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Abstract 
 

With the development of human society, the evolving transition of energy will become a common 
challenge that mankind has to face together. In this context, it is crucial to make scientific and reasonable 
predictions about energy consumption. This paper presents a novel fractional grey prediction model 
FGM(1,1,k2) based on the classical fractional grey system theory. In order to improve the prediction 
accuracy of the FGM(1,1,k2) model, we further analyze the model error and propose improved grey 
model called as SFGM with optimization of background value. The numerical cases point out that 
SFGM(1,1,k2) significantly outperforms other existing fractional grey models. Finally, the proposed 
SFGM(1,1,k2) is applied to the forecasting of oil consumption, the predicted results would provide a 
reference for making energy policy in new situations. 
 

 
Keywords: Energy economic; fractional grey system; SFGM model; Simpson formula. 
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1 Introduction 
 
Energy has always been a key issue concerning the future of human destiny. And oil determines the future 
development of mankind, which as the backbone of the energy. Recently, The British Petroleum (BP) 
released BP energy outlook 2019-Global with the theme of “evolving transition” in Beijing. The outlook 
shows that the rise of energy demand and environmental pollution force mankind to face the common 
situation of evolving transition. Furthermore, the energy consumption in total world will continue to rise by 
about a third, and China and other countries in the Asia Pacific region account for two-thirds of that in a 
certain period of future. Therefore, it is necessary to make a scientific and reasonable forecast of energy 
consumption, which will help mankind to overcome this challenge in the new situation. 
 
In system theory, the grey system is a known system, which in an intermediate between the black system and 
the white system. In 1982, the concept and content about grey system theory was first proposed by Professor 
Deng [1], which has demonstrated excellent ability in solving uncertain problems with little information and 
small samples. In the past three decades, more and more researchers devoted themselves to the study of the 
grey system theory with its rapid development. Therefore, it also has been successfully applied in many 
fields including social [2-4], economic [5-6], energy [7-10], industrial [11-13], and agricultural management 
studies [14]. One of the most brilliant achievements of grey system theory is the grey prediction model, 
which represented by GM(1,1) model with one order accumulation generation and single variable of which 

whitening equation is    (1) (1)/dx t dt az t b  .   

 
Although GM(1,1) model exhibits a good mathematical theoretical foundation in solving practical problems, 
it does not always provide a satisfactory result in the face of complex and variable raw data sequences. To 
tackle the challenge, many scholar have studied the preprocessing, accumulation generating, background 
value, initial value and the residual error correlation of GM(1,1) prediction model aim to improve its 
prediction performance. And the research on the background value of gray model is always a hot topic. Tan 
et al. [15-16] took the lead in optimizing the background value of the GM(1,1) model from it’s geometric 
meaning, and provided a new optimization idea. Based on direct modeling, Wang et al. [17] presented a 
method of stepwise optimization, and the results show that the background value can be effectively 
improved. Luo et al. [18] used the homogeneous exponential function to simulation the sequence generated 
by the initial accumulation of the original sequence, thus giving a novel improved means of background 
value. Many researchers use interpolation and numerical integral theory to optimize the background of the 
gray model [19-22]. Thereafter, some researches extended the idea of optimizing the background value to 
the extended model of multivariable and non-equidistant gray theory and achieved good results [23-26]. 
 
On the other hand, there are also many researchers study the performances of the models from the 
perspective of accumulation generation of the raw data, which includes generalized accumulating generation, 
reciprocal accumulating generation, and fractional accumulating generation. Wu et al. [27] extend the 
traditional GM(1,1) to the fractional GM(1,1) (FGM(1,1) by short) which whitening equation is 

       /
r r

dx t dt az t b   firstly, this approach provides a new modelling idea and has been widely 

recognized by the academia. Later, Wu et al. [28,29,30] applied the model flexibly in various fields with 
satisfactory results. Xiao et al. [31] studied the modelling mechanism and extension structure of GM(1,1) 
model which fractional accumulated generation operator was considered as a generalized accumulated 
generation operator. Furthermore, Mao et al. [32] presented a novel FGM(q,1) model then regarded this 
fractional accumulated generation as a more general form of data transformation. Wu et al. [33] recently 
proposed a novel fractional accumulation grey prediction model (FGM(1,1,k)), and the results of theoretical 
analysis and practical application show the model is reliable. 
 
In this paper, we first presented a novel fractional grey prediction model (FGM(1,1,k2)) which bring in 2-
order time power terms to improve the prediction accuracy. With mathematical analysis, we proposed the 
SFGM(1,1,k2) model by using the Simpson numerical integral formula to further optimize the background 
value of the FGM(1,1,k2), then validated the SFGM(1,1,k2) model by numerical cases. In application study, 
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the proposed SFGM(1,1,k2) model is established to analyze the oil consumption in China, total Asia Pacific 
and the total world, and make the forecast to the future consumption behaviors in the next three years from 
2019 to 2021. Three alternative fractional grey models include the classical FGM(1,1) and the FGM(1,1,k), 
as well as the FGM(1,1,k2) were compared. These results indicate our proposed model has advantage over 
other existing models. 
 

2 Fractional Grey Model 
 
2.1 Fractional accumulated generating operation 
 
Accumulated generating operation (AGO) plays a crucial part in grey system theory, who is employed to 
reduce or even eliminate the randomness of the original data sequence and improve the use efficiency of 
grey system information. It also laid an important foundation for modeling grey differential equations.  
 

In general, for an original data sequence                   0 0 0 0 01 , 2 ,..., -1 ,X x x x n x n , We define it’s r order 

accumulated generation operator as follow. 
 

Definition 1. Set 
   rX r 

 
is the r order accumulated generation operator of sequence 

 0X , in 

which 
       1

1
, 1, 2,..., -1, .

kr r

i
x k x i k n n




   

 

We can obtained the expression 
   0r rX X A from the matrix operation theory, in which

rA is a -r AGO  

matrix . 
rA is described as follow: 

 

0 1 2 1

0
0 1 2

0 0
0 3

0 0 0
0

r

n n

r r r r

n

r r r

n

r r
A

n

r



        
        

        
      
      

      
 

            
 
 
 
 
  
  
   







    



 

(1) 

 
where 
 

   

1 0

1 1

!

n
r

r r n r
n n N

n



  

    
  



  (2) 

 

Definition 2. Let 
( 1) ( ) ( )( ) ( ) ( 1), 1,2,...,r r rx k x k x k k n      be the r order inverse accumulated 

generated operator ( -r IAGO ). We can obtained the expression 
   0 r rX X D  according to the matrix 

operation theory, where 
rD denotes the -r IAGO  matrix, and 
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(3) 

 

where 
1 0

( )( 1) ( 1)

!

n
r

r r r n
n n N

n



  

       
  


. 

 
2.2 FGM(1,1) model 
 
As a remarkable branch of grey system theory, fractional grey prediction model makes up for the deficiency 
of classical grey prediction model to some extent, and further extends the grey prediction model. 
 

Definition 3. Let                   0 0 0 0 01 , 2 , , 1 ,X x x x n x n 
 
be the original data sequence,

                0
1 , 2 , ,

r r r r rX x x x n X A  , in which  r
X  is the r order accumulated generating operator 

of  0
X , and                   2 , 3 , , -1 ,

r r r r r
Z z z z n z n   be the background value sequence of  r

X , in 

which 
            1/ 2 1 , 2,3, ,r r rz k x k x k k n     . We define 

 
       1r rx k az k b    (4) 

 

as the r order fractional GM(1,1) model called as FGM(1,1) by short, where b and a are the grey actuating 

quantity and development coefficient of the model respectively. And the parameters b and a  can be solved 
by the least square rule. The parameter can be obtained as follow: 
 

   
1

ˆ , =
T T Te a b P P P Y


 , (5) 
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. 
(6) 

 

Definition 4. Let the parameters a
 
and b

 
be the same as those in previous definition. We have the 

whitening equation of the r order accumulated grey FGM(1,1) model: 
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       
r

rdx t
ax t b

dt
   (7) 

 

Let 
       0 0ˆ 1 1x x . Then the solution for the whitening equation of the FGM(1,1) model can be obtained 

by 
 

         0 1ˆ 1 , 1,2, , ,r a kb b
x k x e k n

a a

  
    

 
  (8) 

 

The restored values of the sequence  0X  can be expressed by 
 

   0ˆ ˆ= r rX X D  (9) 
 

 

where 
                  0 0 0 0 0ˆ ˆ ˆ ˆ ˆ= 1 , 2 , , 1 ,X x x x n x n ,               ˆ ˆ ˆ ˆ= 1 , 2 , ,r r r rX x x x n . 

 

3 FGM(1,1,k2) Model 
 
The traditional grey system model regards the grey action b  as a constant. However, with the development 

and change of time and space, the grey action b  is not a fixed constant. Therefore, many scholars have 
carried out a series of improvements and optimization on the grey actuating quantity. In literature [34], 

GM(1,1) model was first introduced into the linear development space by substituting bk for b  to improve 

the grey action, and the literature [35] was optimized by introducing the first-order time power 1 2b k b . In 

this paper, the higher second-order time power model with 
2

2 1 0b k bk b   is extend to the fractional grey 

system and the following model definition is obtained. 
 

3.1 Fractional grey FGM(1,1,k2) model 
 

Definition 5. Let these sequences ( ) ( 1) ( ), ,r r rX X Z  have the same definition as those of FGM(1,1) model in 

previous section, we have the equation 
 

       1 2
2 1 0

r rx k az k b k b k b      (10) 

 

is called the r order fractional grey FGM(1,1,k2) model. And a  is named as development coefficient, 0b , 1b  

and 2b  are called as grey actuating quantity.  
 

Definition 6. Assume the sequences and parameters be the same definitions as those in Definition 5. We 
obtain 
 

        2
2 1 0

r

rdx t
ax t b t b t b

dt
     (11) 

 

is named as the whitening equation of the r order non-homogeneous FGM(1,1,k2) model.  
 

The FGM(1,1,k2) model can be reduced to a series of representative grey system models, includes 

FGM(1,1,k), GM(1,1,k,c), GM(1,1,k),GM(1,1) and so on, where the parameters are 1 2, ,a b b  specified 

suitable values.  
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When 2 0b  , the FGM(1,1,k2) model is reduce to FGM(1,1,k) model [33]. 

 

When 2 10, 0b b  , the FGM(1,1,k2) model is reduce to FGM(1,1) model [27]. 

 

When 21, 0r b  , the FGM(1,1,k2) model is reduce to GM(1,1,k,c) model [35]. 

 

When 2 01, 0, 0r b b   , the FGM(1,1,k2) model is reduce to GM(1,1,k) model [34]. 

 

When 2 11, 0, 0r b b   , the FGM(1,1,k2) model is reduce to GM(1,1) model [1].   

 

3.2 Determination of FGM(1,1,k2) model parameters 
 

Theorem 1. Assume the sequences 
( ) ( 1) ( ), ,r r rX X Z

 be the same as those in FGM(1,1,k2) model, let 

 2 1 0
ˆ , , ,

T
u a b b b  be a parameter set to be determined and 

 
   
   

   

   
   

   

1 2

1 2

1 2

2 2 2 2 1

3 3 3 3 1
,

1

r r

r r

r r

x z

x z
Y B

x n z n n n







   
   

   
    

   
      

    
. (12) 

 

According to the least square rule, we have 
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Analyze the left-hand side of the equation, we obtain 
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Reorder the above equations, we have 
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i i i i

n n n nr

i i i i

n r

i i

z k z k k z k k z k

z k k k k kM

z k k k k k

z k k


  

   

   

 

  







   

   

   

 1 0

2 2 2
                          

n n n

i i
k k

 

 
 
 
 
 
 
 
 
   

, (17) 

 

       
   
   
   

1

2

1 2

2

1

2

1

2

n r r

i

n r

i

n r

i

n r

i

x k z k

x k k
N

x k k

x k

















 
 
 
 
 
 
 
 









, (18) 

 

According to the known condition, we have 
 

                
   
   
   

2
2

2 2 2 2

2 4 3 2

2 2 2 2

3 2

2 2 2 2

2

2

      

                                  

                                    

        

n n n nr r r r

i i i i

n n n nr

T i i i i

n n n nr

i i i i

n r

i

z k z k k z k k z k

z k k k k k
B B

z k k k k k

z k k

   

   

   



  








   

   

   

 2 2 2
                                1

n n n

i i i

M

k
  

 
 
 
  
 
 
 
    

, 
(19) 

 

       
   
   
   

1

2

1 2

2

1

2

1

2

n r r

i

n r

iT

n r

i

n r

i

x k z k

x k k
B Y N

x k k

x k

















 
 
 
  
 
 
 
 









, (20) 

Substituting both
TM B B  and 

TN B Y  into equation (15), we have 
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2 1 0( , , , )T T TB B a b b b B Y  , (21) 

 
therefore, 
 

 2 1

1

0, ,ˆ ( , )T T Tb b bu a B B B Y


  , (22) 

 

3.3 The time response sequence of FGM(1,1,k2) model 
 
Theorem 2. Set Y and B have the same definition as Theorem 1, and parameter set

 2 1

1

0, ,ˆ ( , )T T Tb b bu a B B B Y


  , then the continuous time response function of the whitening equation 

        2
2 1 0/

r r
dx t dt ax t b t bt b   

 
of the r order FGM(1,1,k2) model is 

 
    2

2 1 0( ( ) )
r at atx t e b t b t b e dt C    , in which C is a constant which can be determined based on 

initial condition. 
 
Proof. It can be proofed by the constant variation method, omitted here. 
 

Theorem 3. Let B, Y and the parameter set  
1

2 1 0
ˆ ( , , , )T T Tu a b b b B B B Y



 
 
be same as those defined 

in Theorem 1. For the r order fractional FGM(1,1,k2) prediction model, the form of its time response series 
 ˆ rX  is 

 

         
2

0 12 1 0 02 2 1
2 13 2 2 3 2

2 2 2 2 1
ˆ 1r a kb b b bb b b k k k
x k x e b b

a a a a a a a a a

       
             

    

2,3, , 1, .k n n  Thereafter, we have the restored values sequence  0X̂  according to    0ˆ ˆ r rX X D

,where 
              0 0 0 0ˆ ˆ ˆ ˆ= 1 , 2 , ,X x x x n  and 

              ˆ ˆ ˆ ˆ= 1 , 2 , ,r r r rX x x x n
 

 
Proof. This proof can be got by discretizing the time response function in Theorem 2. Omitted here. 
 

4 SFGM(1,1,k2) Model Based on Simpson 
 
4.1 Error analysis of the model 
 
According to the time response function of FGM(1,1,k2) we noticed the prediction performance about 

FGM(1,1,k2) model depends on the parameters a and 2 1 0, ,b b b . However, the parameters 2 1 0, , ,a b b b are 

mainly determined by the background value
 
1 ( )

r
z k .The integration of 

        2
2 1 0

r rdx t dt ax t b t b t b     in [ 1, ]k k  can be introduced: 

 

     2
2 1 0

1 1 1
(t) ( ) , 2,3,..., 1,

k k kr r

k k k
I dx a x t dt b t b t b dt k n n

  
         , (23) 

 

Equation (14) is combined with 
       1 2

2 1 0

r rx k az k b k b k b     we get: 
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     
1

( )
kr r

k
z k x t dt


  , (24) 

 

Based on the previous knowledge, we know that the classical fractional grey system theory can be explained 
by the trapezoidal integral formula when calculating the background value of FGM(1,1,k2), then its 

geometric significance is shown in Fig. 1(a). The trapezoid area between the curve 
   r

x t  and the 

horizontal axis t on the interval [ 1, 1]k k   is the background value of FGM (1,1,k2) model. Obviously, 

when the data sequence has a large change, the background value calculated by the trapezoidal formula will 
have a large calculation error, which will cause the prediction effect of the model to change. The Simpson 
formula approximates the definite integral of the integrand curve by using a parabola to improve the error of 
the background value. The corresponding background value can be calculated by Fig. 1(b). The shaded area 
in Fig. 1(b) is the calculation error reduced by the improved Simpson formula. 
 

 
 

  
(a) (b) 

 
Fig. 1. The background value based on (a) trapezoidal formula and (b) Simpson formula 

 

4.2 SFGM(1,1,k2) model based on simpson 
 

Combined with the analysis of the model error in the above subsection, we noticed using the trapezoidal 
integral formula to calculate the background value will bring a large error, reducing the prediction 
performance of the model. Therefore, in our research, the Simpson numerical integral formula is employed 
to optimize the background value aim to promote the prediction performance of the model, so as to obtain a 
novel fractional grey system model named as the FGM(1,1,k2) model based on Simpson(SFGM(1,1,k2) by 
short). 
 

Considering the integral of equation (11) over the interval of [ 1, 1]k k  ,  
 

         
1 1 1

2
2 1 0

1 1 1

k k kr r

k k k
I dx t a x t dt b t b t b dt

  

  
       , (25) 

 

the above equation can be further expressed as: 
 

             
1

2 2
2 1 01

2
1 1 2

3

kr r r

k

b
I x k x k a x t dt b k b k b




         , (26) 

Simpson formula is used to approximate calculate the score of  1

1
( )

k r

k
x t dt



  over the interval [ 1, 1]k k  , 

and the following equation can be obtained: 

   1r
x k

   1r
x k

1k 
t

1k 

   r
x t

   1rx k

   1rx k

1k 
t

1k 

   r
x t
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             
1

1

1
( ) 1 4 1

3

k r r r r

k
I x t dt x k x k x k




        , (27) 

 

then, equation (26) can be expressed as: 
 

     

               

 

1

1

2 2
2 1 0

( 1) ( 1) ( )

( 1) ( 1) 1 4 1
3

2
   = 2   

3

kr r r

k

r r r r r

I x k x k x t dt

a
x k x k x k x k x k

b
b k b k b




    

          

  



, (28) 

 

By contrast with equation (26), we obtain: 
 

               
1

1 4 1
6

r r r rz k x k x k x k       , (29) 

 

Further simplify equation (28): 
 

           
   

2 2
2 1 0

2
2 1 0

( ( 1) ( 1))
1 4 1 =

6 2 3

1

3

                         2,3,..., -1

r r
r r r ba x k x k

x k x k x k b k b k b

b k b k b

k n

           

 
    

 



 (30) 

 

Let  2 1 0, ,ˆ ,
T

a b b be  be the parameter set. According to the principle of least square method, the 

parameter set shall meet the following conditions: 
 

 
1

ˆ T Te P P P Y


 , (31) 

 

where 
 

            

            

            

2

2

2

 1     4 2     3 1
2 2 1

6 3

 2     4 3     4 1
3 3 1

6 3

- 2 4 - 1 1
1

6 3

r r r

r r r

r r r

x x x

x x x

P

x n x n x n
n n

  
  
 
 

  
  

 
 
 

  
  

 

   

, 

 

(32) 

       

       

       

3 1

2

4 2

2

2

2

r r

r r

r r

x x

x x

Y

x n x n

 
 
 
 
 

  
 
 

  
 
 



, 

(33) 

 
Hence, the time response sequence of SFGM(1,1,k2) model improved based on Simpson formula is: 
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         
2

0 12 1 0 02 2 1
2 13 2 2 3 2

2 2 2 2 1
ˆ 1r a kb b b bb b b k k k
x k x e b b

a a a a a a a a a

       
              

     

 (34) 

 

After reduction, the predicted value of 
 0X is 

 
   0ˆ ˆ= r rX X D , (35) 

 

where                   0 0 0 0 0ˆ ˆ ˆ ˆ ˆ= 1 , 2 , , -1 ,X x x x n x n ,                   ˆ ˆ ˆ ˆ ˆ= 1 , 2 , , -1 ,r r r r rX x x x n x n
 

 

4.3 Determination of the order of the model 
 
When modelling and solving the fractional order grey prediction model, the selection of model order r will 
directly affect the solution result of model parameters, and then affect the prediction effect of the model. 
Therefore, the selection of the order r of fractional grey system model is very important. In this paper, we 
established an optimization problem with SMAPE as the objective function to minimize the modelling data, 
and the order r of the model is solved by using MATLAB optimization algorithm toolbox.  
 

       
   

0 0

02

ˆ1
min

1

n

ir

x k x k
SMAPE

n x k







 
 

            

            

            

       

       

       

   

   

2

2

2

2 1 0

1

 1     4 2     3 1
2 2 1

6 3

 2     4 3     4 1
3 3 1

6 3

- 2 4 -1 1
1

6 3

3 1

.

ˆ

ˆ

2.
4 2

2

2

2

, , ,

r r r

r r r

r

r r r

r r

r r

r r

T T T

x x x

x x x

P

x n x n x n
n n

x x

s t
x x

Y

x n x n

a b be P P P

k

b Y

x






  
  
 
 

  
  

 
 
 

  
  

 

 
 
 
 
 

  
 
 

  
 
 



   



     

       

2
0 12 1 0 02 2 1

2 13 2 2 3 2

10

0

2 2 2 2 1
1

ˆ ˆ 1
1

a k

k r

i

b b b bb b b k k k
x e b b

a a a a a a a a a

r
x k x i

k i

 

































       
             

     
  

   
   



 

 

4.4 Modelling procedure 
 
In this subsection, we summarize the modelling procedure of the proposed fractional SFGM(1,1,k2) model 
into following five steps according to the previous derivation. 
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Step 1: Generate r order accumulated generated operation(r-AGO) sequence  r
X according to the original 

data sequence  0X . The r-AGO sequence  rX is calculated by    0r rX X A . 
 

Step 2: Generate the background value sequence  r
Z calculated by consecutive three neighbors of  r

X with 

the formula         ( ) ( 1) 4 ( ) ( 1) , 2,3, ,6 11r r r rz k x k x k x k k n       ,which improved based on the 

Simpson formula. 
 

Step 3: Estimate the parameters set  2 1 0
ˆ , , ,

T
u a b b b  based on Theorem 1. 

 

Step 4: Obtain the time response sequence  ˆ rX according to Theorem 2 and Theorem 3. 

 

Step 5: Obtain the stored values (0)X̂  based on time response sequence
  ˆ r

X and the inverse accumulated 

generated operation. 
 

5 Validation  
 
In this section, we first give the metrics for evaluating the models to prepare for the subsequent validation 
and application. The definition and calculation formula for these metrics is shown in subsection 5.1. 
 
Then, we demonstrate the performances of the SFGM(1,1,k2) model with two numerical cases, all the 
detailed modelling process is also shown in the 2nd and 3rd subsection. And the modelling results are used for 
comparative studies with the FGM(1,1) prediction model and the FGM(1,1,k) prediction model, as well as 
the FGM(1,1,k2) prediction model.  
 

5.1 Metrics for evaluating of the models 
 
The model error is an important metrics to test the practicability and effectiveness of a prediction model. In 

this paper, the absolute percentage error   APE k is taken as the basis metrics to examine the practical 

modelling effect and prediction performance of the model. The magnitude of its value represents the degree 
of relative deviation between the true value of the kth data and the predicted value. The calculation formula 
is as follows:  
 

 
       

   

0 0

0

ˆ
100

x k x k
APE k

x k


   (36) 

 

where  APE k represents the absolute simulation percentage error when 2,3, , -1,k n n  , n represents the 

number of data used for simulation modelling, and  APE k  represents the absolute predicted percentage 

error when 1, 2, -1,k n n N N    , N represents the number of data used for prediction. 

 

Furthermore, we take the mean absolute percentage error  MAPE as the evaluation standard and 

optimization target of the model, and the value of M APE describes the deviation degree between the real 
value and the predicted value. The calculation formula is as follows: 
 

 
1

1 n

k
MAPE APE k

n 
   (37) 
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Which means: 
 

       
   

0 0

01

ˆ1
100

n

k

x k x k
MAPE

n x k


   (38) 

 
where n stands for the number of data sets to be tested. Considering the initial condition                                          

(        0 0ˆ1 1x x )has no influence on the model evaluation when solving the fractional grey models, the 

metrics of the following three evaluation models are given:  
 
The Simulated Mean Absolute Percent Error (SMAPE): 
 

       
   

0 0

02

ˆ1
100

1

n

k

x k x k
SMAPE

n x k


 


  (39) 

 
The Predicted Mean Absolute Percent Error (PMAPE): 
 

       
   

0 0

0
1

ˆ1
100

N

k n

x k x k
PMAPE

N n x k 


 


  (40) 

 
The Total Mean Absolute Percent Error (TMAPE):  
   

       
   

0 0

02

ˆ1
100

1

N

k

x k x k
TMAPE

N x k


 


  (41) 

 

5.2 Numerical case 1 
 
In this subsection we study the national consumer price index (CPI for short) to validate the performance of 
the proposed model. The raw data of the national CPI from 1999 to 2006 are used to establish models and 
are tabulated in Table 1. The raw data from 2007 to 2011 are compared with the FGM(1,1), the 
FGM(1,1,k) ,the FGM(1,1,k2), as well as the SFGM(1,1,k2). All the raw data are collected from the China 
Statistical Yearbook from 1999 to 2011. 
 

Table 1. 1999-2006 the national consumer price index (1978=100) 
 

Year 1999 2000 2001 2002 2003 2004 2005 2006 
National CPI 432.2 434 437 433.5 438.7 455.8 464 471 

 
According to the data in the Table 1, we establish the fractional grey model. Meanwhile, different fractional 
grey models are solved according to the principle of minimum error, and different time response sequences 
are obtained as shown in Table 2. 
 
Through the corresponding time response sequence, the modelling value of the national CPI are calculated 
and express in Table 3 and the prediction results of a several fractional models are shown in Fig. 2. 
 
The results show SFGM(1,1,k2) has more accurate prediction effect than other fractional  grey models. 
Further, the national CPI was extrapolated according to different time response equations. We obtain the 
predicted results of national CPI from 2007 to 2010 of different fractional grey models and compared them 
with the raw data as shown in the following Table 4. And we draw the error comparison figure in order to 
more intuitively show the forecast effect of different fractional grey models. 
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Table 2. The time response sequences of several fractional grey models 
 

Models Optimal order r The time response sequences of models 
FGM(1,1) 1.08      1.08 0.0333 1ˆ 13876.60 -13444.40

k
x k e


  

FGM(1,1,k) -0.18      1.08 0.7215 1ˆ 142.63 +0.70 +288.87
k

x k e k
 

  

FGM(1,1,k2) -0.26      0.26 -0.7958 1 2ˆ 675.73 -0.46 4.42 230.79
k

x k e k k
 

    

SFGM(1,1,k2) -0.74      0.74 -1.6377 1 2ˆ 484.74 -0.57 4.01 45.01kx k e k k     

 
Table 3. The validation results of several fractional grey prediction models 

 
Year Raw data FGM(1,1) FGM (1,1,k) FGM(1,1,k2) SFGM (1,1, k2) 
1999 432.2 432.2 432.2 432.2 432.2 
2000 434 435.4957 436.2881 436.2115 443.1033 
2001 437 432.4847 434.3451 429.9394 432.6854 
2002 433.5 436.1011 436.9377 430.7491 431.8095 
2003 438.7 442.8962 443.1912 437.145 438.1955 
2004 455.8 451.6742 451.533 446.5541 448.6563 
2005 464 461.8845 460.8685 457.2707 461.3822 
2006 471 473.234 470.5581 468.3512 475.4192 

 
Table 4. The prediction results of several fractional grey prediction models 

 
Year Raw data FGM(1,1) FGM (1,1,k) FGM(1,1,k2) SFGM (1,1, k2) 
2007 493.6 485.5531 480.2599 479.3193 490.245 
2008 522.7 498.7381 489.8058 489.9555 505.556 
2009 519 512.7245 499.1232 500.173 521.1655 
2010 536.1 527.4718 508.1897 509.9513 536.9533 

PMAPE  2.2582 4.5845 4.4156 1.1340 

TMAPE  1.2548 2.0923 2.2562 1.0177 

 
As can be seen from the data in the Table 4, the PM APE  of FGM(1,1) is 2.2582, that of FGM(1,1,k) is 

4.5845, that of FGM(1,1,k2) is 4.4156 and that of SFGM(1,1,k2) is 1.1340, respectively. And the TMAPE  
of FGM(1,1) is 1.2548, that of FGM(1,1,k) is 2.0923, that of FGM(1,1,k2) is 2.2562 and that of 
SFGM(1,1,k2) is 1.0177, respectively. 
 
The Fig. 3 shows more intuitively that the total mean absolute error and the prediction mean absolute error 
of the proposed model are less than others, it also imply that the SFGM(1,1,k2) model performance more 
accurate prediction effect so that validate the reliability of the proposed model. 
 

5.3 Numerical case 2 
 
In the same way, this subsection we study the urban consumer price index(CPI for short) from 1999 to 2011, 
the raw data from 1999 to 2006 are used to establish models and are tabulated in Table 5, the left raw data 
from 2007 to 2011 are  compared with the proposed model and other fractional grey models. All the raw 
data are collected from the China Statistical Yearbook from 1999 to 2011. 
 
According to the data in the Table 5, we establish the different fractional grey models, and the optimal order 
r and the time response sequence of different fractional models are calculated as Table 6. 
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Fig. 2. The forecast results of different fractional models on the national CPI 
 

Table 5. The urban consumer price index from 1999-2006 (1978=100) 
 

Year 1999 2000 2001 2002 2003 2004 2005 2006 
Urban CPI 472.8 476.6 479.9 475.1 479.4 495.2 503.1 510.6 

 
Table 6. The time response sequences of different fractional grey models 

 
Models Optimal order r The time response sequences of models 
FGM(1,1) 1.07      1.07 0.0287 1ˆ 17564.24 -17091.44

k
x k e


  

FGM(1,1,k) -0.17      0.17 0.7215 1ˆ 110.48 +0.70 +321.01kx k e k    

FGM(1,1,k2) -0.22      0.22 -0.7958 1 2ˆ 723.14 -0.23 1.86 285.54kx k e k k     

SFGM(1,1,k2) -0.44      0.44 -0.9785 1 2ˆ 596.41 -0.77 5.33 152.02kx k e k k     

 
Through the corresponding time response sequence, the modelling value of the urban CPI are calculated and 
express in Table 7, and the prediction results of a series of fractional models are shown in Fig 4. 
 
It can be seen from the Fig 4, the prediction effect of the SFGM(1,1,k2) prediction model is better than others. 
Similarly, the following Table 8 shows the prediction effect of different fractional grey models on urban CPI, 
and draws the error comparison chart under different prediction models. 
 

From the Table 4 we know that the PM APE  of FGM(1,1) is 2.4414, that of FGM(1,1,k) is 3.5714, that of 

FGM(1,1,k2) is 2.7555 and that of SFGM(1,1,k2) is 1.6939, respectively. And the TMAPE  of FGM(1,1) is 
1.4301, that of FGM(1,1,k) is 1.9411, that of FGM(1,1,k2) is 1.5858 and that of SFGM(1,1,k2) is 1.3965, 
respectively.  
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Fig. 3. The error comparison of different fractional grey models 
 

Table 7. The validation results of several fractional grey prediction models 
 

Year Raw data FGM(1,1) FGM (1,1,k) FGM(1,1,k2) SFGM (1,1, k2) 
1999 472.8 472.8 472.8 472.8 472.8 
2000 476.6 477.948 479.1914 480.2695 483.4546 
2001 479.9 474.7504 476.8427 476.1433 472.1995 
2002 475.1 477.8659 478.5743 477.7076 470.9612 
2003 479.4 484.0047 484.0684 484.1334 478.6147 
2004 495.2 492.0113 491.8591 493.2598 491.4074 
2005 503.1 501.3478 500.8247 503.5691 506.7579 
2006 510.6 511.7245 510.2697 514.1907 523.2107 

 
Table 8. The prediction results of several fractional models 

 
Year Raw data FGM(1,1) FGM (1,1,k) FGM(1,1,k2) SFGM (1,1, k2) 
2007 533.6 522.9709 519.8012 524.6735 539.9992 
2008 563.5 534.9806 529.2132 534.8057 556.7329 
2009 558.4 547.685 538.4077 544.5038 573.2186 
2010 576.3 561.0389 547.3466 553.7492 589.3654 

PMAPE  2.4414 3.5714 2.7555 1.6939 

TMAPE  1.4301 1.9411 1.5858 1.3965 

 
Combining the results in the Table 4 with the Fig. 5, we can see that the proposed SFGM(1,1,k2)model 
shows better prediction effect and validate that the proposed model is effective and reliable. 
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Fig. 4. The forecast results of different fractional models on the urban CPI 
 

 
 

Fig. 5. The error comparison of different fractional grey models 
 

6 Application 
 
According to our knowledge, oil is the most important lifeblood of modern industry, which is called "the 
blood of industry". As an important non-renewable energy and strategic resources, the use and consumption 
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of oil will directly affect the survival and development of human beings and play an inestimable role in 
national security and economic and social development. In order to more effectively demonstrate the 
effectiveness and practicability of the model, we studied the oil consumption in China, Asia Pacific and the 
total world as cases for application analysis. 
 
In this paper, the raw data of the oil consumption from 2007 to 2018 are collected from the BP Statistical 
Review of World Energy 2019. We divided the data in each case into two groups, and established different 
fractional grey models based on the data of eight years from 2007 to 2014. The remaining data from 2015 to 
2018 were used to test and contrast the prediction results of different prediction models. Finally, we gave the 
prediction data of different fractional-order prediction models for the next three years from 2019 to 2021. All 
these results are tabulated in Table 9, Table 10 and Table 11. Meanwhile, we show the prediction errors of 
different models in the table, and further intuitively show them in Fig. 6, Fig. 7 and Fig. 8. 
 

6.1 Case 1: Forecasting oil consumption in China 
 
This section mainly studied the oil consumption in China from 2007 to 2018. We used the oil consumption 
data of China from 2007 to 2014 to establish different fractional grey models, and solved the optimal orders 
of FGM(1,1,k), FGM(1,1,k2) and SFGM(1,1,k2) models: 0.28, 0.24, -0.40 and -0.42 respectively. The 

PMAPE of FGM(1,1) is 5.4592, that of FGM(1,1,k) is 5.0050, that of FGM(1,1,k2) is 1.9703 and that of 

SFGM(1,1,k2) is 1.0126,respectively. And the TMAPE  of FGM(1,1) is 2.7163, that of FGM(1,1,k) is 
2.5278, that of FGM(1,1,k2) is 1.7233 and that of SFGM(1,1,k2) is 1.2528 respectively. 

 

6.2 Case 2: Forecasting oil consumption in total Asia Pacific 
 
In this subsection, let the oil consumption in total Asia Pacific from 2007 to 2018 as the research object, 
through modelling and solving different fractional grey prediction models, and obtained the optimal order 
numbers of the FGM(1,1,k), FGM(1,1,k2) and SFGM(1,1,k2) models: 0.16, 0.17, -0.34 and -0.3, respectively. 

The PMAPE of FGM(1,1) is 5.1004, that of FGM(1,1,k) is 5.3274, that of FGM(1,1,k2) is 2.3014 and that 

of SFGM(1,1,k2) is 1.3775,respectively. And the TMAPE  of FGM(1,1) is 2.2026, that of FGM(1,1,k) is 
2.2943, that of FGM(1,1,k2) is 1.7141 and that of SFGM(1,1,k2) is 1.4238 respectively. 
 

6.3 Case 3: Forecasting oil consumption in total world 
 
Similarly, in this section we conduct a predictive analysis of global oil consumption. The global oil 
consumption from 2007 to 2018 is still the research object. By solving the established fractional order gray 
prediction model, the optimal orders corresponding to FGM(1,1,k), FGM(1,1,k2) and SFGM(1,1,k2) are 

respectively 0.06, 0.06, -0.18 and -0.12. The PMAPE of FGM(1,1) is 2.2717, that of FGM(1,1,k) is 2.2826, 

that of FGM(1,1,k2) is 2.8054 and that of SFGM(1,1,k2) is 0.5179,respectively. And the TMAPE  of 
FGM(1,1) is 1.1121, that of FGM(1,1,k) is 1.1327, that of FGM(1,1,k2) is 1.7670 and that of SFGM(1,1,k2) 
is 0.7099 respectively. 
 

7 Discussion 
 
In comparison with the classical FGM(1,1) model, the FGM(1,1,k) model and the FGM(1,1,k2) model, the 
SFGM(1,1,k2) model proposed in this paper can make more accurate prediction results, which effectively 
describe the evolution trend of future oil consumption. These results indicate that in the next three 
years(2019-2021), the oil consumption in China would reach 13639.02, 14040.8 and 14427.59 barrels 
respectively, the oil consumption in total Asia Pacific would reach 36890.37, 37673.93, 38421.93 barrels 
respectively, and the oil consumption total world would reach 100198.2, 101091.5, 101930.8 barrels 
respectively. 
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Table 9. Prediction results of oil consumption in China 
 

Year Raw data FGM(1,1) APE  FGM(1,1,k) APE FGM(1,1,k2) APE  SFGM(1,1,k2) APE  
r=0.28 r=0.24 r=-0.40 r=-0.42 

2007 7784 7784 0.0000 7784 0.0000 7784 0.0000 7784 0.0000 
2008 7914 7842.661 0.9031 7870.637 0.5496 8106.47 2.4303 7852.435 0.7796 
2009 8295 8512.597 2.6226 8505.416 2.5361 8527.245 2.7992 8338.071 0.5187 
2010 9446 9189.714 2.7084 9159.29 3.0305 9084.623 3.8211 8974.323 4.9888 
2011 9808 9802.42 0.0555 9762.035 0.4673 9668.507 1.4209 9615.588 1.9605 
2012 10242 10341.07 0.9647 10301.72 0.5805 10234.61 0.0747 10225.22 0.1664 
2013 10750 10809.11 0.5540 10779.73 0.2808 10770.9 0.1986 10798.06 0.4513 
2014 11239 11213.04 0.2341 11200.99 0.3414 11276.49 0.3303 11336.58 0.8650 
2015 11986 11559.74 3.5552 11571.2 3.4595 11753.76 1.9365 11844.64 1.1782 
2016 12304 11855.65 3.6416 11895.91 3.3145 12205.71 0.7965 12325.94 0.1807 
2017 12840 12106.6 5.7143 12180.22 0.5141 12635.21 1.5976 12783.7 0.4412 
2018 13525 12317.78 8.9256 12428.77 8.1051 13044.76 3.5506 13220.63 2.2503 
2019  12493.77  12645.66  13436.52  13639.02  
2020  12638.62  12834.56  13812.31  14040.8  
2021  12755.89  12998.7  14173.71  14427.59  

SMAPE   1.1480  1.1123  1.5822  1.3900 

PMAPE   5.4592  5.0050  1.9703  1.0126 
TMAPE   2.7163  2.5278  1.7233  1.2528 
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Fig. 6. Error comparison of oil consumption in China 
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Table 10. Prediction results of oil consumption in Asia Pacific  
 

Year Raw data FGM(1,1) APE  FGM(1,1,k) APE  FGM(1,1,k2) APE  SFGM(1,1,k2) APE  
r=0.16 r=0.17 r=-0.34 r=-0.3 

2007 26078 26078 0.0000 26078 0.0000 26078 0.0000 26078 0.0000 
2008 25940 25727.48 0.8185 25704.64 0.9067 26203.88 1.0180 25594.81 1.3300 
2009 26351 26765.96 1.5728 26794.57 1.6814 26543 0.7267 26167.32 0.6989 
2010 28043 27918.86 0.4420 27993.03 0.1775 27500.32 1.9345 27348.4 2.4763 
2011 28942 28981.4 0.1346 29084.75 0.4917 28710.31 0.8020 28661.87 0.9694 
2012 30094 29908.74 0.6158 30022.5 0.2378 29971.88 0.4060 29940.53 0.5102 
2013 30759 30697.37 0.1994 30802.34 0.1418 31204.37 1.4489 31140.99 1.2428 
2014 31343 31356.59 0.0440 31433.84 0.2905 32381.26 3.3132 32259.39 2.9244 
2015 32551 31899.55 2.0018 31930.72 1.9060 33497.32 2.9067 33302.68 2.3087 
2016 33743 32339.92 4.1594 32307.42 4.2558 34554.98 2.4049 34279.72 1.5892 
2017 34835 32690.73 6.1557 32577.81 6.4799 35559.02 2.0781 35198.78 1.0440 
2018 35863 32963.86 8.0846 32754.69 8.6679 36514.55 1.8160 36067 0.5681 
2019  33169.91  32849.64  37426.39  36890.37  
2020  33318.28  32873.02  38298.83  37673.93  
2021  33417.21  32834.03  39135.61  38421.93  

SMAPE   0.5467  0.5611  1.3785  1.4503 

PMAPE   5.1004  5.3274  2.3014  1.3775 
TMAPE   2.2026  2.2943  1.7141  1.4238 
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Fig 7. Error comparison of oil consumption in Asia Pacific 
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Table 11. Prediction results of oil consumption in total world  
 

year raw data FGM(1,1) APE  FGM(1,1,k) APE  FGM(1,1,k2) APE  SFGM(1,1,k2) APE  
r=0.06 r=0.06 r=-0.18 r=-0.12 

2007 87191 87191 0.0000 87191 0.0000 87191 0.0000 87191 0.0000 
2008 86619 86001.13 0.7132 85992.41 0.7233 86815.39 0.2268 85845.58 0.8928 
2009 85780 86922.85 1.3319 86897.36 1.3023 86681.82 0.1051 86365.55 0.6823 
2010 88730 88249.25 0.5413 88204.65 0.5916 87904.11 0.9303 87939.06 0.8910 
2011 89763 89621.26 0.1574 89559.41 0.2264 89785.81 0.0258 89755.26 0.0081 
2012 90724 90923.72 0.2196 90849.67 0.1380 91869.19 1.2618 91509.59 0.8654 
2013 92276 92115.92 0.1730 92037.05 0.2585 93939.55 1.8032 93118.85 0.9138 
2014 93194 93185.78 0.0091 93111.21 0.0892 95912.26 2.9164 94576.94 1.4836 
2015 95048 94133.63 0.9615 94073.67 1.0246 97762.39 2.8563 95899.91 0.8968 
2016 96737 94965.37 1.8317 94931.13 1.8671 99489.93 2.8454 97107.35 0.3825 
2017 98406 95689.34 2.7602 95692.38 2.7571 101104 2.7422 98216.9 0.1917 
2018 99843 96314.76 3.5336 96366.85 3.4815 102616.2 2.7776 99243.23 0.6006 
2019  96850.9  96963.8  104037.7  100198.2  
2020  97306.71  97492.02  105378.8  101091.5  
2021  97690.6  97959.62  106648.4  101930.8  

SMAPE   0.4494  0.4756  1.1736  0.8196 

PMAPE   2.2717  2.2826  2.8054  0.5179 
TMAPE   1.1121  1.1327  1.7670  0.7099 
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Fig 8. Error comparison of oil consumption in total world 
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From the forecast results, we can clearly understand the behavior of oil consumption in China, total Asia 
Pacific and the total world will gradually increase in the next three years. The average annual growth rate of 
the oil consumption in total world reached 0.9027%, and the average annual growth rate of the oil 
consumption in total Asia Pacific reached 2.7164%, which is significantly higher than the average annual 
growth rate of the total world. It is estimated that the oil consumption in Asia Pacific will account for 
36.8173%, 37.2672% and 37.6941% of the oil consumption in total world in the next three years. And the 
average annual growth rate of the oil consumption in China in the next three years will reach 3.0431%, 
which is also higher than the average annual growth rate of the oil consumption in Asia Pacific and total 
world. The forecast results of the model predict that the proportion of the oil consumption in China will 
account for 13.6120%, 13.8892% and 14.1543% of the oil consumption in total world. 
 
In terms of the energy source, the demand for oil will continue to rise in future, which is dominated by China 
and other Asia Pacific countries. These prediction results coincide with the outlook made by the British 
Petroleum (BP) this year, which again verifies the accuracy and reliability of the model. At the same time, 
these forecast results will provide important enlightenment for many countries to face the coming gradual 
transition of energy. 
 

8 Conclusion 
 
In this paper, a novel fractional grey system prediction model named as the SFGM(1,1,k2) model is proposed 
by considering the error from the background value of the model. With mathematical analysis, it is shown 
that the SFGM(1,1,k2) based on the Simpson formula can effectively reduce the error. The numerical cases 
in Section 5 validate the validity of the SFGM(1,1,k2) model.  
 
In the end, The proposed model is employed to forecast the behavior of oil consumption in China, total Asia 
Pacific and total world, the results show that SFGM(1,1,k2) presents high accuracy. These prediction results 
are also confirmed by BP energy outlook 2019-Global, it also imply that the SFGM(1,1,k2) model proposed 
in this paper is reliable and will contribute to the development of human energy. 
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