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Abstract 
 

This paper, investigates the comparison of the convergence behavior of the proposed scheme and existing 
schemes in literature. While all schemes having fourth-order convergence and derivative-free nature. 
Numerical approximation demonstrates that the proposed schemes are able to attain up to better accuracy 
than some classical methods, while still significantly reducing the total number of iterations. This study 
has considered some nonlinear equations (transcendental, algebraic and exponential) along with two 
complex mathematical models. For better analysis graphical representation of numerical methods for 
finding the real root of nonlinear equations with varying parameters has been included. The proposed 
scheme is better in reducing error rapidly, hence converges faster as compared to the existing schemes. 
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1 Introduction 

  
In mathematics and applied science, non-linear equations are the equations that have no proportional 
relationship between input and output. As a result, problems arising in the field of science and engineering 
are mostly non-linear. Analytic and numeric methods are effective ways to solve these non-linear equations. 
The Analytic methods delivered us an analytical or exact solution for nonlinear equations. Analytical 
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solutions of few non-linear equations are impossible. Mostly, science and engineering problems fail to bring 
their analytical solution of nonlinear equation then our focused on numerical methods. Most of the numerical 
methods, used to solve an equation, are based on iterative techniques. It is critical to ascertain convergence 
while developing any Numerical method. Numerical methods are approximated methods. For many years, 
estimating a root of non-linear equations has been an attraction to researchers. Researchers have introduced 
many variants of accelerated methods that proved instrumental in estimating non-linear equations. Many 
researchers have developed iterative methods and many modifications have been made for iterative methods 
(such as the Bisection, Regula-Falsi, and Newton methods), which have the same or better performance. 
Determining the root of a nonlinear equation is very important; researchers have developed numerical 
methods by involving derivatives [1]. Many algorithms have been introduced to accelerate the convergence 
of numerical methods without involving derivative [2,3,4,5,6,7]. By using covenant and suitable selection of 
parameters to reduce the number of evaluation of numerical method [2,8,9,6]. A family of a single step and 
multi-step method has been developed that can be used to find simple and real roots of nonlinear equations 
by using decomposition techniques [10,11]. 
 

2 Methods 
 
2.1 Proposed methodology 
 
Developing a two-step iterative method by removing the involvement of derivative function in the Newton 
Raphson method. 
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By using Forward difference method  
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By using the central difference formula 
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By replacing 1 nn xxh
 and Using (2) in (1) and (4) in (3), after simplification we get 
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Eq: (5) and (6) is proposed scheme, Where nx
and 1nx

 are the first two approximations, taken from the 
bracketing root location methods for non-linear equation (i.e. bisection method or Regula-falsi method). 
 

2.2 Existing schemes 
 
2.2.1 Consider the two-step iteration scheme 
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Thus the existing scheme gives two (m = ±1) one-parameter families of iteration formulae of order 4 for 
solving the non-linear equation f (x) = 0. The parameter p(x) that appears in the algorithm is taken p(x) = 1. 
Calculations are performed using the problems that are solved taking the initial value x0 in the interval (a, b) 
of the root [6]. 
 

2.2.2 Given 0x
the approximate solution 1nx

 of f(x)=0 can be founded by following the iterative 
scheme  
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Where, 
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The method derived using the king’s method with finite difference approximations. The parameter 2  is 
fixed for all numerical examples [7]. 
 

3 Results 
 
Example 1: 
 

Function Interval Iteration Method Time Error 

884 23  xxx  
[-3,-1] 4 PM 0.001339 1.376677e-13 

Sharma 0.001435 2.368009e-01 
Obadah 0.001932 2.346701e-01 
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In Ex: 1 proposed scheme is converging rapidly as in the graph we can see that with the increasing number 
of iteration on X-axis, error of the proposed scheme(PM) is decreasing upto -13 digit accuracy while other 
existing scheme (Sharma and Obadah) showing negligible change in accuracy and showing repetation. 
  
Example 2: 
 

Function Interval Iteration Method Time Error 

xx
2

1
sin 

 

[-1,1.5] 4 PM 0.000926 4.038968e-28 
Sharma 0.001954 6.557702e-03 
Obadah 0.001405 2.893045e-04 

 

 
 
In Ex: 2 with the increasing number of iteration existing schemes (Sharma and Obadah) are converging 
slowly while the proposed scheme (PM) reducing errors frequently. 
  
Example 3: 
 

Function Interval Iteration Method Time Error 

5cos3sin22

 xxxex
 

[-2,-1] 4 PM 0.001822 4.964540e-11 
Sharma 0.001617 NaN 
Obadah 0.001708 NaN 
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In Ex: 3 through graph we can observe the proposed scheme (PM) converging while after 2 iterations the 
existing scheme (Sharma and Obadah) giving undefine values (NaN). 
  
Example 4: 
 

Function Interval Iteration Method Time Error 

232  xex x
 

[0,1] 3 PM 0.014250 2.220446e-16 
Sharma 0.005937 1.152646e-09 
Obadah 0.007175 3.578957e-09 

 

 
 

In Ex:4 at three iterations the proposed scheme(PM) is showing accuracy up to 16 decimals places while the 
existing schemes (Sharma and Obadah) having accuracy up to 9 decimal places. 
 
Example 5: 
 

Function Interval Iterations Method Time Error 

268591448 2345  xxxxx  
[0,1] 4 PM 0.000868 6.589412e-07 

Sharma 0.001522 2.285747e-02 
Obadah 0.001330 1.832951e-02 
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In Ex:5 the proposed scheme (PM) reducing error rapidly at each iteration, while the existing schemes 
(Sharma and Obadah) having no change in error accuracy at each iteration.  
 

4 Conclusion 
 
This study has developed a multi-step derivative-free scheme by using central difference formula for 
estimating root of nonlinear equations. The proposed scheme having fourth-order convergence. Different 
types of transcendental and algebraic problems solved which show that the proposed scheme is more 
accurate than the existing schemes presented in [6,7]. From the tables it observed, the proposed scheme is 
better in terms of CPU time, number of iterations and reducing error more frequently than the existing 
schemes. In the given graphs presented in example 1 and 5 existing schemes showing repetition and in 
Example 3 existing schemes diverge while the proposed scheme reducing error at each iteration.  All the 
calculations and graphs carried out using MATLAB software. 
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