into (3.2), we obtain that

S̃(u) ≤ Cs

∫ u

0

(ζ + 1)p+q−2dζ ≤ Cs
1

p+ q − 1
(u+ 1)p+q−1, (3.3)

and

F̃ (u) ≤ CF

∫ u

0

(ζ + 1)p+g−2dζ ≤ CF
1

p+ g − 1
(u+ 1)p+g−1. (3.4)

After multiplying both sides of the first equation in (1.1) by (u + 1)p−1 and integrating by parts
over Ω, we obtain that

1

p

d

dt

∫
Ω

(u+ 1)pdx+

∫
Ω

(p− 1)D(u)(u+ 1)p−2|∇u|2dx

=

∫
Ω

χ(p− 1)(u+ 1)p−2S(u)∇u · ∇vdx−
∫
Ω

ξ(p− 1)(u+ 1)p−2F (u)∇u · ∇wdx

+

∫
Ω

(u+ 1)p−1f(u)dx. (3.5)

Adding (3.2) and (3.5) together,

1

p

d

dt

∫
Ω

(u+ 1)pdx+

∫
Ω

(p− 1)D(u)(u+ 1)p−2|∇u|2dx

= χ(p− 1)

∫
Ω

∇S̃(u) · ∇vdx− ξ(p− 1)

∫
Ω

∇F̃ (u) · ∇wdx+

∫
Ω

(u+ 1)p−1f(u)dx,

= −χ(p− 1)

∫
Ω

S̃(u)∆vdx+ ξ(p− 1)

∫
Ω

F̃ (u)∆wdx+

∫
Ω

(u+ 1)p−1f(u)dx. (3.6)

From the second and the third equations of (1.1), we obtain that

−∆v ≤ αu, ∆w ≤ δw. (3.7)

Inserting (3.7) into (3.6) yields

1

p

d

dt

∫
Ω

(u+ 1)pdx+

∫
Ω

(p− 1)D(u)(u+ 1)p−2|∇u|2dx

≤ αχ(p− 1)

∫
Ω

S̃(u)udx+ ξδ(p− 1)

∫
Ω

F̃ (u)wdx+

∫
Ω

(u+ 1)p−1f(u)dx. (3.8)

By (3.3) and (3.4), we obtain that

1

p

d

dt

∫
Ω

(u+ 1)pdx+

∫
Ω

(p− 1)D(u)(u+ 1)p−2|∇u|2dx

≤ C1

∫
Ω

(u+ 1)p+q−1udx+ C2

∫
Ω

(u+ 1)p+g−1wdx+

∫
Ω

(u+ 1)p−1f(u)dx, (3.9)

where C1 = Csαχ(p−1)
p+q−1

and C2 = CF ξδ(p−1)
p+g−1

are positive constants.

By q ≤ η − 1 and Young’s inequality, there exists a positive constant C3 such that

C1

∫
Ω

(u+ 1)p+q−1udx ≤ 21−ηb

6

∫
Ω

(u+ 1)p+η−1dx+ C3. (3.10)

5
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By η ≥ 2, g ≤ 1 and Young’s inequality, there exist positive constants Ci (i = 4, 5, 6) such that

C2

∫
Ω

(u+ 1)p+g−1wdx

≤ C4

∫
Ω

(u+ 1)pwdx+ C5,

≤ 21−ηb

6

∫
Ω

(u+ 1)p+1dx+ C6

∫
Ω

wp+1dx+ C5,

≤ 21−ηb

6

∫
Ω

(u+ 1)p+η−1dx+ C6

∫
Ω

wp+1dx+ C5. (3.11)

Substituting (3.10), (3.11) into (3.9), we obtain that

1

p

d

dt

∫
Ω

(u+ 1)pdx+

∫
Ω

(p− 1)D(u)(u+ 1)p−2|∇u|2dx

≤ 21−ηb

3

∫
Ω

(u+ 1)p+η−1dx+ C6

∫
Ω

wp+1dx+

∫
Ω

(u+ 1)p−1f(u)dx+ C7 (3.12)

with positive constants C6 and C7.
Now, we estimate the integral

∫
Ω
wp+1dx according to a procedure similar to that employed by

[23]. In the following, we provide a brief outline for the sake of completeness. Since δ > 0 and w
solves {

−∆w + δw = γu, x ∈ Ω,
∂w
∂ν

= 0, x ∈ ∂Ω,

we can apply the Lp estimates to deduce that

∥w(·, t)∥W2,p(Ω) ≤ C8∥u(·, t)∥Lp(Ω), t ∈ (0, Tmax) (3.13)

with some appropriate positive constant C8. By (2.5) and the Gagliardo-Nirenberg inequality, there
exist two constants C9 > 0 and C10 > 0 such that∫

Ω

wp+1dx ≤ C9∥D2w∥(p+1)ε

Lp(Ω) ∥w∥
(p+1)(1−ε)

L1(Ω)
+ C9∥w∥(p+1)

L1(Ω)

≤ C10∥u∥(p+1)ε

Lp(Ω) + C10, t ∈ (0, Tmax), (3.14)

where ε =
1− 1

p+1

1+ 2
n
− 1

p

. Since p > n
2
, it is easy to check that ε ∈ (0, 1) and (p+ 1)ε < p. Hence, we use

Young’s inequality for η ≥ 2 to obtain that

C6

∫
Ω

wp+1dx

≤ C10∥u∥pLp(Ω) + C10

≤ 21−ηb

6

∫
Ω

up+1dx+ C11

≤ 21−ηb

6

∫
Ω

(u+ 1)p+η−1dx+ C11. (3.15)

Combining (3.12) with (3.15) yields

1

p

d

dt

∫
Ω

(u+ 1)pdx+

∫
Ω

(p− 1)D(u)(u+ 1)p−2|∇u|2dx

≤ b21−η

2

∫
Ω

(u+ 1)p+η−1dx+

∫
Ω

(u+ 1)p−1f(u)dx+ C12. (3.16)

6



Yan and Yang; JAMCS, 30(6): 1-16, 2019; Article no.JAMCS.47029

Since f(u) satisfies (1.4) with η ≥ 2 and Young’s inequality and (u+ 1)η ≤ 2η−1(uη + 1) for η ≥ 2
implies uη ≥ 1

2η−1 (u+ 1)η − 1, (3.16) can be further written as

1

p

d

dt

∫
Ω

(u+ 1)pdx+

∫
Ω

(p− 1)D(u)(u+ 1)p−2|∇u|2dx

≤ 21−ηb

2

∫
Ω

(u+ 1)p+η−1dx+ a

∫
Ω

(u+ 1)p−1dx− b

∫
Ω

(u+ 1)p−1uηdx+ C12

≤ 21−ηb

2

∫
Ω

(u+ 1)p+η−1dx+
21−ηb

6

∫
Ω

(u+ 1)p+η−1dx

+ b

∫
Ω

(u+ 1)p−1dx− b21−η

∫
Ω

(u+ 1)p+η−1dx+ C13

≤ 21−η2b

3

∫
Ω

(u+ 1)p+η−1dx+
21−ηb

6

∫
Ω

(u+ 1)p+η−1dx− b21−η

∫
Ω

(u+ 1)p+η−1dx+ C13

≤ −21−ηb

6

∫
Ω

(u+ 1)p+η−1dx+ C14. (3.17)

Using Young’s inequality again, we obtain that

1

p

∫
Ω

(u+ 1)pdx ≤ 21−ηb

6

∫
Ω

(u+ 1)p+η−1dx+ C15. (3.18)

Thus, combining (3.17) and (3.18), we conclude that

d

dt

∫
Ω

(u+ 1)pdx+

∫
Ω

(u+ 1)pdx ≤ C16, t ∈ (0, Tmax), (3.19)

from Gronwall’s inequality, we obtain that∫
Ω

(u+ 1)pdx ≤ 2max

{∫
Ω

(u0 + 1)pdx,C16

}
, t ∈ (0, Tmax),

which implies the desired uniform estimates. 2

In order to obtain Theorem 2, we have the following lemma.
Lemma 3.2. Suppose that (1.2) and (1.3) are valid, f(u) fulfills (1.4) with b > 0 and η > 1.

Let n ≥ 2, m > 1, θ > 1 and

α1 =

n(p+m−1)
2

[
1− 1

θ(p+2q−m−1)

]
1− n

2
+ n(p+m−1)

2

, α2 =
n(p+m−1)

2

(
1− θ−1

2θ

)
1− n

2
+ n(p+m−1)

2

, (3.20)

β1 =
(p+ 2q −m− 1)α1

p+m− 1
=

n(p+2q−m−1)
2

[
1− 1

θ(p+2q−m−1)

]
1− n

2
+ n(p+m−1)

2

,

β2 =
2α2

p+m− 1
=

n
(
1− θ−1

2θ

)
1− n

2
+ n(p+m−1)

2

satisfy q < 1
n
+m− 1.

Then there exist p sufficiently large such that

(i) α1 ∈ (0, 1), (ii) α2 ∈ (0, 1), (iii) β1 + β2 ∈ (0, 1). (3.21)

7
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Similarly,

β3 =

n(p+2g−m−1)
2

[
1− 1

µ(p+2g−m−1)

]
1− n

2
+ n(p+m−1)

2

,

β4 =
n
(
1− µ−1

2µ

)
1− n

2
+ n(p+m−1)

2

,

if g < 1
n
+m− 1, then

β3 + β4 ∈ (0, 1).

Proof. For

p > max
{n
2
, 2 +m− 2q

}
, (3.22)

we have that 1− 1
θ(p+2q−m−1)

> 0. If n = 2, it is easy to derive (i) and (ii). If n > 2, let

θ ∈

(
−n(p+m−1)

n−2

2− n(p+m−1)
n−2

,
n(p+m− 1)

(n− 2)(p+ 2q −m− 1)

)
. (3.23)

Then it is easy to verify θ ̸= ∅ for choosing p sufficiently large. Since (3.23) also implies

− n(p+m− 1)

2θ(p+ 2q −m− 1)
< 1− n

2
,

which together with the definition of α1 in (3.20) implies (i) in (3.21). By a computation, we deduce
that (3.23) is equivalent to

(p+m− 1) >
n− 2

n
· 2θ

θ − 1
,

which implies

n

2
(p+m− 1)(1− θ − 1

2θ
) < 1− n

2
+
n

2
(p+m− 1), (3.24)

we can infer (ii) in (3.21) by (3.24). In addition, if q < 1
n
+m− 1, we can verify that

p+ 2q −m− 1− 1

θ
+ 2− 2(

1

2
− 1

2θ
) <

2

n
+ p+m− 2. (3.25)

Then we have that (3.25) is equivalent to

n(p+ 2q −m− 1)

2

[
1− 1

θ(p+ 2q −m− 1)

]
+ n

(
1− θ − 1

2θ

)
< 1− n

2
+
n

2
(p+m− 1) (3.26)

which implies (iii) in (3.21). 2

Lemma 3.3. Suppose that (1.2) and (1.3) are valid, f(u) fulfills (1.4) with b > 0 and η > 1,
max{q, g} < 1

n
+m− 1,

0 ≤ S(u) ≤ Cs(u+ 1)q, 0 ≤ F (u) ≤ CF (u+ 1)g. (3.27)

Then for any p > max
{

n
2
, 1 +m− 2q, 1 +m− 2g

}
as well as sufficiently large, there exists a

constant C > 0 independent of t such that the solution (u, v, w) of system (1.1) satisfies (3.1).

8
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Proof. We test the first equation in (1.1) by (u+ 1)p−1 and have

1

p

d

dt

∫
Ω

(u+ 1)pdx+ cD(p− 1)

∫
Ω

(u+ 1)p+m−3|∇u|2dx

≤ χ(p− 1)

∫
Ω

S(u)(u+ 1)p−2∇u · ∇vdx− ξ(p− 1)

∫
Ω

F (u)(u+ 1)p−2∇u · ∇wdx

+ a

∫
Ω

(u+ 1)p−1dx− b

∫
Ω

(u+ 1)p−1uηdx (3.28)

for all t ∈ (0, Tmax). Since (u+ 1)η ≤ 2η−1(uη + 1) for η > 1 implies uη ≥ 1
2η−1 (u+ 1)η − 1, (3.28)

can be further written as

1

p

d

dt

∫
Ω

(u+ 1)pdx+ cD(p− 1)

∫
Ω

(u+ 1)p+m−3|∇u|2dx+
b

2η−1

∫
Ω

(u+ 1)p+η−1dx

≤ χ(p− 1)

∫
Ω

S(u)(u+ 1)p−2∇u · ∇vdx− ξ(p− 1)

∫
Ω

F (u)(u+ 1)p−2∇u · ∇wdx

+ (a+ b)

∫
Ω

(u+ 1)p−1dx (3.29)

for all t ∈ (0, Tmax). By virtue of the Young’s inequality and (1.8), we obtain that

χ(p− 1)

∫
Ω

S(u)(u+ 1)p−2∇u · ∇vdx ≤ χCs(p− 1)

∫
Ω

(u+ 1)p+q−2|∇u| · |∇v|dx

≤ cD(p− 1)

4

∫
Ω

(u+ 1)p+m−3|∇u|2dx

+
χ2C2

s (p− 1)

cD

∫
Ω

(u+ 1)p+2q−m−1|∇v|2dx. (3.30)

Similarly, we have that

− ξ(p− 1)

∫
Ω

F (u)(u+ 1)p−2∇u · ∇wdx

≤ ξCF (p− 1)

∫
Ω

(u+ 1)p+g−2|∇u| · |∇w|dx

≤ cD(p− 1)

4

∫
Ω

(u+ 1)p+m−3|∇u|2dx

+
ξ2C2

F (p− 1)

cD

∫
Ω

(u+ 1)p+2g−m−1|∇w|2dx. (3.31)

Since

(a+ b)

∫
Ω

(u+ 1)p−1dx ≤ b

2η

∫
Ω

(u+ 1)p+η−1dx+ C6, t ∈ (0, Tmax), C6 > 0,

we have the following result by (3.29), (3.30) and (3.31)

d

dt

∫
Ω

(u+ 1)pdx+
2cDp(p− 1)

(p+m− 1)2

∫
Ω

|∇(u+ 1)
p+m−1

2 |2dx+
bp

2η

∫
Ω

(u+ 1)p+η−1dx

≤ χ2C2
sp(p− 1)

cD

∫
Ω

(u+ 1)p+2q−m−1|∇v|2dx+
ξ2C2

F p(p− 1)

cD

∫
Ω

(u+ 1)p+2g−m−1|∇w|2dx+ C6.

9
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By using the Holder inequality, we can find C7, C8 > 0 such that

d

dt

∫
Ω

(u+ 1)pdx+
2cDp(p− 1)

(p+m− 1)2

∫
Ω

|∇(u+ 1)
p+m−1

2 |2dx+
bp

2η

∫
Ω

(u+ 1)p+η−1dx

≤ C7

(∫
Ω

(u+ 1)θ(p+2q−m−1)dx

) 1
θ
(∫

Ω

|∇v|
2θ

θ−1 dx

) θ−1
θ

+ C8

(∫
Ω

(u+ 1)µ(p+2g−m−1)dx

) 1
µ
(∫

Ω

|∇w|
2µ

µ−1 dx

)µ−1
µ

+ C6 (3.32)

with θ > 1 and µ > 1 for all t ∈ (0, Tmax). More precisely, (3.21) in Lemma 3.2 enable us to apply
(2.6) to derive(∫

Ω

(u+ 1)θ(p+2q−m−1)dx

) 1
θ

= ∥(u+ 1)
p+m−1

2 ∥
2(p+2q−m−1)

p+m−1

L
2θ(p+2q−m−1)

p+m−1 (Ω)

≤ C9

(
∥∇(u+ 1)

p+m−1
2 ∥α1

L2(Ω)
∥(u+ 1)

p+m−1
2 ∥1−α1

L
2

p+m−1 (Ω)

+ ∥(u+ 1)
p+m−1

2 ∥
L

2
p+m−1 (Ω)

) 2(p+2q−m−1)
p+m−1

≤ C10

{∫
Ω

|∇(u+ 1)
p+m−1

2 |2 + 1

}β1

(3.33)

with α1, β1 defined in Lemma 3.2 and positive constants C9, C10 for all t ∈ (0, Tmax).

Since β > 0, v solves {
−∆v + βv = αu, x ∈ Ω,
∂v
∂ν

= 0, x ∈ ∂Ω,

we can apply the Lp estimates to deduce that

∥v(·, t)∥W2,p(Ω) ≤ C11∥u(·, t)∥Lp(Ω) for all t ∈ (0, Tmax). (3.34)

By (3.34), we obtain that(∫
Ω

|∇v|
2θ

θ−1 dx

) θ−1
θ

= ∥∇v∥2
L

2θ
θ−1 (Ω)

≤ C∥u+ 1∥2
L

2θ
θ−1 (Ω)

. (3.35)

Moreover,

∥u+ 1∥2
L

2θ
θ−1 (Ω)

= ∥(u+ 1)
p+m−1

2 ∥
4

p+m−1

L
4θ

(p+m−1)(θ−1) (Ω)

≤ C12

(
∥∇(u+ 1)

p+m−1
2 ∥α2

L2(Ω)
∥(u+ 1)

p+m−1
2 ∥1−α2

L
2

p+m−1 (Ω)

+ ∥(u+ 1)
p+m−1

2 ∥
L

2
p+m−1 (Ω)

) 4
p+m−1

≤ C13

{∫
Ω

|∇(u+ 1)
p+m−1

2 |2 + 1

}β2

with α2, β2 defined in Lemma 3.2 and positive constants C12, C13 for all t ∈ (0, Tmax), which along
with (3.35) gives (∫

Ω

|∇v|
2θ

θ−1 dx

) θ−1
θ

≤ C13

{∫
Ω

|∇(u+ 1)
p+m−1

2 |2dx+ 1

}β2

. (3.36)

10
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We substitute (3.33) and (3.36) into (3.32),

d

dt

∫
Ω

(u+ 1)pdx+
2cDp(p− 1)

(p+m− 1)2

∫
Ω

|∇(u+ 1)
p+m−1

2 |2dx+
bp

2η−1

∫
Ω

(u+ 1)p+η−1dx

≤ C14

{∫
Ω

|∇(u+ 1)
p+m−1

2 |2 + 1

}β1+β2

+ C8

(∫
Ω

(u+ 1)µ(p+2g−m−1)dx

) 1
µ
(∫

Ω

|∇w|
2µ

µ−1 dx

)µ−1
µ

+ C6, (3.37)

similarly, if g < 1
n
+ m − 1, by using the same argument as in Lemma 3.2, we can also find

β3 < 1, β4 < 1 and β3 + β4 < 1, where

β3 =

n(p+2g−m−1)
2

[
1− 1

µ(p+2g−m−1)

]
1− n

2
+ n(p+m−1)

2

, β4 =
n
(
1− µ−1

2µ

)
1− n

2
+ n(p+m−1)

2

,

then by Young’s inequality, (3.37) can be written as

d

dt

∫
Ω

(u+ 1)pdx+
2cDp(p− 1)

(p+m− 1)2

∫
Ω

|∇(u+ 1)
p+m−1

2 |2dx+
bp

2η−1

∫
Ω

(u+ 1)p+η−1dx

≤ C15

{∫
Ω

|∇(u+ 1)
p+m−1

2 |2 + 1

}β1+β2

+ C16

{∫
Ω

|∇(u+ 1)
p+m−1

2 |2 + 1

}β3+β4

+ C17. (3.38)

Due to β1 + β2 < 1, β3 + β4 < 1, applying the Young’s inequality to (3.38) and by an ODE
comparison argument, we obtain that∫

Ω

(u+ 1)pdx ≤ C, t ∈ (0, Tmax).

2

Proof of Theorems 1.1 and 1.2. By recalling the Lp estimates of w in (3.13), we can use Lemma
3.1 and Lemma 3.3 to find a positive constant C1 such that

sup
0<t<Tmax

∥w(·, t)∥W2,p(Ω) ≤ C1.

Then, by selecting a sufficiently large p from the Sobolev embedding theorem, we can find a positive
constant C2 such that

sup
0<t<Tmax

∥∇w(·, t)∥L∞(Ω) ≤ C2. (3.39)

Similarly, from (3.34), there exists a positive constant C3 such

sup
0<t<Tmax

∥∇v(·, t)∥L∞(Ω) ≤ C3. (3.40)

By using Lemma A.1 in [24], we can conclude that u is uniformly bounded in Ω× (0, Tmax). Thus,
we can find a positive constant C4 such that

∥u(·, t)∥L∞ ≤ C4 for all t ∈ (0, Tmax), (3.41)

which together with Lemma 2.1, we obtain (u, v, w) is a global bounded classical solution to system
(1.1). 2

11
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4 Blow-up of Solutions

Denote B := {x ∈ R2| |x| < R} and Bi := {x ∈ R2| |x| < ri} with Ri, ri > 0, i = 1, 2, 3, 4. The next
two lemmas are the well-known conclusions on elliptic equations and the Green function (refer to
[25]).

Lemma 4.1. Let u solves {
−∆u = f, x ∈ B,
u = 0, x ∈ ∂B,

with f ∈ Lp(B), 1 ≤ p ≤ ∞. Then

u(x) =

∫
B

G(x, y)f(y)dy for x ∈ B,

where G(x, y) is the Green function with the following properties:

(i) G(x, y) = N(x− y) +K(x, y), where N(x− y) = − 1

2π
log |x− y| and K ∈ C2(B ×B),

(ii) G(x, y) = G(y, x) for x, y ∈ B,

(iii) |∇xG(x, y)| ≤ C/|x− y| in B ×B for some C > 0.

Lemma 4.2. Let u ∈ C2(Ω) satisfies{
−∆u+ ζu = f, x ∈ B,
∂u
∂ν

= 0, x ∈ ∂B,

with f ∈ C0(Ω), ζ > 0. Then there exist Cp, Cq > 0 such that

∥u∥Lp(Ω) ≤ Cp∥f∥L1(Ω), 1 ≤ p <∞,

∥∇u∥Lq(Ω) ≤ Cq∥f∥L1(Ω), 1 ≤ q < 2.

We construct ϕ ∈ C1([0,∞)) ∩W 2,∞((0,∞)) with r2 > r1 > 0 by

ϕ(r) =


r2, if 0 ≤ r ≤ r1,
a1r

2 + a2r + a3, if r1 ≤ r ≤ r2,
r1r2, if r ≥ r2

(4.1)

with a1 = − r1
r2−r1

, a2 = 2r1r2
r2−r1

and a3 = − r21r2
r2−r1

.

Φ ∈ [0,∞) is defined as Φ(x) = ϕ(|x|) ∈ C1(R2) ∩W 2,∞(R2), which will play a key role in the
proof for the finite time blow-up of nonradial solutions.

Lemma 4.3. The function Φ(x) satisfies

∇Φ(x) =


2x, if |x| ≤ r1,
2r1

r2−r1
(r2 − |x|) x

|x| , if r1 ≤ |x| ≤ r2,

0, if |x| ≥ r2

and

|∇Φ(x)| ≤ 2(Φ(x))
1
2 , (4.2)

∆Φ(x) = 4 for |x| ≤ r1, (4.3)

∆Φ(x) ≤ 2 for |x| > r1. (4.4)

Proof. We can see [[25], lemma 2.1] for details.

12
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Moreover,

∇Φ(x)−∇Φ(y) · ∇N(x− y) = − 1

π
, (x, y) ∈ B1 ×B1, (4.5)

|∇Φ(x)−∇Φ(y)| · ∇N(x− y) ≤ 2r2 + r1
π(r2 − r1)

, (x, y) ∈ R2 ×R2, (4.6)

Let (u, v, w) be the solution of (1.1) ensured by Lemma 2.1. We should show Tmax <∞. It suffices
to find a T > 0 such that the Φ-weighted integral of u(x, t) tends to zero as t → T . Inspired by
[25, 26] this will be realized via the following Lemma.

Lemma 4.4. Let

D(u) = 1, S(u) = F (u) = u, f(u) ≤ a− buη for η > 1 (4.7)

for n = 2 in (1.1) , x0 ∈ Ω and 0 < r1 < r2 < dist(x0, ∂Ω), where dist(x0, ∂Ω) denotes the distance
between x0 and ∂Ω. Then there exist C1, C2 > 0 only depending on r1, r2 and dist(x0, ∂Ω) such
that for t ∈ (0, Tmax),

d

dt

∫
Ω

u(x, t)Φ(x− x0)dx,

≤ 4

∫
Ω

u0(x)dx− χα− ξγ

2π

(∫
Ω

u0(x)dx

)2

+ C1

(∫
Ω

u0(x)dx

)(∫
Ω

u(x, t)Φ(x− x0)dx

)
+ C2

(∫
Ω

u0(x)dx

) 3
2
(∫

Ω

u(x, t)Φ(x− x0)dx

) 1
2

, (4.8)

where Φ(x) = ϕ(|x|) with ϕ defined by (4.1).
Proof. Without loss of generality, assume that x0 is the origin. Multiply the first equation of

(1.1) by Φ(x) and integrate over Ω. Due to the Neumann boundary condition of (1.1), ∂Φ
∂ν

= 0 with
r2 < dist(x0, ∂Ω) by Lemma 4.3,

∫
Ω
u0(x)dx =

∫
Ω
u(x, t)dx and the estimates (4.3) and (4.4), we

obtain that

d

dt

∫
Ω

u(x, t)Φ(x)dx =

∫
Ω

Φ(x)(∆u− χ∇ · (u∇v) + ξ∇ · (u∇w) + f(u))dx,

≤ 4

∫
Ω

u0(x)dx+ χ

∫
Ω

u(x, t)∇Φ(x) · ∇v(x, t)dx

− ξ

∫
Ω

u(x, t)∇Φ(x) · ∇w(x, t)dx+

∫
Ω

Φ(x)f(u)dx. (4.9)

By the procedure in the proof of Lemma3.1 [25] and Proposition 3.1 [26], we have that

d

dt

∫
Ω

u(x, t)Φ(x)dx

≤ 4

∫
Ω

u0(x)dx− χα

2π
+
ξγ

2π

(∫
Ω

u0(x)dx

)2

+ C3

(∫
Ω

u0(x)dx

)(∫
Ω

u(x, t)Φ(x)dx

)
+ C2

(∫
Ω

u0(x)dx

) 3
2
(∫

Ω

u(x, t)Φ(x)dx

) 1
2

+ J3 (4.10)

From (4.7) and Jensen’s inequality , we obtain that

J3 :=

∫
Ω

Φ(x)f(u)dx ≤ a

∫
Ω

Φ(x)dx− b

∫
Ω

Φ(x)uηdx

≤ a

∫
Ω

Φ(x)dx− b

(∫
Ω

Φ(x)udx

)η

dx (4.11)
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Since η > 1, by using Young’s inequality, we obtain that

−b
(∫

Ω

Φ(x)udx

)η

dx ≤ C4 − bη

∫
Ω

Φ(x)udx, (4.12)

by the definition of Φ(x), we obtain a
∫
Ω
Φ(x)dx is bounded. Thus, by (4.11) (4.12), we conclude

that

J3 ≤ C5

∫
Ω

u0(x)dx

∫
Ω

Φ(x)udx. (4.13)

Combining (4.9)-(4.13) yields (4.8). 2

Proof of Theorem 1.3. Denote

MΦ(t) :=

∫
Ω

u(x, t)Φ(x− x0)dx (4.14)

and

E(s) = 4

∫
Ω

u0(x)dx− χα− ξγ

2π

(∫
Ω

u0(x)dx

)2

+ C1

(∫
Ω

u0(x)dx

)
s+ C2

(∫
Ω

u0(x)dx

) 3
2

s
1
2 .

By Lemma 4.4, we obtain that

d

dt
MΦ(t) ≤ E(MΦ(t)), t ∈ (0, Tmax). (4.15)

By the definition of Φ(x) in (4.1) and (4.14), we have that

MΦ(0) =

∫
Ω

u0Φ(x− x0)dx ≤
∫
Ω

u0|x− x0|2dx.

Together with the condition (1.7), it is easy to check that for s > 0, E(0) < 0 and E
′
(s) > 0. If∫

Ω
u0(x)|x− x0| is small enough, then

E(MΦ(0)) < 0. (4.16)

If the solution (u, v, w) exists for all t > 0, then E (MΦ(s)) is bounded.
From (4.15), it is obtained that

MΦ(t) < MΦ(0) +

∫ t

0

E(MΦ(s))ds

< MΦ(0) + E(MΦ(s
′))t

for s′ ∈ (0, t). This concludes that there exists T ∈ (0,∞) such that MΦ(0)+E(MΦ(s
′))t ≤ 0. This

is a contradiction to the nonnegativity of MΦ(t). The proof is complete. 2
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