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Complete Peer review History: http://sciencedomain.org/review-history/24395

Received: 14th February 2018
Accepted: 21st April 2018

Original Research Article Published: 30th April 2018

Abstract

In this paper, the generalized KP-BBM equation is considered. The G′/G-expansion method and
the first integral method are applied to integrate the equation. By means of the two methods, the
rational solutions, the periodic solutions and the hyperbolic function solutions are thus obtained
under some parametric conditions.
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1 Introduction
Recently, many researchers have studied the
following nonlinear Kadomtsov-Petviashvili-
Benjiamin-Bona-Mahony (KP-BBM) equation

[ut + ux − a(u2)x − buxxt]x + kuyy = 0, (1)

which is a combination of the KP equation
and the BBM equation and was deduced when
Wazwaz[1] studied the BBM equation in the
sense of the KP equation. The KP equation was
introduced in order to discuss the stability of
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tense waves to perpendicular horizontal
perturbations[2]. The BBM equation has
been proposed as a model for propagation
of long waves where nonlinear dispersion is
incorporated[3]. Up to now, researchers have
succeeded in applying several methods to study
the KP-BBM equation and getting some results.
Wazwaz[1] obtained some periodic solutions and
solitons solutions by using the sin-cosine method
and the tanh method. In addition, Wzawaz[4]
used the extended tanh method to obtain some
exact solutions. Abdou et al.[5] got some periodic
wave solutions, solitary wave solutions and
triangular wave solutions by using the extended
mapping method with symbolic computation.
Song et al.[6] employed the bifurcation method
of dynamical systems to investigate bifurcation of
solitary waves.

In this paper, we consider the following
generalized KP-BBM equation

[(un)t + (un)x − a(um+1)x −
b(un)xxt]x + k(un)yy = 0, (2)

where a, b, k are constants, n,m are positive
integers and m,n ≥ 1. Specially, when m =
n = 1, (2) becomes (1). Tang et al.[7] studied
travelling wave solutions of (2) with parametric
conditions of n > m ≥ 1 by bifurcation theory
of dynamical systems. The goal of this paper
is to obtain the rational solutions, the periodic
solutions and the hyperbolic function solutions
of system (2) by applying the G′/G-expansion
method and the first integral method. The G′/G-
expansion method was first presented by Wang
[8] which can be used to deal with all types of
nonlinear evolution equations. From then on,
the G′/G-expansion method has been widely
used, for example, Ozkan Guner et al.[9] used
the method to obtain exact soliton solutions of
nonlinear fractional density-dependent fractional
differential equation with quadratic nonlinearity
and nonlinear fractional approximate long water
wave equation. The first integral method was
first proposed by Feng[10] for obtaining the
exact solutions of Burgers-KdV equation which is
based on the ring theory of commutative algebra.
It has been applied to many nonlinear evolution

equations, for example, M. Eslami et al. [11]
considered the resonant nonlinear Schrödinger’s
equation with time-dependent coefficients by
employing the first integral method and obtained
the exact solutions of the equation.

2 The G′/G-expansion
method to the generalized
KP-BBM equation

Let us assume that the solutions of (2) take the
form

u(x, y, t) = u(ξ), ξ = k1x+ l1y + λ1t, (3)

where k1, l1, λ1 are constants. Using the
transformation (3), (2) becomes

(k1λ1 + k2
1 + kl21)(u

n)′′ − ak2
1(u

m+1)′′ −
bλ1k

3
1(u

n)(4) = 0.

Integrating the above equation twice and letting
the first integral constant be zero, hence, we have
the following ODE

(k1λ1 + k2
1 + kl21)u

n − ak2
1u

m+1 −

bλ1k
3
1(u

n)
′′
= g, (4)

where g is an integral constant and ”′” is the
derivative with respect to ξ. We assume that (4)
has solutions as the following form [12, 13]

u(ξ) = D

(
G′

G

)N

,

where D is a non-zero constant which will be
determined later. N is determined by balancing
the linear term of the highest order derivatives
with the highest order nonlinear term of (4) and G
satisfies a second order constant coefficient ODE

G
′′
(ξ) + λG

′
(ξ) + µG(ξ) = 0, (5)

where λ, µ are constants that need to be
determined later. Considering the relationship
between m+1 and n in (4), there are the following
two cases.
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2.1 m+ 1 > n

Balancing (un)
′′

with um+1 of (4), we have nN+2 = N(m+1), that is N = 2/(m−n+1). Therefore,
the solutions can be written as

u(ξ) = D

(
G′

G

) 2
(m−n+1)

. (6)

Then, we obtain

un = Dn

(
G′

G

) 2n
m−n+1

, um+1 = Dm+1

(
G′

G

) 2(m+1)
m−n+1

(un)
′′

=
2n

m− n+ 1
Dn

[
(

2n

m− n+ 1
+ 1)

(
G′

G

) 2n
m−n+1

+2

+ (
4n

m− n+ 1
+ 1)λ

(
G′

G

) 2n
m−n+1

+1

+
2n

m− n+ 1
(2µ+ λ2)

(
G′

G

) 2n
m−n+1

+ (
4n

m− n+ 1
− 1)λµ

(
G′

G

) 2n
m−n+1

−1

+(
2n

m− n+ 1
− 1)µ2

(
G′

G

) 2n
m−n+1

−2 ]
.

Substituting the above formulas into (4) and collecting all terms with the same order of G′/G together,
we can convert the left-hand side of (4) into a polynomial in G′/G. Then, setting each coefficient of
each polynomial to zero, we derive a set of algebraic equation for λ, µ and D.(

G′

G

) 2n
m−n+1

+2

coeff:

−bλ1k
3
1

2n

m− n+ 1
(

2n

m− n+ 1
+ 1)Dn − ak2

1D
m+1 = 0, (7)

(
G′

G

) 2n
m−n+1

+1

coeff:

−bλ1k
3
1

2n

m− n+ 1
(

4n

m− n+ 1
+ 1)λDn = 0, (8)

(
G′

G

) 2n
m−n+1

coeff:

−bλ1k
3
1(

2n

m− n+ 1
)2(2µ+ λ2)Dn + (λ1k1 + k2

1 + kl21)D
n = 0. (9)

According to the situations that whether 2n
m−n+1

− 1 and 2n
m−n+1

− 2 are equal to zero, we need to
consider the cases as follows.

Case 1. 2n
m−n+1

− 1 ̸= 0 and 2n
m−n+1

− 2 ̸= 0 (i.e. n ̸= m+1
3

and n ̸= m+1
2

)(
G′

G

) 2n
m−n+1

−1

coeff:

−bλ1k
3
1

2n

m− n+ 1
(

4n

m− n+ 1
− 1)λµDn = 0, (10)

(
G′

G

) 2n
m−n+1

−2

coeff:

−bλ1k
3
1

2n

m− n+ 1
(

2n

m− n+ 1
− 1)µ2Dn = 0, (11)

3
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(
G′

G

)0

coeff:

g = 0. (12)

Solving the set of (7)-(12) , we have

λ = µ = 0, g = 0, λ1k1 + k2
1 + kl21 = 0, D =

(
−bλ1k

3
1

2n
m−n+1

( 2n
m−n+1

+ 1)

ak2
1

) 1
m−n+1

. (13)

Substituting (13) into (5) and (6), we can obtain the the rational solutions

u(x, y, t) =

(
−bλ1k

3
1

2n
m−n+1

( 2n
m−n+1

+ 1)

ak2
1

) 1
m−n+1 (

C1

C1(k1x+ l1y + λ1t) + C2

) 2
m−n+1

, (14)

where C1, C2 are arbitrary constants. The solution u(x, y, t) is presented in Fig. 11 at the end of this
paper.

Case 2. 2n
m−n+1

− 1 = 0 (i.e. n = m+1
3

)(
G′

G

) 2n
m−n+1

−1

coeff:

−bλ1k
3
1

2n

m− n+ 1
(

4n

m− n+ 1
− 1)λµDn − g = 0, (15)

(
G′

G

) 2n
m−n+1

−2

coeff:

−bλ1k
3
1

2n

m− n+ 1
(

2n

m− n+ 1
− 1)µ2Dn = 0. (16)

Solving (7)-(9), (15)-(16) and combining n = m+1
3

, we can derive

λ = 0, g = 0, µ =
λ1k1 + k2

1 + kl21
2bλ1k3

1

, D =

(
−2bλ1k

3
1

ak2
1

) 1
2n

. (17)

Substituting (17) into (5) and (6), then, (5) thus becomes

G′′ +

(
λ1k1 + k2

1 + kl21
2bλ1k3

1

)
G = 0.

Considering the relationship between λ1k1+k2
1+kl21

2bλ1k
3
1

and zero, we have the following results in the end.

I. λ1k1+k2
1+kl21

2bλ1k
3
1

< 0

We obtain the hyperbolic function solutions

u(x, y, t) =

(
k1λ1 + k2

1 + kl21
ak2

1

) 1
2n

C3 sinh
(

k1λ1+k2
1+kl21

−2bλ1k
3
1

)1/2
(k1x+ l1y + λ1t) + C4 cosh

(
k1λ1+k2

1+kl21
−2bλ1k

3
1

)1/2
(k1x+ l1y + λ1t)

C3 cosh
(

k1λ1+k2
1+kl21

−2bλ1k
3
1

)1/2
(k1x+ l1y + λ1t) + C4 sinh

(
k1λ1+k2

1+kl21
−2bλ1k

3
1

)1/2
(k1x+ l1y + λ1t)


1
n

,

(18)
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where C3, C4 are arbitrary constants.
II. λ1k1+k2

1+kl21
2bλ1k

3
1

> 0

We obtain the hyperbolic function solutions

u(x, y, t) =

(
−k1λ1 + k2

1 + kl21
ak2

1

) 1
2n

−C5 sin
(

k1λ1+k2
1+kl21

2bλ1k
3
1

)1/2
(k1x+ l1y + λ1t) + C6 cos

(
k1λ1+k2

1+kl21
2bλ1k

3
1

)1/2
(k1x+ l1y + λ1t)

C5 cos
(

k1λ1+k2
1+kl21

2bλ1k
3
1

)1/2
(k1x+ l1y + λ1t) + C6 sin

(
k1λ1+k2

1+kl21
2bλ1k

3
1

)1/2
(k1x+ l1y + λ1t)


1
n

,

(19)

where C5, C6 are arbitrary constants.
III. λ1k1+k2

1+kl21
2bλ1k

3
1

= 0

We obtain the rational solutions

u(x, y, t) =

(
−2bλ1k

3
1

ak2
1

) 1
2n
(

C7

C7(k1x+ l1y + λ1t) + C8

) 1
n

, (20)

where C7, C8 are arbitrary constants. The solutions (18), (19) and (20) are presented in the following
figures.

Case 3. 2n
m−n+1

− 2 = 0 (i.e. n = m+1
2

)(
G′

G

) 2n
m−n+1

−1

coeff:

−bλ1k
3
1

2n

m− n+ 1
(

4n

m− n+ 1
− 1)λµDn = 0, (21)

(
G′

G

) 2n
m−n+1

−2

coeff:

−bλ1k
3
1

2n

m− n+ 1
(

2n

m− n+ 1
− 1)µ2Dn − g = 0. (22)
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Solving (7)-(9), (21)-(22) and substituting n = m+1
2

into the results, we get

λ = 0, g =
3(k1λ1 + k2

1 + kl21)
2

16ak2
1

, µ =
k1λ1 + k2

1 + kl21
8bλ1k3

1

, D =

(
−6bλ1k

3
1

ak2
1

) 1
n

. (23)

Substituting (23) into (5) and (6), similarly, we have the following three cases.
I. k1λ1+k2

1+kl21
8bλ1k

3
1

< 0

We obtain the hyperbolic function solutions

u(x, y, t) =

(
3(k1λ1 + k2

1 + kl21)

4ak2
1

) 1
n

C9 sinh
(

k1λ1+k2
1+kl21

−8bλ1k
3
1

)1/2
(k1x+ l1y + λ1t) + C10 cosh

(
k1λ1+k2

1+kl21
−8bλ1k

3
1

)1/2
(k1x+ l1y + λ1t)

C9 cosh
(

k1λ1+k2
1+kl21

−8bλ1k
3
1

)1/2
(k1x+ l1y + λ1t) + C10 sinh

(
k1λ1+k2

1+kl21
−8bλ1k

3
1

)1/2
(k1x+ l1y + λ1t)


2
n

,

(24)

where C9, C10 are arbitrary constants.
II. k1λ1+k2

1+kl21
8bλ1k

3
1

> 0

We obtain the hyperbolic function solutions

u(x, y, t) =

(
−3(k1λ1 + k2

1 + kl21)

4ak2
1

) 1
n

−C11 sin
(

k1λ1+k2
1+kl21

8bλ1k
3
1

)1/2
(k1x+ l1y + λ1t) + C12 cos

(
k1λ1+k2

1+kl21
8bλ1k

3
1

)1/2
(k1x+ l1y + λ1t)

C11 cos
(

k1λ1+k2
1+kl21

8bλ1k
3
1

)1/2
(k1x+ l1y + λ1t) + C12 sin

(
k1λ1+k2

1+kl21
8bλ1k

3
1

)1/2
(k1x+ l1y + λ1t)


2
n

,

(25)

where C11, C12 are arbitrary constants.
III. k1λ1+k2

1+kl21
8bλ1k

3
1

= 0

We obtain the rational solutions

u(x, y, t) =

(
−6bλ1k

3
1

ak2
1

) 1
n
(

C13

C13(k1x+ l1y + λ1t) + C14

) 2
n

,

(26)

where C13, C14 are arbitrary constants. The solutions (24), (25) and (26) are presented in the following
figures.
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2.2 m+ 1 = n

In this condition, (4) thus can be converted into

(k1λ1 + k2
1 + kl21 − ak2

1)u
n − bλ1k

3
1(u

n)′′ = g.

Obviously, we have the exact solutions as following cases.
Case 1. k1λ1+k2

1+kl21−ak2
1

−bλ1k
3
1

< 0

u(x, y, t) =

[
C15e

(
k1λ1+k2

1+kl21−ak2
1

bλ1k3
1

)1/2

(k1x+l1y+λ1t)

+C16e
−
(

k1λ1+k2
1+kl21−ak2

1
bλ1k3

1

)1/2

(k1x+l1y+λ1t)
+

g

k1λ1 + k2
1 + kl21 − ak2

1

] 1
n

. (27)

Case 2. k1λ1+k2
1+kl21−ak2

1

−bλ1k
3
1

> 0

u(x, y, t) =

[
C17 cos

(
k1λ1 + k2

1 + kl21 − ak2
1

−bλ1k3
1

)1/2

(k1x+ l1y + λ1t)

+C18 sin

(
k1λ1 + k2

1 + kl21 − ak2
1

−bλ1k3
1

)1/2

(k1x+ l1y + λ1t) +
g

k1λ1 + k2
1 + kl21 − ak2

1

] 1
n

.

(28)

Case 3. k1λ1+k2
1+kl21−ak2

1

−bλ1k
3
1

= 0

u(x, y, t) =

[
−g

2bλ1k3
1

(k1x+ l1y + λ1t)
2 + C19(k1x+ l1y + λ1t) + C20

] 1
n

, (29)

where C15, ..., C20 are arbitrary constants. The solutions (27), (28) and (29) are presented in the
following figures.
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3 THE IMPROVED G′/G-EXPANSION METHOD TO THE
GENERALIZED KP-BBM EQUATION

In order to obtain closed form solutions, we let g = 0 and use the transformation

u(ξ) = v
2

m−n+1 (ξ), m+ 1 ̸= n,

which will reduce (4) into the following ODE

(k1λ1 + k2
1 + kl21)v

2 − ak2
1v

4 − bλ1k
3
1

2n

m− n+ 1
(

2n

m− n+ 1
− 1)(v′)2 + bλ1k

3
1

2n

m− n+ 1
vv′′ = 0.

(30)

Suppose that the solutions of (30) can be expressed by a polynomial of G′/G as follows

v(ξ) =

N∑
i=0

ai

(
G′

G

)i

, (31)

where ai are real constants with aN ̸= 0 and G = G(ξ) satisfies (5). N is a positive integer which can
be determined by balancing the highest order derivative term with the highest order nonlinear term
after substituting (31) into (30).

Balancing vv′′ and v4 of (30), we have N + (N + 2) = 4N , i.e., N = 1. Therefore, (31) can be
rewritten as

v(ξ) = a0 + a1

(
G′

G

)
. (32)

8
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Combining (5) and (32), we deduce

v′ = −a1

(
G′

G

)2

− λa1

(
G′

G

)
− µa1,

v′′ = 2a1

(
G′

G

)3

+ 3λa1

(
G′

G

)2

+ (λ2a1 + 2µa1)

(
G′

G

)
+ λµa1,

v2 = a2
1

(
G′

G

)2

+ 2a0a1

(
G′

G

)
+ a2

0,

v4 = a4
1

(
G′

G

)4

+ 4a0a
3
1

(
G′

G

)3

+ 6a2
0a

2
1

(
G′

G

)2

+ 4a3
0a1

(
G′

G

)
+ a4

0,

and

(v′)2 = a2
1

(
G′

G

)4

+ 2λa2
1

(
G′

G

)3

+ (2µa2
1 + λ2a2

1)

(
G′

G

)2

+ 2λµa2
1

(
G′

G

)
+ µ2a2

1,

vv′′ = 2a2
1

(
G′

G

)4

+ (2a0a1 + 3λa2
1)

(
G′

G

)3

+ (3λa0a1 + λ2a2
1 + 2µa2

1)

(
G′

G

)2

+(λµa2
1 + λ2a0a1 + 2µa0a1)

(
G′

G

)
+ λµa0a1.

Substituting the above v2, v4, (v′)2 and vv′′ into (30), collecting all terms with the same powers of
G′/G and setting each coefficient to zero, we have a system of algebraic equations for a0, a1, λ and
µ as follows.(

G′

G

)4
coeff:

−ak2
1a

4
1 − bλ1k

3
1a

2
1

2n

m− n+ 1
(

2n

m− n+ 1
− 1) + 2bλ1k

3
1a

2
1

2n

m− n+ 1
= 0,

(
G′

G

)3
coeff:

−4ak2
1a0a

3
1 − 2bλ1λk

3
1a

2
1

2n

m− n+ 1
(

2n

m− n+ 1
− 1) + bλ1k

3
1

2n

m− n+ 1
(2a0a1 + 3λa2

1) = 0,

(
G′

G

)2
coeff:

−6ak2
1a

2
0a

2
1 − bλ1k

3
1

2n

m− n+ 1
(

2n

m− n+ 1
− 1)(2µa2

1 + λ2a2
1)

+bλ1k
3
1

2n

m− n+ 1
(3λa0a1 + λ2a2

1 + 2µa2
1) + a2

1(λ1k1 + k2
1 + kl21) = 0,(

G′

G

)
coeff:

−4ak2
1a

3
0a1 − 2bλ1λµk

3
1a

2
1

2n

m− n+ 1
(

2n

m− n+ 1
− 1)

+bλ1k
3
1

2n

m− n+ 1
(λµa2

1 + a0a1λ
2 + 2a0a1µ) + 2a0a1(λ1k1 + k2

1 + kl21) = 0,

(
G′

G

)0
coeff:

−ak2
1a

4
0 − bλ1k

3
1µ

2a2
1

2n

m− n+ 1
(

2n

m− n+ 1
− 1) + bλ1λµk

3
1a0a1

2n

m− n+ 1
+ a2

0(λ1k1 + k2
1 + kl21) = 0.

9
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Solving the above algebraic system with the aid of Matlab, we have

a0 = ±
λ
√

2abnλ1k1(3m− 5n+ 3)

2a(m− n+ 1)
, a1 = ±

√
2abnλ1k1(3m− 5n+ 3)

a(m− n+ 1)
,

µ =
1

4
λ2, λ1k1 + k2

1 + kl21 = 0.

(33)

Substituting a0 and a1 into (32), which thus can be written as

v(ξ) = ±
√

2abnλ1k1(3m− 5n+ 3)

a(m− n+ 1)

(
λ

2
+

G′

G

)
. (34)

Combining (5) and µ = 1
4
λ2 of (33), we derive

G′

G
= −λ

2
+

C21

C21ξ + C22
. (35)

Substituting (35) into (34), finally, we obtain the rational solutions

u(x, y, t) =

[
±
√

2abnλ1k1(3m− 5n+ 3)

a(m− n+ 1)

(
C21

C21(k1x+ l1y + λ1t) + C22

)] 2
m−n+1

, (36)

where C21, C22 are arbitrary constants. The solution u(x, y, t) is presented in Fig. 12 at the end of
the paper.

4 THE FIRST INTEGRAL METHOD TO THE
GENERALIZED KP-BBM EQUATION

For simplicity, we propose a transformation u = φ
2

m−n+1 , (m+ 1 ̸= n). Then, (4) is reduced to

(λ1k1 + k2
1 + kl21)φ

2 − ak2
1φ

4 − bλ1k
3
1

2n

m− n+ 1
(

2n

m− n+ 1
− 1)φ′2

−bλ1k
3
1

2n

m− n+ 1
φφ′′ − gφ2− 2n

m−n+1 = 0. (37)

Let x = φ, y = dφ
dξ

, (37) is equivalent to the two dimensional autonomous system
x′ = y,

y′ =
(λ1k1+k2

1+kl21)x
2−ak2

1x
4−gx

2− 2n
m−n+1 −bλ1k

3
1

2n
m−n+1

( 2n
m−n+1

−1)y2

bλ1k
3
1

2n
m−n+1

x
.

(38)

Making the transformation dη = dξ

bλ1k
3
1

2n
m−n+1

x
, (38) thus becomes

{
dx
dη

= bλ1k
3
1

2n
m−n+1

xy,
dy
dη

= (λ1k1 + k2
1 + kl21)x

2 − ak2
1x

4 − gx2− 2n
m−n+1 − bλ1k

3
1

2n
m−n+1

( 2n
m−n+1

− 1)y2.
(39)

Then, we apply the Division Theorem[10] to seek the first integral of system (39). Suppose that
x = x(η), y = y(η) are the nontrivial solutions to (39), and p(x, y) = a0(x) + a1(x)y is an irreducible
polynomial in C[x, y], where ai(x), (i = 0, 1) are polynomials of x and ai(x) ̸= 0. Let p(x(η), y(η)) = 0

10
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be the first integral to system (39). dp
dη

is a polynomial in x, y and dp
dη

∣∣
(39)

= 0. According to the Division
Theorem, there exists a polynomial g(x) + h(x)y in C[x, y], such that

dp

dη

∣∣∣∣
(39)

=

(
∂p

∂x

dx

dη
+

∂p

∂y

dy

dη

) ∣∣∣∣
(39)

=
[
a′
0(x) + a′

1(x)y
]
bλ1k

3
1

2n

m− n+ 1
xy

+ a1(x)

[
(λ1k1 + k2

1 + kl21)x
2 − ak2

1x
4 − gx2− 2n

m−n+1 − bλ1k
3
1

2n

m− n+ 1
(

2n

m− n+ 1
− 1)y2

]
= [g(x) + h(x)y] [a0(x) + a1(x)y] . (40)

Comparing the coefficients of yi on both sides of (40), we have

bλ1k
3
1

2n

m− n+ 1
xa′

1(x) = h(x)a1(x) + bλ1k
3
1

2n

m− n+ 1
(

2n

m− n+ 1
− 1)a1(x), (41)

bλ1k
3
1

2n

m− n+ 1
xa′

0(x) = h(x)a0(x) + g(x)a1(x), (42)

g(x)a0(x) =
[
(λ1k1 + k2

1 + kl21)x
2 − ak2

1x
4 − gx2− 2n

m−n+1

]
a1(x). (43)

According to (41), we deduce that a1(x) is a constant and h(x) = −bλ1k
3
1

2n
m−n+1

( 2n
m−n+1

− 1).
For simplicity, taking a1(x) = 1. Balancing the degrees of g(x) and a0(x), we can deduce that
deg(g(x)) = deg(a0(x)). Since a0(x), g(x) are polynomials and m,n ∈ N+, we derive that only when
2 − 2n

m−n+1
= 0, 2 − 2n

m−n+1
= 1 and 2 − 2n

m−n+1
= 6, there exists exact solutions. Therefore, there

are three cases as follows.

4.1 2− 2n
m−n+1

= 0

(37) becomes

(λ1k1 + k2
1 + kl21)φ

2 − ak2
1φ

4 − bλ1k
3
1

2n

m− n+ 1
(

2n

m− n+ 1
− 1)φ′2 − bλ1k

3
1

2n

m− n+ 1
φφ′′ − g = 0,

Substituting 2− 2n
m−n+1

= 0 into (41)-(43), so, we can have the following expressions

2bλ1k
3
1xa

′
1(x) = h(x)a1(x) + 2bλ1k

3
1a1(x), (44)

2bλ1k
3
1xa

′
0(x) = h(x)a0(x) + g(x)a1(x), (45)

g(x)a0(x) =
[
(λ1k1 + k2

1 + kl21)x
2 − ak2

1x
4 − g

]
a1(x). (46)

Accordingly, we deduce that a1(x) = 1, h(x) = −2bλ1k
3
1 and deg(g(x)) = deg(a0(x)). Then,

from (46), we derive deg(g(x)) = deg(a0(x)) = 2. We suppose that

a0(x) = A0 +A1x+A2x
2, (A2 ̸= 0). (47)

Combining (47) and (45), we derive that

g(x) = 2bλ1k
3
1(A0 + 2A1x+ 3A2x

2), (48)

where Ai, (i = 0, 1, 2) all are real constants that will be determined later. Substituting (47), (48) and
a1(x) = 1 into (46) and setting all the coefficients of powers x to be zero which allows a system of
nonlinear algebraic equations to be obtained. Solving the system equations, we can get

A0 = ±
√

−g

2bλ1k3
1

, A2 = ±
√

−a

6bλ1k1
, A1 = 0, g =

3(λ1k1 + k2
1 + kl21)

2

16ak2
1

. (49)

11
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Using the conditions (49) in p(x, y) = a0(x) + a1(x)y = 0, we obtain

y = ∓
√

−g

2bλ1k3
1

∓
√

−a

6bλ1k1
x2. (50)

Combining the transformations dη = dξ

2bλ1k
3
1x

and x = φ, y = dφ
dξ

, (50) can be converted into

dφ

dξ
= ∓

√
−g

2bλ1k3
1

∓
√

−a

6bλ1k1
φ2.

Solving this first order ODE, we have

φ(ξ) = ∓

√
3g

ak2
1

tan

(√
ag

12b2λ2
1k

4
1

(ξ + C23)

)
,

and

φ(ξ) = ∓

√
3g

ak2
1

tanh

(√
ag

12b2λ2
1k

4
1

(ξ + C24)

)
.

Finally, we obtain the exact solution

u(x, y, t) =

[
∓

√
3g

ak2
1

tan

(√
ag

12b2λ2
1k

4
1

((k1x+ l1y + λ1t) + C23)

)] 2
n

,

and

u(x, y, t) =

[
∓

√
3g

ak2
1

tanh

(√
ag

12b2λ2
1k

4
1

((k1x+ l1y + λ1t) + C24)

)] 2
n

,

where C23, C24 are arbitrary constants. The solution u(x, y, t) are presented in Fig. 10, where the
formula of u(x, y, t) are that with plus signs.

12
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4.2 2− 2n
m−n+1

= 1

Now, (37) becomes

(λ1k1 + k2
1 + kl21)φ

2 − ak2
1φ

4 − bλ1k
3
1

2n

m− n+ 1
(

2n

m− n+ 1
− 1)φ′2 − bλ1k

3
1

2n

m− n+ 1
φφ′′ − gφ = 0.

Similarly, we can get

bλ1k
3
1xa

′
1(x) = h(x)a1(x) + bλ1k

3
1a1(x), (51)

bλ1k
3
1xa

′
0(x) = h(x)a0(x) + g(x)a1(x), (52)

g(x)a0(x) =
[
(λ1k1 + k2

1 + kl21)x
2 − ak2

1x
4 − gx

]
a1(x). (53)

Then, we derive that h(x) = −bλ1k
3
1, a1(x) = 1 and deg(a0(x)) = deg(g(x)) = 2. Thus, we suppose

a0(x) = A0 +A1x+A2x
2, (A2 ̸= 0). (54)

From (52) and (54), we have

g(x) = bλ1k
3
1(A0 + 2A1x+ 3A2x

2),

where Ai, (i = 0, 1, 2) are all real constants that need to be determined later. We substitute a0(x),
a1(x) and g(x) into (53) and compare all the coefficients of powers x of the both sides of (53). After
setting them to be zero, we can have a system of nonlinear algebraic equations. By solving these
equations, we derive the corresponding solutions as follows

A2 = ±
√

−a

3bλ1k1
, A0 = A1 = 0, g = 0, λ1k1 + k2

1 + kl21 = 0. (55)

Using the conditions (55) in p(x, y) = a0(x) + a1(x)y = 0, we obtain

y = ∓
√

−a

3bλ1k1
x2. (56)

According to dη = dξ

bλ1k
3
1x

and x = φ, y = dφ
dξ

, (56) can be reduce to

dφ

dξ
= ∓

√
−a

3bλ1k1
φ2. (57)

Solving (57), we have

φ(ξ) =

(
±
√

−a

3bλ1k1
ξ + C25

)−1

.

Therefore, we obtain the rational solutions

u(x, y, t) =

(
±
√

−a

3bλ1k1
(k1x+ l1y + λ1t) + C25

)− 1
n

,

where C25 is an arbitrary constant. In addition, we find the figure is similar to Fig. 3 when letting
t = 0, a = b = 1

2
, k1 = l1 = k = 1, λ1 = −2, n = 3,m = 8, C25 = 0 and taking the plus sign.

13
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4.3 2− 2n
m−n+1

= 6

Accordingly, (37) is reduced to

(λ1k1 + k2
1 + kl21)φ

2 − ak2
1φ

4 − bλ1k
3
1

2n

m− n+ 1
(

2n

m− n+ 1
− 1)φ′2 − bλ1k

3
1

2n

m− n+ 1
φφ′′ − gφ6 = 0.

Similarly, we have

−4bλ1k
3
1xa

′
1(x) = h(x)a1(x) + 20bλ1k

3
1a1(x), (58)

−4bλ1k
3
1xa

′
0(x) = h(x)a0(x) + g(x)a1(x), (59)

g(x)a0(x) =
[
(λ1k1 + k2

1 + kl21)x
2 − ak2

1x
4 − gx6] a1(x). (60)

Then, we derive that h(x) = −20bλ1k
3
1, a1(x) = 1 and deg(a0(x)) = deg(g(x)) = 3. Thus, we

suppose

a0(x) = A0 +A1x+A2x
2 +A3x

3, (A3 ̸= 0). (61)

From (59) and (61), we derive that

g(x) = 4bλ1k
3
1(5A0 + 4A1x+ 3A2x

2 + 2A3x
3), (62)

where Ai, (i = 0, 1, 2, 3) are real constants which will be determined later. Then, we can also obtain
a system of nonlinear algebraic equations. After solving that, we have

A0 = A2 = 0, A1 = ±

√
λ1k1 + k2

1 + kl21
16bλ1k3

1

, A3 = ±
√

−g

8bλ1k3
1

g =
−2a2k4

1

9(λ1k1 + k2
1 + kl21)

. (63)

Using the conditions (63) in p(x, y) = a0(x) + a1(x)y = 0, we obtain

y = ∓

√
λ1k1 + k2

1 + kl21
16bλ1k3

1

x∓
√

−g

8bλ1k3
1

x3. (64)

According to dη = dξ

−4bλ1k
3
1x

and x = φ, y = dφ
dξ

, (64) can be reduce to

dφ

dξ
= ∓

√
λ1k1 + k2

1 + kl21
16bλ1k3

1

φ∓
√

−g

8bλ1k3
1

φ3. (65)

Solving (65), we have

φ(ξ) = ±

±

√
−2g

λ1k1 + k2
1 + kl21

+ C26e
± 1

2

√
λ1k1+k2

1+kl21
bλ1k3

1

ξ

− 1
2

. (66)

Substituting (66) and 2− 2n
m−n+1

= 6 ( i.e. n = 2(m+1)) into u = φ
2

m−n+1 , thus, we obtain the exact
solutions

u(x, y, t) = ±

±

√
−2g

λ1k1 + k2
1 + kl21

+ C26e
± 1

2

√
λ1k1+k2

1+kl21
bλ1k3

1

(k1x+l1y+λ1t)


2
n

, (67)

where C26 is an arbitrary constant. The solution u(x, y, t) is presented in the Fig. 13, where the
formula of u(x, y, t) is that with plus signs.
Remark : In the subsection 4.1, 4.2 and 4.3, when we let a1(x) = Axi, (i ∈ N+, i ≥ 1, A is a
constant), accordingly, we can find the corresponding h(x). However, the final solutions u are the
same as those we obtain in the subsection 4.1, 4.2 and 4.3.
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5 CONCLUSION

In this work, the G′/G-expansion method and the
first integral method were successfully used to
establish the exact solutions of the generalized
KP-BBM equation. The rational solutions, the
periodic solutions and the hyperbolic function
solutions are obtained under some parametric
conditions. As far as we know, the solutions that
we found are new solutions that are not found in
other papers, such as the literature[7]. Certainly,
the solution of system (2) should be studied
further, which will be left to a further discussion.
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