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ABSTRACT 
 
There is still a lack of information in the literature regarding the sampling grid size and its effect on 
the accuracy of soil attributes spatial variability mapping. Thus, the present study aimed to evaluate 
the influence of different sampling grid sizes regarding accuracy for soil penetration resistance 
(SPR), soil bulk density (SBD) and soil moisture (SM) spatial variability characterization, as well as 
the correlation between these attributes. The study was conducted in a 5.7 ha Red Yellow Latosol 
area in Januária, Minas Gerais state, Brazil. Soil samples were taken at the 0.00–0.20 m layer, 
using a regular sampling grid of 20x20 m. (145 points). Other two grids (41 and 21 points) were 
derived by deleting lines or lines and points from the initial grid. SPR, SBD, and SM data were 

Original Research Article 



 
 
 
 

Martins et al.; JEAI, 24(3): 1-11, 2018; Article no.JEAI.42681 
 
 

 
2 
 

subjected to descriptive statistics and geostatistical analyses. Furthermore, the similarity of the 
thematic maps and correlation among these attributes were analyzed through the relative deviation 
coefficient (RDC), and Pearson's correlation matrix. The reduction of the grid density (number of 
points) increased the estimation error for SPR, SBD, and SM, especially when using only 21 points 
(grid C), whereas, denser grids (Grid A and B) showed maps with greater similarity (accuracy). The 
SPR levels are directly related to SBD levels, in other words, the highest SPR levels in the area 
occurred due to higher SBD levels, as well as the lowest values, whereas SM levels were inversely 
proportional to SPR values since wetter areas presented lower SPR levels. Also, denser areas are 
directly correlated with higher levels of SM in the study area. In essence, only the grid with 25 points 
per hectare (20x20 m) is recommended for mapping these attributes spatial variability. 

 
 
Keywords: Precision agriculture; spatial variability; soil compaction; penetrometer. 
 
1. INTRODUCTION 
 
Precision agriculture (PA) is referred as a 
technological advancement for management of 
the soil-plant-atmosphere system, which is based 
on principles of spatial variability and information 
management that encompasses factors of soil 
attributes and crop production [1,2]. Among the 
PA tools, georeferenced soil sampling using 
regular grids, to characterize the variability of soil 
attributes, is one of the most important and 
traditionally used in agriculture. However, 
georeferenced soil sampling, even when used on 
a large scale, still lacks methodological 
definitions, especially regarding the sampling grid 
size [3,4]. 
 
The efficiency of a soil sampling plan is 
dependent on prior knowledge of the 
spatiotemporal variability structure that the 
investigated attributes present in the soil [2,5,6]. 
Thus, the knowledge of soil attributes and crop 
property variability, in space and time, is 
considered a fundamental principle for the 
precise management of agricultural areas, 
independent of their scale [7,8]. However, the 
spatiotemporal variability of soil attributes, 
resulting from soil formation and anthropogenic 
interventions, varies at different spatial and 
temporal scales [2,9]. 
 
Based on that, different scales of soil attributes 
levels make it complicated to develop a sampling 
plan that uses a single-spaced sample grid when 
several soil attributes are involved [1,2,10]. This 
justifies investigations that aim to define the ideal 
size of the sampling grid for specific soil 
attributes, such as soil penetration resistance 
(SPR), soil bulk density (SBD) and soil moisture 
(SM). SPR is used to quantify the mechanical 
impedance of the soil for plant root growth [11]. 
In this sense, SPR has been considered one of 
the main parameters for diagnosis of soil 

compaction and determination of restrictive soil 
layers for plant development [12,13].  
 
Additionally, the SPR levels vary with temporally 
and spatially highly dynamic soil properties such 
as SBD and SM. Experiments conducted with 
various soils revealed that SPR is directly 
correlated to SBD and it exhibits an inverse 
relationship to SM [14]. As a consequence, high 
coefficients of variation (CV) were usually 
observed in different studies [15,16]. Therefore, 
to correctly determine the spatial variability of the 
SPR, it is crucial to establish an adequate 
density of sampling points per area that best 
represents each sampling point.  
 
The sampling density is an important factor in the 
management of soil attributes spatial variability. 
About 80–85% of the total error in the application 
of agricultural inputs, as fertilizers and corrective 
materials, is attributed to poorly planned soil 
sampling [17]. Due to this issue, the optimization 
of sampling grids should consider the allocation 
of sampling points, which plays a key role in the 
economic feasibility of PA. Researchers have 
demonstrated that ideal sampling grids are 
approximately 50 × 50 m (i.e., four samples per 
ha) [18] or 30 × 30 m (i.e., more than ten 
samples per ha) [19].  
 
Thus, the primary purpose for performing this 
study is to show that a single size of a grid 
sampling cannot be used in all areas. Moreover, 
the sampling grid must meet two main 
requirements. First, the number and spatial 
distribution of the sampled points should ensure 
a minimum precision for estimating in unsampled 
locations. Secondly, the optimization technique 
must be numerically practicable [20].  
 
In essence, the optimal sampling grid density is 
one that, with a minimal amount of points, can 
characterize the spatial variability of soil 
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attributes, guaranteeing the reliability of an 
estimate. Among the difficulties in providing this 
kind of information, the level of detail required 
[21], and implementation costs [22,23] must be 
considered. Thus, the objective of this study was 
to evaluate the influence of different sampling 
grid densities regarding accuracy for SPR, SBD 
and SM spatial variability characterization, as 
well as to evaluate the correlation between these 
attributes. 
 

2. MATERIALS AND METHODS 
 

The study was conducted in the Federal Institute 
of Northern Minas Gerais – Campus Januária, 
located between the geographical coordinates of 
15° 28' 55'' S and 44° 22' 41'' W. The average 
altitude is 474 m. The relief of the area is 
classified as smoothly undulating, and the soil is 
classified as Red Yellow Latosol according to the 
Brazilian System of Soil Classification [24]. The 
experimental site has a total area of 5.7 ha, 
where sorghum (Sorghum bicolor (L.) Moench) 
and maize (Zea mays) were cultivated in crop 
rotation using conventional tillage system for at 
least 20 years.  
 
In order to map the soil attributes, the agricultural 
area was georeferenced and divided into a 
regular sampling grid of 20 x 20 m density 
consisting of 145 points. Soil sampling was 
performed at the 0 – 20 cm layer depth due to 
the highest volume of the root system of annual 
crops, and the greatest physical and chemical 
changes in soils under conventional tillage 
system take place at this depth. The SPR was 
determined using a portable digital penetrometer 
(PenetroLOG). The SM at the moment of SPR 
evaluation was determined through the 
gravimetric method using a Dutch type soil auger 
for soil sampling. The SBD was determined 
through the volumetric ring method using a soil 

auger for undisturbed samples [25]. Four 
subsamples were collected within a radius of 5 m 
from the georeferenced point. Then, all 
subsamples were identified and sent to the lab 
for the proposed analyses.  
 
In order to evaluate the effects of using             
different sampling grids densities for mapping  
the spatial variability of SPR, SBD, and SM, 
other two grids were created from the sampling 
grid density of 145 points (A). The grids were 
composed of 41 (B) and 21 sampling points (C). 
The sampling grid (B) was originated by 
eliminating one interspersed line from grid A. On 
the other hand, the sampling grid (C) emerged 
eliminating one interspersed line from (B)               
(Fig. 1). 
 

The datasets from each soil attribute were 
organized into a spreadsheet and subjected to 
outlier analysis. Any values outside the range                
of two standard deviations from the mean                
were considered outliers. The SPR, SBD, and 
SM data considering all sampling grids were 
subjected to descriptive statistical analysis to 
obtain the positional means (mean, median, 
minimum and maximum) and dispersion 
(coefficients of variation – CV, and standard 
deviation - SD) skewness and kurtosis. The CV 
values were used to classify the data variability 
into low (CV < 12%), medium (12 % <CV< 62 %) 
and high (CV > 62 %) as proposed in the 
literature [26].  
 

The spatial dependence of the soil attributes 
using the three sampling grids densities was 
evaluated by adjusting semivariograms, 
assuming the hypothesis of intrinsic stationarity, 
defined by Equation 1. 
 

                 (1) 

 
 

 
Fig. 1. Sampling grids evaluated: (a) 145 points, (B) 41 points, and (C) 21 points 
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Where:  
 
γ (h): is the semivariance for interval class h. 
N(h): is the number of pairs separated by a lag 
distance (separation distance between sample 
positions), Z(xi): is a measured variable at spatial 
location i, 
Z(xi + h): is a measured variable at spatial 
location i +h. 
 
The model that best represented the relationship 
between experimental semivariance and 
distance h was adjusted based on the highest 
coefficient of determination (R²), the smallest 
residual sum of squares (RSS), and was 
confirmed by the cross-validation technique as 
proposed by [2]. Then, parameters, such as 
nugget effect (C0), sill (C0 + C1) and range (A) 
were determined. The spatial dependence index 
(SDI) was determined and classified according to 
[27], by using the relation C1 / (C0+C1) and 
assuming the following intervals: low spatial 
dependence for SDI < 25%, moderate for 25% < 
SDI < 75% and strong for SDI > 75%. 
 
Maps interpolation was performed using ordinary 
kriging and inverse distance weighting (IDW), in 
case of absence of spatial dependence. 
Regardless of the sampling grid density used, 
the maps were generated with the same spatial 
resolution (pixel size). Thus, it was guaranteed 
that all maps possess the same number and 
location of points. 
 
Two parameters were used to evaluate the effect 
of grids A, B, and C on the accuracy of thematic 
maps and the correlation between the soil 
attributes. The relative deviation coefficient 
(RDC) and Pearson’s linear correlation 
coefficient (p < 0.05). The RDC index expresses 
the mean difference as an absolute value, which 
shows the dissimilarity between two maps as 
demonstrated by the differences between the 
interpolated points of each map. The lower the 
percentage found, the higher is the similarity 
between maps [2,28]. 
 
In this study, the sampling grid A (145 points) 
was considered as a reference (standard)                   
for comparison with the other two sampling            
grids (41 and 21 points). The RDC was 
determined using Equation 2, which was adapted 
from [2,28].  
 

                                (2) 

Where:  
 
Tiref: is the soil attribute value at point i 
(reference value) using the sampling grid A; 
Tij: is the soil attribute value at point i determined 
using the sampling grids B and C; 
n: is the number of sampling points in the 
reference grid (145). 
 

3. RESULTS AND DISCUSSION 
 
A descriptive statistical summary of all the 
studied attributes is presented in Table 1. A low 
variability on the mean and median values of all 
attributes can be observed among the different 
sampling grids. Moreover, as the sampling point 
density increased, there was a reduction in 
amplitude among the minimum, and maximum 
values obtained, tending towards an 
approximation to the mean values. Thus, the 
increase in the number of samples (n) provided 
by denser sampling grids, made it possible to 
characterize with greater detail the SPR spatial 
variability map. Differently, less dense grids 
tended to soften the map by approaching to the 
mean values, which would not be a correct 
representation of this attribute’s spatial variability. 
Moreover, these high levels of SPR should be 
taken into as it can induce the occurrence of 
restriction zones to root development of crops. 
 
Additionally, the CV values for these attributes 
were classified as low (CV < 12 %) for SBD in all 
sampling grids and medium (12 % < CV < 62 %) 
for SPR and SM grids. This higher variation in 
SPR values may be related to the system and 
management practices adopted in the area. As 
the area is managed under conventional planting 
system, the major structural modification occurs 
in this layer (0 to 20 cm), which could happen 
due to mechanical action from plant roots, 
edaphic fauna, and machinery/equipment traffic. 
 
According to [29], the observation of higher CV 
values is an indication of higher spatial variability 
of these attributes (SPR and SM) in the area. 
These results reinforce the use of sampling grids 
with a larger number of samples to precisely 
reproduce the spatial variability of SPR, SBD and 
SM values. Even though we did not investigate 
the effect of using a different number of 
subsamples per sampling point in this study, the 
results obtained by [13] indicated that using a 
higher number of subsamples per sampling point 
could be an SPR mapping alternative to use less 
dense sampling grids. 
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Table 1. Descriptive statistics of soil penetration resistance (SPR, MPa), soil bulk density 
(SBD, g/cm³) and soil moisture (SM, %) using different sampling grids in Januária, Northern 

Minas Gerais 
 
Soil 
attributes 

Statistical parameters 
Mean Median Min Max SD CV Ck

 
Sk

 

20 x 20 meters 
SPR 2.06 1.93 0.90 3.66 0.61 29.71 -0.54 0.30 
SBD 1.69 1.73 1.41 1.90 0.11 6.78 -1.07 -0.20 
SM 5.14 5.21 3.23 7.18 0.98 19.11 -0.85 0.09 

40 x 40 meters 
SPR 2.23 2.28 1.24 3.66 0.66 29.50 -0.89 0.00 
SBD 1.67 1.65 1.41 1.85 0.11 6.81 -1.07 -0.23 
SM 5.25 5.29 3.36 7.18 1.06 20.27 -0.87 -0.06 

60 x 60 meters 
SPR 1.96 1.93 1.24 2.97 0.54 27.73 -1.21 0.15 
SBD 1.70 1.74 1.51 1.87 0.11 6.48 -1.21 -0.36 
SM 4.74 4.46 3.38 6.75 0.97 20.52 -0.66 0.61 

MIN: Minimum; MAX: Maximum; SD: Standard deviation; CV: Coefficient of variation; Ck: Coefficient of Kurtosis; 
Sk: Skewness; SPR: Soil penetration resistance; SBD: Soil bulk density; and SM: Soil Moisture 

 
Results of the geostatistical analysis (Table 2) 
showed that all variables presented spatial 
dependence, except to SBD at the 60x60 m grid 
density, which showed a random behaviour 
expressed as a pure nugget effect. Model 
selection for semivariograms was done by the 
higher coefficient of determination (R²), visual 
fitting, and cross-validation parameters (R² and 
Standard error). The spherical, Gaussian and 
exponential models were fitted to the attributes 
that presented spatial dependence. 
 
The spatial dependence was classified according 
to the SDI intervals mentioned before [27]. All 
studied variables showed a strong correlation 
(SDI > 75%), which confirms that the data 
distribution is not random. Moreover, the random 
behaviour (pure nugget effect) of the SBD, 
obtained in grid C (60x60 m), is related to the 
increase in the distance between the sampling 
points, associated with the reduction of sampled 
points. According to [30,31], reducing the dataset 
increases the confidence interval, which reduces 
the accuracy of fitted models until they become 
random. 
 
The range is another important parameter in the 
study of semivariogram as it sets the limit 
distance (lag) to which sampling points 
influences each other, in other words, the 
maximum spatial correlation distance among 
variables [32]. It was observed that every range 
value was higher than the smallest distance 
between points for all sampling grids (exception 
to SPR in grid A). According to [33], the range of 
an attribute ensures that all points within a circle 

with a radius of equal value are so similar that 
can be used to estimate values for any point 
within this distance. [20] affirms that points 
located in an area where the radius is equal to 
the range value show greater similarity when 
compared to those separated by greater 
distances. Furthermore, range values can still be 
used as a standard to choose the minimum 
distance between sampled points [7]. 
 
Regarding the residual sum of squares (RSS) it 
was observed that with the decrease in the 
number of sampled points, the RSS value 
increased for some attributes, affecting the R² 
result which decreased. These results indicate 
that as the pairs of point’s number decreased, 
the model accuracy for estimating unsampled 
locations decreased as well. Similar behaviour 
was found by other authors [2,20,34] when 
analyzing different grids densities. 
 
As expected, when reducing the grid density, the 
minimum distance increased and the minimum 
pairs of point’s number decreased. Reducing the 
minimum pairs of point’s number affected directly 
the precision of the theoretical models to 
represent the spatial variability of all attributes 
studied. Thus, to ensure the reliability of the 
theoretical model set, it is of utmost importance 
that the semivariogram contains at least 30 pairs 
of points [35]. Although spatial dependence of 
SPR and SM was observed in grid C, the 
modelling of spatial dependence using only 21 
sampling points would be unreliable, and the 
interpolation process may cause errors in 
attribute estimation of unsampled areas.  
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From this result, the decision of choosing                   
a denser or less dense grid sampling should     
take into account some factors, such as land     
use history and soil management practices,                
area size, cost of sampling and lab                   
analysis, technification level of the user, 
precision level and the equipment available for 
analysis. 
 
The maps of attributes which presented spatial 
dependence were interpolated through ordinary 
kriging, whereas the inverse distance weighting 
(IDW: power = 2) method was used for mapping 
the SBD at the 60x60 m grid that presented pure 
nugget effect. Moreover, the similarity between 
grids A, B and C was evaluated through de RDC 
index. On the other hand, Pearson’s linear 
correlation coefficient (p ≤ 0.05) was used to 

verify the correlation between all attributes using 
145 points extracted from all maps. The spatial 
distribution maps of SPR, SBD, and SM levels 
are shown (Fig. 2,3 and 4). 
 
Looking at the thematic maps it is possible to 
observe that the SPR levels are directly related 
to SBD levels, in other words, the highest SPR 
levels in the area correlated to higher SBD 
levels, and possibly to the same soil 
management practices for many years and 
uncontrolled machinery traffic. Regarding SM 
levels, the relation was the opposite, since wetter 
areas presented lower SPR levels. Also, denser 
areas presented the highest levels of SM in the 
study area. Similar spatial distribution SPR, SBD, 
and SM levels were observed by several          
authors [14,36]. 

 
Table 2. Parameters of the theoretical models fitted to empirical semivariance values of soil 
penetration resistance (SPR), soil bulk density (SBD) and soil moisture (SM) using different 

sampling grids in Januária, Northern Minas Gerais 
 

Soil 
attributes 

Statistical parameters 

Model Range Sill Nugget effect SDI RSS R² 

20 x 20 meters 

SPR Gaussian 19.2 0.352 0.004 92.15 0.009 0.771 

SBD Spherical 69.3 0.013 0.003 76.95 0.000 0.824 

SM Exponential 23.5 1.007 0.079 98.86 0.001 0.928 

40 x 40 meters 

SPR Spherical 69.2 0.439 0.016 97.28 0.003 0.638 

SBD Gaussian 32.6 0.013 0.001 88.41 0.000 0.465 

SM Spherical 83.2 1.14 0.031 96.35 0.014 0.878 

60 x 60 meters 

SPR Spherical 124.1 0.308 0.015 92.71 0.001 0.732 

SBD Pure Nugget Effect 

SM Spherical 129.9 0.989 0.072 94.91 0.014 0.722 
SDI: Spatial dependence index; RSS: Residual sum of squares; R²: Coefficient of determination 

 
 

 
Fig 2. Thematic maps of soil penetration resistance (SPR) obtained by different sampling grids 

in Januária, Northern Minas Gerais. (A) 145 points, (B) 41 points, and (C) 21 points 
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Fig. 3. Thematic maps of soil bulk density (SBD) obtained by different sampling grids in 

Januária, Northern Minas Gerais. (A) 145 points, (B) 41 points, and (C) 21 points 
 

 

 
Fig. 4. Thematic maps of soil moisture (SM) obtained by different sampling grids in Januária, 

Northern Minas Gerais. (A) 145 points, (B) 41 points, and (C) 21 points 
 
After analyzing the RDC results, it was verified 
that, as the sampling grid size increased, and 
consequently, the distance between the sampling 
points, there was an increase in the dissimilarity 
(accuracy) among maps when compared to the 
reference map (grid A). The SPR maps showed 
the highest dissimilarity among each other, with 
RDC ranging from 22.85% to 24.71%, whereas 
for SBD and SM maps the RDC values ranged 
from 3.86% to 4.54% and from 12.44% to 
13.32%, respectively. Thus, it is possible to                 
observe that the kriging method was more 
influenced by the use of less sampled points due 
to its robustness and complexity for unsampled 
point’s estimation. On the other hand, the IDW 
method which was used for the SBD data 
interpolation in grid C was less influenced by this 
scenario. 
 
As the RDC value was calculated from the mean 
difference in modulus of the interpolated values 
in relation to the reference map, there is no RDC 
value considered as optimum, and the choice of 
an acceptable RDC percentage value depends 
on the degree of accuracy desired by the user. 
Based on that, an RDC of 15% was considered a 

suitable value for guiding the interpretation of the 
results. Thus, the values obtained for SPR using 
grids B and C would not be recommended to 
represent the spatial variability of this attribute. 
Therefore, the utilization of an insufficient 
number of subsamples results in an erroneous 
representation of its variability and can indicate a 
necessity for denser sampling grids, which 
increases the sampling and lab analysis cost. 
However, the use of grids with less sampled 
points would still be useful for cokriging analysis 
if attributes present correlation among each 
other, which would reduce the sampling costs. 
 
These results indicate that the RDC was an 
efficient parameter to evaluate the similarity 
among maps from different grid densities (A, B, 
and C), which confirms its potential for use in 
precision agriculture studies. Similar results were 
previously reported by several authors when 
analyzing spatial variability of SPR [13], K and P 
[2], and grain yield [28,37,38]. 
 
In order to perform the linear correlation between 
the SPR, SBD and SM maps, 145 points were 
extracted from all raster’s using grid A as a
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Table 3. Correlation between soil penetration resistance (SPR), soil bulk density (SBD) and soil 
moisture (SM) using 145 sampled points in Januária, Northern Minas Gerais 

 
Grid Sampling 

 SPR 
(A) 

SPR 
(B) 

SPR 
(C) 

SBD 
(A) 

SBD 
(B) 

SBD 
(C) 

SM 
(A) 

SM 
(B) 

SM 
(C) 

SPR (A)          
SPR (B) -         
SPR (C) - -        
SBD (A) 0.36* 0.27* 0.11 ns       
SBD (B) 0.26* 0.48* 0.21* -      
SBD (C) 0.13ns 0.04ns 0.09 ns - -     
SM (A) -0.17* -0.19* 0.05 ns -0.08ns -0.18* -0.25*    
SM (B) -0.10ns -0.05ns 0.27* -0.02ns 0.06 ns -0.18* -   
SM (C) -0.12ns 0.07 ns 0.09 ns -0.29* -0.22* -0.21* - - - 

* and ns: significant and non-significant Pearson’s correlation coefficients (p < 0.05), respectively. A: 20x20 m; B: 
40X40 m; and C: 60x60 m 

 
reference. Thus, it was found that significant 
correlation between SPR, SBD, and SM ranged 
from -0.17 to 0.48 as shown in Table 3. These 
results show that SM levels are inversely 
proportional to SPR values as mentioned before. 
However, the SBD values presented the highest 
correlation coefficient with SPR (0.48), which 
confirms the results of [39] that high SBD values 
and machinery traffic could speed up SPR and 
consequently reduce crop’s yield. 
 
Regarding the spatial distribution of SPR, SBD 
and SM levels on the soil, it was possible to 
detect zones with uniform patterns, which would 
allow the adoption of adequate management 
practices for each level of these attributes in the 
area, which would be impossible from an 
analysis by descriptive methods. In relation to 
SPR levels, average values ranged from 1.96 
MPa to 2.23 MPa (Grids A, B, and C) which               
are within the interval (2 MPa to 2.5 MPa) 
considered as the critical limit for root 
development as suggested by [40]. However, 
divergent opinions exist regarding the SPR value 
that should be considered as the crucial limit in 
plant development. Other studies have shown 
that higher SPR values are tolerable (up to 3 
MPa) in soils with no-tillage systems [12,41,42], 
which are probably due to better soil             
structure [13,43]. 
 
Independent of the critical limit considered for 
SPR, the maps showed that the study area 
presented restrictive values for root growth using 
all three grids. However, grids with 6.25 and 2.78 
samples per hectare (B and C) are not 
recommended for representation of SPR, SBD 
and SM spatial variability mapping since the 
RDC values were above the maximum value 

proposed (15%). Thus, only the grid with 25 
points per hectare (grid A) is recommended                    
for mapping these attributes. Furthermore,                       
one way to reduce the number of                         
necessary samples is to divide the field into 
specific management zones and then use a 
stratified sampling or a less dense sampling grid 
with at least four samples per hectare (50 x 50 
m) as recommended by [18]. In sum, this study 
could be used as an assistant tool for decision 
making, when regarding the sampling grid 
density that should be used for these attributes 
evaluation. 
 
4. CONCLUSION 
 
Reduction of the grid density (number of points) 
increased the estimation error for SPR, SBD, and 
SM, especially when using only 21 points (grid 
C), whereas, denser grids (Grid A and B) showed 
maps with greater similarity (accuracy). 
 
Regarding the spatial distribution of these 
attributes, the SPR levels are directly related to 
SBD levels, in other words, the highest SPR 
levels in the area occurred due to higher SBD 
levels and vice versa, whereas SM levels 
presented inverse correlation with SPR values 
since wetter areas presented lower SPR levels. 
Furthermore, denser areas are directly correlated 
with higher levels of SM in the study area. 
 

Grids with 6.25 and 2.78 samples per hectare (B 
and C) are not recommended for representation 
of SPR, SBD and SM spatial variability mapping 
since the RDC values were above the maximum 
value proposed (15%). Thus, only the grid with 
25 points per hectare (grid A) is recommended 
for mapping these attributes. 
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